

## Journal of the Egyptian Mathematical Society

Journal homepage https://joems.journals.ekb.eg/ Print ISSN: 1110-256X Online ISSN: 2090-9128

http://dx.doi.org/10.21608/joems.2025.348639.1023

# Medical Application Fuzzy Decision Information System

S. A. Kandil 🗅

Basic Science Department, School of Engineering, Canadian International College, Egypt

Received: 29 Dec. 2024, Revised: 4 Mar. 2025, Accepted: 30 Mar. 2025, Published online: 10 Oct. 2025

**Abstract:** Decision-making in information systems often involves uncertainty and imprecision. Traditional methods, such as those based on classical Rough Set Theory and original Pawlak's model may struggle to handle such complexities and various data set class types. Given the importance of similarity/dissimilarity measures and their applications in data mining, medical diagnosis, decision-making, and pattern recognition, this study proposes a novel approach to estimative similarity/dissimilarity degree membership calculation with fuzzy decision-making systems, leveraging symmetry relationships. Our method aims to enhance decision-making accuracy and robustness by considering the inherent uncertainties present in real-world data. Experimental results for a selected dataset application represent a hypothetical medical diagnosis scenario demonstrate the superiority of our approach compared to existing techniques, making it a promising tool for various applications in information systems.

**Keywords:** Membership function, degree of similarity, information system, uncertain idea, Fuzzy set theory, and Fuzzy Decision.

2020 AMS Subject Classifications:

#### 1 Introduction

Decision-making in information systems, crucial across diverse domains like healthcare, finance, and engineering [1], often faces challenges due to inherent uncertainties in real-world data. Traditional methods, including Pawlak's rough set theory [2], may struggle to handle these uncertainties effectively, especially when dealing with information systems with limited equivalence classes [3, 4]. While extensions like non-equivalence relations [5] have been proposed, fuzzy set theory offers a more flexible framework for representing and reasoning with imprecise information [6]. To address ambiguity and uncertainty in data, various modeling techniques have emerged, including fuzzy set theory, intuitionistic fuzzy set theory, vague set theory, and interval mathematics [9]. These approaches provide valuable tools for managing complexities in decision-making. Different notions of membership functions based on rough sets have also been introduced and studied. This paper

<sup>\*</sup> Corresponding author name and e-mail: S. A. Kandil:Shehab\_ali@cic-cairo.edu.eg

proposes a novel fuzzy decision-making system incorporating symmetry relationships to enhance the accuracy and robustness of decision-making processes. By calculating estimative membership degrees based on these relationships and similarity/dissimilarity measures, our approach offers a nuanced understanding of decision boundaries and uncertainties.

The remainder of this paper is organized as follows: Section 2 provides a brief overview of fuzzy set theory and rough set theory. Section 3 presents our proposed methodology, including constructing similarity and dissimilarity matrices and calculating estimative membership degrees with fuzzy decision. Section 4 evaluates our approach's performance using real-world experimental data and compares it with existing methods. Finally, Section 5 concludes the paper and discusses potential future research directions.

#### 2 Preliminaries

In this section, we recall the definition of the information system, rough set, and Degree of membership functions approximations with their properties.

**Definition 1.** [13, 14] An information system (IS) or approximation space is a triplet (U, A, S), where: U is a finite set of objects or elements, A is a set of attributes or variables that describe the objects in U. S is a function that maps each attribute  $a \in A$  to an information function Sa:  $U \rightarrow Va$ . This function associates each object in U with a specific value or attribute value from the domain Va of attribute a.

**Definition 2.** [15] For any subset B of attributes A, the indiscernibility relation on B, denoted by Ind(B), is the relationship between two objects  $x_i$  and  $x_j$  in U such that they have the same values for all attributes in B. In other words,  $x_i$  and  $x_j$  are indistinguishable based on the attributes in B.

**Definition 3.** [16] For any subset B of attributes A, the membership function of an object  $z_i$  in U with respect to B, denoted by  $\mu_B(z_i)$ , is calculated as the ratio of the number of objects in the equivalence class  $[z_i]$  that also belong to B, to the total number of objects in the equivalence class  $[z_i]$ .

In simpler terms,  $\mu_B(z_i)$  represents the proportion of objects in the group  $[z_i]$  that share the same attributes as  $z_i$ , relative to the total number of objects in that group.

Assume IS = (U, A) is an information system and  $\phi \neq B \subseteq U$ . The Rough membership function for the set is

$$\mu_B(\alpha_i) = \frac{| [\alpha_i] \cap B |}{[\alpha_i]}$$
 for some  $B \in U$ 

Original Pawlak method:

Example 1. Let IS = (U, Z) be an information system that shown in Table 1.

Let 
$$U = \{ \alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5, \alpha_6, \alpha_7, \alpha_8 \},$$

$$Z=\{\alpha_2,\alpha_3,\alpha_4,\alpha_5\}$$

Let the students who has grade "A"



Table 1: Example 1

| Student ID | Exam1 | Exam2 | Exam3 | Grade |
|------------|-------|-------|-------|-------|
| $\alpha_1$ | D     | F     | С     | D     |
| $\alpha_2$ | A     | A     | A     | A     |
| $\alpha_3$ | A     | В     | A     | A     |
| $\alpha_4$ | С     | A     | A     | A     |
| $\alpha_5$ | С     | A     | С     | A     |
| $\alpha_6$ | D     | С     | С     | С     |
| $\alpha_7$ | С     | A     | С     | В     |
| $\alpha_8$ | D     | A     | В     | С     |

 $[\alpha_i] = {\alpha_5, \alpha_7}$  This is the chosen conditional attributes such that Exam1 grade is "C", Exam2 grade is "A", and Exam3 grade is "C".

$$\mu_{B}\left(\alpha_{5}\right) = \frac{\left|\right. \left\{\alpha_{5}, \alpha_{7}\right\} \; \cap \; \left\{\left.\alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right\}\right.\right|}{\left\{\alpha_{5}, \alpha_{7}\right\}} = \frac{1}{2}$$

**Definition 4.** [17, 18] To determine the similarity between two elements (i and j) described by their attributes  $(a_k)$ , we can compare their corresponding values  $(a_{ki}$  and  $a_{kj})$ . The degree of similarity is based on the number of matches between these values.

$$\delta_{kij}(a_{ki}, a_{kj}) = \begin{cases} 0 & , if \ a_{ki} \neq a_{kj} \\ 1 & , if \ a_{ki} = a_{kj} \end{cases}$$

For dissimilarity, the degree of dissimilarity is based on the number of matches between these values.

$$\boldsymbol{\delta}_{kij}\left(a_{ki},a_{kj}\right) = \begin{cases} 1 & , if \ a_{ki} \neq a_{kj} \\ 0 & , if \ a_{ki} = a_{kj} \end{cases}$$

Example 2. For  $\alpha_2$  and  $\alpha_3$  in Table 1, we can calculate the similarity and dissimilarity between these two students as follows:

| Student ID | Exam1 | Exam2 | Exam3 | Grade |
|------------|-------|-------|-------|-------|
| $\alpha_2$ | A     | A     | A     | A     |
| $\alpha_3$ | A     | В     | A     | A     |

Similarity:

| Student ID | $\alpha_2$ | $\alpha_3$ |
|------------|------------|------------|
| $\alpha_2$ | 3          | 2          |
| $\alpha_3$ | 2          | 3          |

Dissimilarity:

| Student ID | $\alpha_2$ | $\alpha_3$ |
|------------|------------|------------|
| $lpha_2$   | 0          | 1          |
| $\alpha_3$ | 1          | 0          |

**Definition 5.** [19] By creating a matrix that depicts the similarity or dissimilarity between elements based on various attribute combinations, we can utilize these similarity or dissimilarity degrees to construct a membership function suitable for multi-class situations.

Let us define for given IS data U:  $U = \{ \alpha_1, \alpha_2, \alpha_3, \alpha_4, \dots, \alpha_N \}$ 

The attribute set:  $A = \{a_1, a_2, a_3, \ldots, a_M\}$ 

The selected attribute decision set

$$A_S = \{a_1, a_2, a_3, \ldots, a_K\}$$
$$1 < K < M$$

The dis-similarity relation between two elements (i,j) for certain attribute (k).

$$\delta_{kij}\left(a_{ki},a_{kj}\right)$$

The total dis-similarity weight between the elements (i,j) for the selected attributes decision set

$$\omega\left(\alpha_{i},\alpha_{j}\right) = \sum_{k=1}^{K} \delta_{kij}\left(a_{ki},a_{kj}\right) , i \neq j$$

The information class set that the rough membership function will be calculated

$$Z = \{\alpha_1, \alpha_2, \ldots, \alpha_N\}$$

Such that  $\{\alpha_1, \alpha_2, \dots, \alpha_N\}$  are common in certain decision attribute.

The membership function of the class Z based on calculating the ratio of the class similarity/dissimilarity weight value to the overall similarity/dissimilarity weight value between elements.

$$\mu_{Z} = \frac{\sum_{\alpha_{i} \in Z \cap U(S)} \quad \omega(\alpha, \alpha_{i})}{\sum_{\alpha_{i} \in U(S)} \quad \omega(\alpha, \alpha_{i})} \quad , \alpha \neq \alpha_{i}$$

Example 3. For the dataset illustrated in Table 2, we need to calculate the overall similarity/dissimilarity weight value between elements for who has decision >0.5,  $A = \{a_2, a_4, a_5, a_6\}$ 

| #          | Exam1 | Exam2 | Exam3 | Exam4 | Exam5 | Decision |
|------------|-------|-------|-------|-------|-------|----------|
| $\alpha_1$ | D     | F     | С     | D     | С     | 0.4      |
| $\alpha_2$ | A     | A     | С     | D     | С     | 0.7      |
| $\alpha_3$ | A     | F     | F     | D     | С     | 0.2      |
| $\alpha_4$ | С     | A     | A     | С     | F     | 0.6      |
| $\alpha_5$ | С     | A     | С     | В     | В     | 0.7      |
| $\alpha_6$ | C     | D     | C     | D     | В     | 0.6      |
| $\alpha_7$ | С     | A     | С     | В     | F     | 0.4      |
| $\alpha_8$ | F     | D     | С     | В     | В     | 0.4      |

For 
$$\alpha_1$$
,  $\sum_{\alpha_i \in \mathbf{Z} \cap \mathbf{U}(\alpha)} \omega(\alpha, \alpha_i) = 0.6$ ,  $\sum_{\alpha_i \in \mathbf{U}(\alpha)} \omega(\alpha, \alpha_i) = 1 + 0.6 + 0.6 = 2.2$ 

$$\mu_{\mathbf{Z}}(\alpha_1) = \frac{0.6}{2.2} = 0.273$$

For 
$$\alpha_2$$
,  $\sum_{\alpha_i \in \mathbf{Z} \cap \mathbf{U}(\alpha)} \omega(\alpha, \alpha_i) = 1$ ,  $\sum_{\alpha_i \in \mathbf{U}(\alpha)} \omega(\alpha, \alpha_i) = 0.6 + 1 + 0.6 = 2.2$ 

$$\mu_{\mathbf{Z}}(\alpha 2) = \frac{1}{2.2} = 0.455$$

By apply for all elements, table 3 illustrate the overall similarity/dissimilarity weight value





| #          | $\alpha_1$ | $\alpha_2$ | $\alpha_3$ | $\alpha_4$ | $\alpha_5$ | $\alpha_6$ | $\alpha_7$ | $\alpha_8$ | $\sum_{\boldsymbol{\alpha}_i \in \mathbf{Z} \cap \mathbf{U}(\boldsymbol{\alpha})} \omega(\alpha, \alpha_i)$ | $\sum_{\boldsymbol{\alpha}_i \in U(\boldsymbol{\alpha})} \omega(\alpha, \alpha_i)$ | $\mu_{Z}$ |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------|
| $\alpha_1$ | 1          | 0.6        | 0.6        | 0          | 0.2        | 0.4        | 0.2        | 0.2        | 0.6                                                                                                         | 2.2                                                                                | 0.273     |
| $\alpha_2$ | 0.6        | 1          | 0.6        | 0.2        | 0.4        | 0.4        | 0.4        | 0.2        | 1                                                                                                           | 2.2                                                                                | 0.455     |
| $\alpha_3$ | 0.6        | 0.6        | 1          | 0          | 0          | 0.2        | 0          | 0          | 0.6                                                                                                         | 2.2                                                                                | 0.273     |
| $\alpha_4$ | 0          | 0.2        | 0          | 1          | 0.4        | 0.2        | 0.6        | 0          | 1                                                                                                           | 1.6                                                                                | 0.625     |
| $\alpha_5$ | 0.2        | 0.4        | 0          | 0.4        | 1          | 0.6        | 0.8        | 0.6        | 1.6                                                                                                         | 3                                                                                  | 0.533     |
| $\alpha_6$ | 0.4        | 0.4        | 0.2        | 0.2        | 0.6        | 1          | 0.4        | 0.6        | 1.6                                                                                                         | 2.2                                                                                | 0.727     |
| $\alpha_7$ | 0.2        | 0.4        | 0          | 0.6        | 0.8        | 0.4        | 1          | 0.4        | 1.4                                                                                                         | 2.4                                                                                | 0.583     |
| $\alpha_8$ | 0.2        | 0.2        | 0          | 0          | 0.6        | 0.6        | 0.4        | 1          | 1.2                                                                                                         | 2.2                                                                                | 0.545     |

## 3 Proposed Methodology

Based on a novel fuzzy decision of an IS system the degree of membership will be constructed for the selected class. This proposed method depends on creating a matrix that depicts the similarity or dissimilarity between elements based on various attribute combinations and calculating the similarity or dissimilarity degrees membership.

Let us define for given IS data U:  $U = \{ S_1, S_2, \dots, S_N \}$ 

The attribute set:  $A = \{a_1, a_2, a_3, \ldots, a_M\}$ 

The selected attribute decision set

$$A_S = \{a_1, a_2, a_3, \dots, a_K\}$$
  $1 \le K \le M$ 

The fuzzy decision set:  $D = \{d_1, d_2, d_3, \ldots, d_M\}$ 

The similarity/dis-similarity relation between two elements (i,i) for certain attribute (k).

$$\delta_{kij}\left(a_{ki},a_{kj}\right)$$

The total dis-similarity weight between the elements (i,j) for the selected attributes decision set

$$\omega(S_i, S_j) = \sum_{k=1}^K \delta_{kij} (a_{ki}, a_{kj}) , i \neq j$$

The similarity degree matrix normalizes the similarity values into a range of 0 to 1. It is the ratio of the similarity/dis-similarity relation between two elements (i,j) for certain attribute (k) to the total number of attributes k.

$$r(S_i, S_j) = \frac{\delta_{kij}(a_{ki}, a_{kj})}{k}$$
,  $i \neq j$ 

The membership function of the class  $\alpha$  based on the total dis-similarity weight values for each element in information system and the fuzzy decision set:

$$\mu_{Dy}([\alpha_i]) = \frac{\sum_{S \in [\alpha_i] \cap D_y} \mu(y)}{\sum_{S \in D_y} \mu(S)}$$

## **4 Case Study Evaluation**

This dataset presents a hypothetical medical diagnosis scenario designed to evaluate the performance of a fuzzy decision information system in a multi-attribute environment. The dataset comprises eight patient records, each

characterized by five categorical attributes, along with a fuzzy decision value indicating the likelihood of a specific disease. This fuzzy representation aims to simulate the uncertainty often encountered in real-world medical diagnoses, where clear-cut classifications may not always be possible.

## **Attributes:**

- 1. Joint Pain: Indicates whether the patient is experiencing joint pain. Possible values: Yes, No.
- 2. Headache: Indicates whether the patient is experiencing a headache. Possible values: Yes, No.
- 3. Running Nose: Indicates whether the patient has a running nose. Possible values: Yes, No.
- 4. Temperature: Represents the patient's body temperature, categorized into three levels: Normal, High, and Very High.
- 5.Lung Diffusion: Indicates whether the patient has any issues related to lung diffusion, which could be indicative of respiratory problems. Possible values: Yes, No.

#### **Decision Attribute:**

Decision (Fuzzy Value): The dataset includes eight patients with varying combinations of symptoms and corresponding fuzzy decisions [YES/ NO]. Represents the likelihood or degree of certainty that a patient has the disease in question. The values range from 0 to 1, with 0 indicating a very low likelihood and 1 indicating a very high likelihood. This fuzzy representation acknowledges the inherent ambiguity and imprecision often present in medical diagnoses.

Additionally, a 'Decision' column provides a fuzzy value (0-1) indicating the likelihood of a particular disease, simulating real-world diagnostic uncertainty.

| Patient    | Joint Pain | Headache | Running Nose | Temperature | Lung Diffusion | Decision YES | Decision NO |
|------------|------------|----------|--------------|-------------|----------------|--------------|-------------|
| $\alpha_1$ | Yes        | Yes      | Yes          | High        | Yes            | 0.5          | 0           |
| $\alpha_2$ | Yes        | No       | No           | High        | No             | 0.4          | 0.4         |
| $\alpha_3$ | Yes        | No       | No           | High        | Yes            | 0            | 0.5         |
| $\alpha_4$ | No         | No       | No           | Very High   | No             | 0.4          | 0.7         |
| $\alpha_5$ | No         | Yes      | Yes          | High        | No             | 0.6          | 0.2         |
| $\alpha_6$ | Yes        | Yes      | No           | Very High   | Yes            | 0.7          | 0           |
| $\alpha_7$ | Yes        | Yes      | No           | Normal      | No             | 0.4          | 0.6         |
| $\alpha_8$ | Yes        | Yes      | No           | Very High   | Yes            | 0            | 0.8         |

## 1.For Similarity

## Step 1: Extracting Similarity matrix

Similarity matrix for the provided dataset of eight elements ( $\alpha_1$  to  $\alpha_8$ ) and their corresponding similarity values represents how closely related or similar each element is to the others. A higher value indicates a greater degree of similarity. The similarity matrix directly reflects the raw similarity values between the elements. For example, the value in the first row and first column (5) indicates that  $\alpha_1$  and  $\alpha_1$  have a similarity of 5 elements. The value in the first row and Second column (2) indicates that  $\alpha_1$  and  $\alpha_2$  have a similarity of 2 elements.





| #          | $\alpha_1$ | $\alpha_2$ | $\alpha_3$ | $\alpha_4$ | $\alpha_5$ | $\alpha_6$ | $\alpha_7$ | $\alpha_8$ |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| $\alpha_1$ | 5          | 2          | 3          | 0          | 3          | 3          | 2          | 3          |
| $\alpha_2$ | 2          | 5          | 4          | 3          | 2          | 2          | 3          | 2          |
| $\alpha_3$ | 3          | 4          | 5          | 2          | 1          | 3          | 2          | 3          |
| $\alpha_4$ | 0          | 3          | 2          | 5          | 2          | 2          | 2          | 2          |
| $\alpha_5$ | 3          | 2          | 1          | 2          | 5          | 1          | 2          | 1          |
| $\alpha_6$ | 3          | 2          | 3          | 2          | 1          | 5          | 3          | 5          |
| $\alpha_7$ | 2          | 3          | 2          | 2          | 2          | 3          | 5          | 3          |
| $\alpha_8$ | 3          | 2          | 3          | 2          | 1          | 5          | 3          | 5          |

**Step 2: Calculate Similarity Degree Matrix** 

The similarity degree matrix normalizes the similarity values into a range of 0 to 1. This makes it easier to interpret and compare the relative similarities between elements. The value in the first row and second column (4) indicates that  $\alpha_1$  and  $\alpha_2$  have a similarity degree of 0.4, which is considered moderate.

| #          | $\alpha_1$ | $\alpha_2$ | $\alpha_3$ | $\alpha_4$ | $\alpha_5$ | $\alpha_6$ | $\alpha_7$ | $\alpha_8$ |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| $\alpha_1$ | 1          | 0.4        | 0.6        | 0          | 0.6        | 0.6        | 0.4        | 0.6        |
| $\alpha_2$ | 0.4        | 1          | 0.8        | 0.6        | 0.4        | 0.4        | 0.6        | 0.4        |
| $\alpha_3$ | 0.6        | 0.8        | 1          | 0.4        | 0.2        | 0.6        | 0.4        | 0.6        |
| $\alpha_4$ | 0          | 0.6        | 0.4        | 1          | 0.4        | 0.4        | 0.4        | 0.4        |
| $\alpha_5$ | 0.6        | 0.4        | 0.2        | 0.4        | 1          | 0.2        | 0.4        | 0.2        |
| $\alpha_6$ | 0.6        | 0.4        | 0.6        | 0.4        | 0.2        | 1          | 0.6        | 1          |
| $\alpha_7$ | 0.4        | 0.6        | 0.4        | 0.4        | 0.4        | 0.6        | 1          | 0.6        |
| $\alpha_8$ | 0.6        | 0.4        | 0.6        | 0.4        | 0.2        | 1          | 0.6        | 1          |

| $[\alpha_1] = \{ (\alpha_1,1), (\alpha_2,0.4), (\alpha_3,0.6), (\alpha_4,0), (\alpha_5,0.6), (\alpha_6,0.6), (\alpha_7,0.4), (\alpha_8,0.6), (\alpha_$                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $[\alpha_2] = \{ (\alpha_1, 0.4), (\alpha_2, 1), (\alpha_3, 0.8), (\alpha_4, 0.6), (\alpha_5, 0.4), (\alpha_6, 0.4), (\alpha_7, 0.6), (\alpha_8, 0.4), (\alpha_8, 0.$                                                                                                                                                                      |
| $[\alpha_3] = \{ (\alpha_1, 0.6), (\alpha_2, 0.8), (\alpha_3, 1), (\alpha_4, 0.4), (\alpha_5, 0.2), (\alpha_6, 0.6), (\alpha_7, 0.4), (\alpha_8, 0.6), (\alpha_8, 0.$                                                                                                                                                                      |
| $[\alpha_4] = \{ (\alpha_1,0), (\alpha_2,0.6), (\alpha_3,0.4), (\alpha_4,1), (\alpha_5,0.4), (\alpha_6,0.4), (\alpha_7,0.4), (\alpha_8,0.4), (\alpha_$                                                                                      |
| $[\alpha_5] = \{ (\alpha_1, 0.6), (\alpha_2, 0.4), (\alpha_3, 0.2), (\alpha_4, 0.4), (\alpha_5, 1), (\alpha_6, 0.2), (\alpha_7, 0.4), (\alpha_8, 0.2), (\alpha_8, 0.$                                                                                                                                                                      |
| $[\alpha_6] = \{ (\alpha_1, 0.6), (\alpha_2, 0.4), (\alpha_3, 0.6), (\alpha_4, 0.4), (\alpha_5, 0.2), (\alpha_6, 1), (\alpha_7, 0.6), (\alpha_8, 1), (\alpha$ |
| $[\alpha_7] = \{ (\alpha_1, 0.4), (\alpha_2, 0.6), (\alpha_3, 0.4), (\alpha_4, 0.4), (\alpha_5, 0.4), (\alpha_6, 0.6), (\alpha_7, 1), (\alpha_8, 0.6), (\alpha_8, 0.$                                                                                                                                                                      |
| $[\alpha_8] = \{ (\alpha_1, 0.6), (\alpha_2, 0.4), (\alpha_3, 0.6), (\alpha_4, 0.4), (\alpha_5, 0.2), (\alpha_6, 1), (\alpha_7, 0.6), (\alpha_8, 1). \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

Step 3 : Extract Decision Yes/N0 For Similarity = $D_{yes} = D_y$ 

$$D_Y = \{ (\alpha_1, 0.5), (\alpha_2, 0.4), (\alpha_3, 0), (\alpha_4, 0.4), (\alpha_5, 0.6), (\alpha_6, 0.7), (\alpha_7, 0.4), (\alpha_8, 0) . \}$$

**Decision No For Similarity** = $D_{No} = D_y$ 

$$D_N = \{ (\alpha_1,0), (\alpha_2,0.4), (\alpha_3,0.5), (\alpha_4,0.7), (\alpha_5,0.2), (\alpha_6,0), (\alpha_7,0.6), (\alpha_8,0.8) .$$

Step 4 : Calculating Membership based on Fuzzy Similarity Decision Yes such that :

$$\mu_{Dy}\left(\left[\alpha_{i}\right]\right) = \frac{\sum_{y \in \left[\alpha_{i}\right] \cap D_{y}} \mu\left[y\right]}{\sum_{s \in D_{y}} \mu\left[s\right]}.$$

| 1. | $ \left\{ (\alpha_{1},1), (\alpha_{2},0.4), (\alpha_{3},0.6), (\alpha_{4},0), (\alpha_{5},0.6), (\alpha_{6},0.6), (\alpha_{7},0.4), (\alpha_{8},0.6) \cap \left\{ (\alpha_{1},0.5), (\alpha_{2},0.4), (\alpha_{3},0) \right\} \right\} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | $,(\alpha_4,0.4),(\alpha_5,0.6),(\alpha_6,0.7),(\alpha_7,0.4),(\alpha_8,0) = \{ (\alpha_1,0.5),(\alpha_2,0.4),(\alpha_3,0),(\alpha_4,0),(\alpha_5,0.6),(\alpha_6,0.6) \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | $(\alpha_7,0.4),(\alpha_8,0)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | $\mu_{Dy}(\alpha_1) = \frac{1 \cap 0.5 + 0.4 \cap 0.4 + 0.6 \cap 0.4 + 0.6 \cap 0.4 + 0.6 \cap 0.6 + 0.6 \cap 0.7 + 0.4 \cap 0.4 + 0.6 \cap 0}{1 + 0.4 + 0.6 + 0.4 + 0.6 + 0.6 + 0.4 + 0.6} = \frac{0.5 + 0.4 + 0.4 + 0.6 + 0.6 + 0.6 + 0.4 + 0.6}{1 + 0.4 + 0.6 + 0.6 + 0.6 + 0.4 + 0.6} = \frac{0.5 + 0.4 + 0.4 + 0.6 + 0.6 + 0.6 + 0.4 + 0.6}{1 + 0.4 + 0.6 + 0.6 + 0.6 + 0.4 + 0.6} = \frac{0.5 + 0.4 + 0.4 + 0.6 + 0.6 + 0.6 + 0.4 + 0.6}{1 + 0.4 + 0.6 + 0.6 + 0.6 + 0.4 + 0.6} = \frac{0.5 + 0.4 + 0.4 + 0.6 + 0.6 + 0.4 + 0.6}{1 + 0.4 + 0.6 + 0.6 + 0.6 + 0.4 + 0.6} = \frac{0.5 + 0.4 + 0.6 + 0.6 + 0.6 + 0.4 + 0.6}{1 + 0.4 + 0.6 + 0.6 + 0.6 + 0.4 + 0.6} = \frac{0.5 + 0.4 + 0.6 + 0.6 + 0.6 + 0.4 + 0.6}{1 + 0.4 + 0.6 + 0.6 + 0.6 + 0.4 + 0.6} = \frac{0.5 + 0.4 + 0.6 + 0.6 + 0.6 + 0.4 + 0.6}{1 + 0.4 + 0.6 + 0.6 + 0.6 + 0.4 + 0.6} = \frac{0.5 + 0.4 + 0.6 + 0.6 + 0.6 + 0.4 + 0.6}{1 + 0.4 + 0.6 + 0.6 + 0.6 + 0.4 + 0.6} = \frac{0.5 + 0.4 + 0.6 + 0.6 + 0.4 + 0.6}{1 + 0.4 + 0.6 + 0.6 + 0.4 + 0.6} = \frac{0.5 + 0.4 + 0.6 + 0.6 + 0.4 + 0.6}{1 + 0.4 + 0.6 + 0.6 + 0.4 + 0.6} = \frac{0.5 + 0.4 + 0.6 + 0.6 + 0.4 + 0.6}{1 + 0.4 + 0.6 + 0.6 + 0.4 + 0.6} = \frac{0.5 + 0.4 + 0.6 + 0.6 + 0.4 + 0.6}{1 + 0.4 + 0.6 + 0.6 + 0.4 + 0.6} = \frac{0.5 + 0.4 + 0.6 + 0.6 + 0.4 + 0.6}{1 + 0.4 + 0.6 + 0.6 + 0.6 + 0.4 + 0.6} = \frac{0.5 + 0.4 + 0.6 + 0.6 + 0.4 + 0.6}{1 + 0.4 + 0.6 + 0.6 + 0.6 + 0.4 + 0.6} = \frac{0.5 + 0.4 + 0.6 + 0.6 + 0.4 + 0.6}{1 + 0.4 + 0.6 + 0.6 + 0.6 + 0.6 + 0.6} = \frac{0.5 + 0.4 + 0.6 + 0.6 + 0.4 + 0.6}{1 + 0.4 + 0.6 + 0.6 + 0.6 + 0.6} = \frac{0.5 + 0.4 + 0.6}{1 + 0.4 + 0.6 + 0.6 + 0.6} = \frac{0.5 + 0.4 + 0.6}{1 + 0.4 + 0.6} = \frac{0.5 + 0.4 + 0.6}{1 + 0.4 + 0.6} = \frac{0.5 + 0.4 + 0.6}{1 + 0.4 + 0.6} = \frac{0.5 + 0.4 + 0.6}{1 + 0.4 + 0.6} = \frac{0.5 + 0.4 + 0.6}{1 + 0.4 + 0.6} = \frac{0.5 + 0.4 + 0.6}{1 + 0.4 + 0.6} = \frac{0.5 + 0.4 + 0.6}{1 + 0.4 + 0.6} = \frac{0.5 + 0.4 + 0.6}{1 + 0.4 + 0.6} = \frac{0.5 + 0.4 + 0.6}{1 + 0.4 + 0.6} = \frac{0.5 + 0.4 + 0.4}{1 + 0.4 + 0.6} = \frac{0.5 + 0.4 + 0.4}{1 + 0.4 + 0.6} = \frac{0.5 + 0.4 + 0.4}{1 + 0.4 + 0.6} = \frac{0.5 + 0.4 + 0.4}{1 + 0.4 + 0.6} = \frac{0.5 + 0.4 + 0.4}{1 + 0.4 + 0.6} = \frac{0.5 + 0.4}{1 + 0.4 + 0.6} = \frac{0.5 + 0.4}{1 + 0.4 + 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    | 2.5 / 4.2 = 0.595.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2. | $ \left\{ (\alpha_1, 0.4), (\alpha_2, 1), (\alpha_3, 0.8), (\alpha_4, 0.6), (\alpha_5, 0.4), (\alpha_6, 0.4), (\alpha_7, 0.6), (\alpha_8, 0.4) \cap \left\{ (\alpha_1, 0.5), (\alpha_2, 0.4) \right\} \right\} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | $,(\alpha_{3},0),(\alpha_{4},0.4),(\alpha_{5},0.6),(\alpha_{6},0.7),(\alpha_{7},0.4),(\alpha_{8},0) = \{ (\alpha_{1},0.4),(\alpha_{2},0.4),(\alpha_{3},0),(\alpha_{4},0.4),(\alpha_{5},0.4) \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | $(\alpha_6,0.4),(\alpha_7,0.4),(\alpha_8,0)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    | $\mu_{Dy}(\alpha_2) = \frac{[\alpha_2] \cap D_y}{[\alpha_2]} = 2.4 / 4.6 = 0.522.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3. | $ \{ (\alpha_1,0.6), (\alpha_2,0.8), (\alpha_3,1), (\alpha_4,0.4), (\alpha_5,0.2), (\alpha_6,0.6), (\alpha_7,0.4), (\alpha_8,0.6) \cap \{ (\alpha_1,0.5), (\alpha_2,0.4) \} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | $,(\alpha_{3},0),(\alpha_{4},0.4),(\alpha_{5},0.6),(\alpha_{6},0.7),(\alpha_{7},0.4),(\alpha_{8},0) = \{ (\alpha_{1},0.5),(\alpha_{2},0.4),(\alpha_{3},0),(\alpha_{4},0.4),(\alpha_{5},0.2) \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | $(\alpha_6,0.6),(\alpha_7,0.4),(\alpha_8,0)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    | $\mu_{Dy}(\alpha_3) = \frac{[\alpha_3] \cap D_y}{[\alpha_2]} = 2.5 / 4.6 = 0.543.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4. | $ \left\{ (\alpha_{1},0), (\alpha_{2},0.6), (\alpha_{3},0.4), (\alpha_{4},1), (\alpha_{5},0.4), (\alpha_{6},0.4), (\alpha_{7},0.4), (\alpha_{8},0.4) \cap \left\{ (\alpha_{1},0.5), (\alpha_{2},0.4), (\alpha_{3},0) \right\} \right\} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    | $,(\alpha_{4},0.4),(\alpha_{5},0.6),(\alpha_{6},0.7),(\alpha_{7},0.4),(\alpha_{8},0) = \{ (\alpha_{1},0),(\alpha_{2},0.4),(\alpha_{3},0),(\alpha_{4},0.4),(\alpha_{5},0.4),(\alpha_{6},0.4) \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | $(\alpha_7,0.4),(\alpha_8,0)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | $\mu_{Dy}(\alpha_4) = \frac{[\alpha_4] \cap D_y}{[\alpha_4]} = 2 / 3.6 = 0.556.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5. | $ \{ (\alpha_1,0.6), (\alpha_2,0.4), (\alpha_3,0.2), (\alpha_4,0.4), (\alpha_5,1), (\alpha_6,0.2), (\alpha_7,0.4), (\alpha_8,0.2) \cap \{ (\alpha_1,0.5), (\alpha_2,0.4) \} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | $,(\alpha_{3},0),(\alpha_{4},0.4),(\alpha_{5},0.6),(\alpha_{6},0.7),(\alpha_{7},0.4),(\alpha_{8},0) = \{ (\alpha_{1},0.5),(\alpha_{2},0.4),(\alpha_{3},0),(\alpha_{4},0.4),(\alpha_{5},0.6) \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | $(\alpha_6,0.2),(\alpha_7,0.4),(\alpha_8,0)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    | $\mu_{Dy}(\alpha_5) = \frac{[\alpha_5] \cap D_y}{[\alpha_5]} = 2.5 / 3.4 = 0.735.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6. | $ \left\{ (\alpha_{1},0.6), (\alpha_{2},0.4), (\alpha_{3},0.6), (\alpha_{4},0.4), (\alpha_{5},0.2), (\alpha_{6},1), (\alpha_{7},0.6), (\alpha_{8},1) \cap \left\{ (\alpha_{1},0.5), (\alpha_{2},0.4), (\alpha_{3},0.6), (\alpha_{1},0.5), (\alpha_{2},0.4), (\alpha_{2},0.4), (\alpha_{3},0.6), (\alpha_{1},0.5), (\alpha_{2},0.4), (\alpha_{2},0.4), (\alpha_{3},0.6), (\alpha_{3},0.6),$ |
|    | $,(\alpha_4,0.4),(\alpha_5,0.6),(\alpha_6,0.7),(\alpha_7,0.4),(\alpha_8,0) = \{ (\alpha_1,0.5),(\alpha_2,0.4),(\alpha_3,0),(\alpha_4,0.4),(\alpha_5,0.2),(\alpha_6,0.7) \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    | $(\alpha_7,0.4),(\alpha_8,0)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | $\mu_{Dy}(\alpha_6) = \frac{[\alpha_6] \cap D_y}{[\alpha_6]} = 2.6 / 4.8 = 0.542.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7. | $ \{ (\alpha_1,0.4), (\alpha_2,0.6), (\alpha_3,0.4), (\alpha_4,0.4), (\alpha_5,0.4), (\alpha_6,0.6), (\alpha_7,1), (\alpha_8,0.6) \cap \{ (\alpha_1,0.5), (\alpha_2,0.4) \} \} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | $,(\alpha_{3},0),(\alpha_{4},0.4),(\alpha_{5},0.6),(\alpha_{6},0.7),(\alpha_{7},0.4),(\alpha_{8},0) = \{ (\alpha_{1},0.4),(\alpha_{2},0.4),(\alpha_{3},0),(\alpha_{4},0.4),(\alpha_{5},0.4) \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | $(\alpha_6,0.6),(\alpha_7,0.4),(\alpha_8,0)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    | $\mu_{Dy}(\alpha_7) = \frac{[\alpha_7] \cap D_y}{[\alpha_7]} = 2.6 / 4.4 = 0.591.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8. | $ \left\{ (\alpha_{1},0.6), (\alpha_{2},0.4), (\alpha_{3},0.6), (\alpha_{4},0.4), (\alpha_{5},0.2), (\alpha_{6},1), (\alpha_{7},0.6), (\alpha_{8},1) \cap \left\{ (\alpha_{1},0.5), (\alpha_{2},0.4), (\alpha_{3},0.6), (\alpha_{1},0.5), (\alpha_{2},0.4), (\alpha_{1},0.6), (\alpha_{1},0.6),$ |
|    | $,(\alpha_4,0.4),(\alpha_5,0.6),(\alpha_6,0.7),(\alpha_7,0.4),(\alpha_8,0) = \{ (\alpha_1,0.5),(\alpha_2,0.4),(\alpha_3,0),(\alpha_4,0.4),(\alpha_5,0.2),(\alpha_6,0.7) \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    | $(\alpha_7,0.4),(\alpha_8,0)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | $\mu_{Dy}(\alpha_8) = \frac{[\alpha_8] \cap D_y}{[\alpha_0]} = 2.6 / 4.8 = 0.542.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    | [~0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |





# Step 5: Calculating Membership based on Fuzzy Similarity (Decision No)

$$\mu_{Dn}\left(\left[\alpha_{i}\right]\right) = \frac{\sum_{s \in \left[\alpha_{i}\right] \cap D_{n}} \mu\left(y\right)}{\sum_{s \in D_{n}} \mu\left(s\right)}.$$

| 1. | $ \{ (\alpha_{1},1), (\alpha_{2},0.4), (\alpha_{3},0.6), (\alpha_{4},0), (\alpha_{5},0.6), (\alpha_{6},0.6), (\alpha_{7},0.4), (\alpha_{8},0.6) \cap \{ (\alpha_{1},0), (\alpha_{2},0.4), (\alpha_{3},0.5) \} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | $,(\alpha_{4},0.7)\ ,(\alpha_{5},0.2)\ ,(\alpha_{6},0)\ ,(\alpha_{7},0.6)\ ,(\alpha_{8},0.8)\ =\ \left\{\ (\alpha_{1},0)\ ,(\alpha_{2},0.4)\ ,(\alpha_{3},0.5)\ ,(\alpha_{4},0)\ ,(\alpha_{5},0.2)\ ,(\alpha_{6},0)\ ,(\alpha_{6},$ |
|    | $(\alpha_7,0.4),(\alpha_8,0.6)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | $\mu_{DN}(\alpha_1) = \frac{[\alpha_1] \cap D_N}{[\alpha_1]} = 2.1 / 4.2 = 0.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2. | $ \{ (\alpha_{1},0.4), (\alpha_{2},1), (\alpha_{3},0.8), (\alpha_{4},0.6), (\alpha_{5},0.4), (\alpha_{6},0.4), (\alpha_{7},0.6), (\alpha_{8},0.4) \cap \{ (\alpha_{1},0), (\alpha_{2},0.4), (\alpha_{3},0.5) \} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | $,(\alpha_{4},0.7),(\alpha_{5},0.2),(\alpha_{6},0),(\alpha_{7},0.6),(\alpha_{8},0.8) = \{ (\alpha_{1},0),(\alpha_{2},0.4),(\alpha_{3},0.5),(\alpha_{4},0.6),(\alpha_{5},0.2),(\alpha_{6},0) \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    | $(\alpha_7,0.6),(\alpha_8,0.4)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | $\mu_{DN}(\alpha_2) = \frac{[\alpha_2] \cap D_N}{[\alpha_2]} = 2.7 / 4.6 = 0.587.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3. | $ \{ (\alpha_{1},0.6), (\alpha_{2},0.8), (\alpha_{3},1), (\alpha_{4},0.4), (\alpha_{5},0.2), (\alpha_{6},0.6), (\alpha_{7},0.4), (\alpha_{8},0.6) \cap \{ (\alpha_{1},0), (\alpha_{2},0.4), (\alpha_{3},0.5) \} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | $,(\alpha_{4},0.7),(\alpha_{5},0.2),(\alpha_{6},0),(\alpha_{7},0.6),(\alpha_{8},0.8) = \{ (\alpha_{1},0),(\alpha_{2},0.4),(\alpha_{3},0.5),(\alpha_{4},0.4),(\alpha_{5},0.2),(\alpha_{6},0) \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    | $(\alpha_7,0.4),(\alpha_8,0.6)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | $\mu_{DN}(\alpha_3) = \frac{[\alpha_3] \cap D_N}{[\alpha_3]} = 2.5 / 4.6 = 0.543.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4. | $ \{ (\alpha_{1},0), (\alpha_{2},0.6), (\alpha_{3},0.4), (\alpha_{4},1), (\alpha_{5},0.4), (\alpha_{6},0.4), (\alpha_{7},0.4), (\alpha_{8},0.4) \cap \{ (\alpha_{1},0), (\alpha_{2},0.4), (\alpha_{3},0.5) \} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    | $,(\alpha_{4},0.7),(\alpha_{5},0.2),(\alpha_{6},0),(\alpha_{7},0.6),(\alpha_{8},0.8) = \{ (\alpha_{1},0),(\alpha_{2},0.4),(\alpha_{3},0.4),(\alpha_{4},0.7),(\alpha_{5},0.2),(\alpha_{6},0) \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    | $(\alpha_7,0.4),(\alpha_8,0.4)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | $\mu_{DN}(\alpha_4) = \frac{[\alpha_4] \cap D_N}{[\alpha_4]} = 2.5 / 3.6 = 0.694.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5. | $ \{ (\alpha_{1},0.6), (\alpha_{2},0.4), (\alpha_{3},0.2), (\alpha_{4},0.4), (\alpha_{5},1), (\alpha_{6},0.2), (\alpha_{7},0.4), (\alpha_{8},0.2) \cap \{ (\alpha_{1},0), (\alpha_{2},0.4), (\alpha_{3},0.5) \} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | $,(\alpha_{4},0.7)\ ,(\alpha_{5},0.2)\ ,(\alpha_{6},0)\ ,(\alpha_{7},0.6)\ ,(\alpha_{8},0.8)=\left\{ \ (\alpha_{1},0)\ ,(\alpha_{2},0.4)\ ,(\alpha_{3},0.2)\ ,(\alpha_{4},0.4)\ ,(\alpha_{5},0.2)\ ,(\alpha_{6},0)\ ,(\alpha_{6},0$ |
|    | $(\alpha_7,0.4),(\alpha_8,0.2)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | $\mu_{DN}(\alpha_5) = \frac{[\alpha_5] \cap D_N}{[\alpha_5]} = 1.8 / 3.4 = 0.529.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6. | $ \{ (\alpha_{1},0.6), (\alpha_{2},0.4), (\alpha_{3},0.6), (\alpha_{4},0.4), (\alpha_{5},0.2), (\alpha_{6},1), (\alpha_{7},0.6), (\alpha_{8},1) \cap \{ (\alpha_{1},0), (\alpha_{2},0.4), (\alpha_{3},0.5) \} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    | $,(\alpha_{4},0.7)\ ,(\alpha_{5},0.2)\ ,(\alpha_{6},0)\ ,(\alpha_{7},0.6)\ ,(\alpha_{8},0.8)=\left\{ \ (\alpha_{1},0)\ ,(\alpha_{2},0.4)\ ,(\alpha_{3},0.5)\ ,(\alpha_{4},0.4)\ ,(\alpha_{5},0.2)\ ,(\alpha_{6},0)\ ,(\alpha_{6},0)\ ,(\alpha_{1},0.2)\ ,(\alpha_{1},0.2)\ ,(\alpha_{1},0.2)\ ,(\alpha_{1},0.2)\ ,(\alpha_{1},0.2)\ ,(\alpha_{2},0.2)\ ,(\alpha_{2},0.2)\ ,(\alpha_{2},0.2)\ ,(\alpha_{3},0.5)\ ,(\alpha_{4},0.4)\ ,(\alpha_{5},0.2)\ ,(\alpha_{6},0.2)\ ,(\alpha_{$                                                                                                               |
|    | $(\alpha_7,0.6),(\alpha_8,0.8)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | $\mu_{DN}(\alpha_6) = \frac{[\alpha_6] \cap D_N}{[\alpha_6]} = 2.9 / 4.8 = 0.604.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7. | $ \{ (\alpha_{1},0.4), (\alpha_{2},0.6), (\alpha_{3},0.4), (\alpha_{4},0.4), (\alpha_{5},0.4), (\alpha_{6},0.6), (\alpha_{7},1), (\alpha_{8},0.6) \cap \{ (\alpha_{1},0), (\alpha_{2},0.4), (\alpha_{3},0.5) \} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | $,(\alpha_{4},0.7)\ ,(\alpha_{5},0.2)\ ,(\alpha_{6},0)\ ,(\alpha_{7},0.6)\ ,(\alpha_{8},0.8)=\left\{ \ (\alpha_{1},0)\ ,(\alpha_{2},0.4)\ ,(\alpha_{3},0.4)\ ,(\alpha_{4},0.4)\ ,(\alpha_{5},0.2)\ ,(\alpha_{6},0)\ ,(\alpha_{6},0.2)\ ,(\alpha$                                                                                                               |
|    | $(\alpha_7,0.6),(\alpha_8,0.6)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | $\mu_{DN}(\alpha_7) = \frac{[\alpha_7] \cap D_N}{[\alpha_7]} = 2.6 / 4.4 = 0.591.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 8. | $\{ (\alpha_1,0.6), (\alpha_2,0.4), (\alpha_3,0.6), (\alpha_4,0.4), (\alpha_5,0.2), (\alpha_6,1), (\alpha_7,0.6), (\alpha_8,1) \cap \{ (\alpha_1,0), (\alpha_2,0.4), (\alpha_3,0.5) \} \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|    | $,(\alpha_{4},0.7),(\alpha_{5},0.2),(\alpha_{6},0),(\alpha_{7},0.6),(\alpha_{8},0.8) = \{ (\alpha_{1},0),(\alpha_{2},0.4),(\alpha_{3},0.5),(\alpha_{4},0.4),(\alpha_{5},0.2),(\alpha_{6},0) \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    | $(\alpha_7,0.6),(\alpha_8,0.8)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | $\mu_{DN}(\alpha_8) = \frac{[\alpha_8] \cap D_N}{[\alpha_8]} = 2.9 / 4.8 = 0.604.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    | 10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

## 2. Dissimilarity

**Step 1: Extract Dissimilarity Matrix** 

|            | $\alpha_1$ | $\alpha_2$ | $\alpha_3$ | $\alpha_4$ | $\alpha_5$ | $\alpha_6$ | $\alpha_7$ | $\alpha_8$ |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| $\alpha_1$ | 0          | 3          | 2          | 5          | 2          | 2          | 3          | 2          |
| $\alpha_2$ | 3          | 0          | 1          | 2          | 3          | 3          | 2          | 3          |
| $\alpha_3$ | 2          | 1          | 0          | 3          | 4          | 2          | 3          | 2          |
| $\alpha_4$ | 5          | 2          | 3          | 0          | 3          | 3          | 3          | 3          |
| $\alpha_5$ | 2          | 3          | 4          | 3          | 0          | 4          | 3          | 4          |
| $\alpha_6$ | 2          | 3          | 2          | 3          | 4          | 0          | 2          | 0          |
| $\alpha_7$ | 3          | 2          | 3          | 3          | 3          | 2          | 0          | 2          |
| $\alpha_8$ | 2          | 3          | 2          | 3          | 4          | 0          | 2          | 0          |

**Step 2 : Calculate Dissimilarity Degree Matrix** 

|            | $\alpha_1$ | $\alpha_2$ | $\alpha_3$ | $\alpha_4$ | $\alpha_5$ | $\alpha_6$ | $\alpha_7$ | $\alpha_8$ |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| $\alpha_1$ | 0          | 0.6        | 0.4        | 1          | 0.4        | 0.4        | 0.6        | 0.4        |
| $\alpha_2$ | 0.6        | 0          | 0.2        | 0.4        | 0.6        | 0.6        | 0.4        | 0.6        |
| $\alpha_3$ | 0.4        | 0.2        | 0          | 0.6        | 0.8        | 0.4        | 0.6        | 0.4        |
| $\alpha_4$ | 1          | 0.4        | 0.6        | 0          | 0.6        | 0.6        | 0.6        | 0.6        |
| $\alpha_5$ | 0.4        | 0.6        | 0.8        | 0.6        | 0          | 0.8        | 0.6        | 0.8        |
| $\alpha_6$ | 0.4        | 0.6        | 0.4        | 0.6        | 0.8        | 0          | 0.4        | 0          |
| $\alpha_7$ | 0.6        | 0.4        | 0.6        | 0.6        | 0.6        | 0.4        | 0          | 0.4        |
| $\alpha_8$ | 0.4        | 0.6        | 0.4        | 0.6        | 0.8        | 0          | 0.4        | 0          |

| $[\alpha_1] = \{ (\alpha_1,0), (\alpha_2,0.6), (\alpha_3,0.4), (\alpha_4,1), (\alpha_5,0.4), (\alpha_6,0.4), (\alpha_7,0.6), (\alpha_8,0.4), (\alpha_$                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $[\alpha_2] = \{ (\alpha_1, 0.6), (\alpha_2, 0), (\alpha_3, 0.2), (\alpha_4, 0.4), (\alpha_5, 0.6), (\alpha_6, 0.6), (\alpha_7, 0.4), (\alpha_8, 0.6), (\alpha_8, 0.$                                                                                                                                                                      |
| $[\alpha_3] = \{ (\alpha_1, 0.4), (\alpha_2, 0.2), (\alpha_3, 0), (\alpha_4, 0.6), (\alpha_5, 0.8), (\alpha_6, 0.4), (\alpha_7, 0.6), (\alpha_8, 0.4), (\alpha_8, 0.$                                                                                                                                                                      |
| $[\alpha_4] = \{ (\alpha_1,1), (\alpha_2,0.4), (\alpha_3,0.6), (\alpha_4,0), (\alpha_5,0.6), (\alpha_6,0.6), (\alpha_7,0.6), (\alpha_8,0.6), (\alpha_$                                                                                      |
| $[\alpha_5] = \{ (\alpha_1, 0.4), (\alpha_2, 0.6), (\alpha_3, 0.8), (\alpha_4, 0.6), (\alpha_5, 0), (\alpha_6, 0.8), (\alpha_7, 0.6), (\alpha_8, 0.8), (\alpha_8, 0.$                                                                                                                                                                      |
| $[\alpha_6] = \{ (\alpha_1, 0.4), (\alpha_2, 0.6), (\alpha_3, 0.4), (\alpha_4, 0.6), (\alpha_5, 0.8), (\alpha_6, 0), (\alpha_7, 0.4), (\alpha_8, 0), (\alpha$ |
| $[\alpha_7] = \{ (\alpha_1, 0.6), (\alpha_2, 0.4), (\alpha_3, 0.6), (\alpha_4, 0.6), (\alpha_5, 0.6), (\alpha_6, 0.4), (\alpha_7, 0), (\alpha_8, 0.4), (\alpha_8, 0.$                                                                                                                                                                      |
| $[\alpha_8] = \{ (\alpha_1, 0.4), (\alpha_2, 0.6), (\alpha_3, 0.4), (\alpha_4, 0.6), (\alpha_5, 0.8), (\alpha_6, 0), (\alpha_7, 0.4), (\alpha_8, 0) .$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

Step 3 : Extract Decision Yes /No For Dissimilarity = $D_{\it yes} = D_{\it y}$ 

$$D_{Y} = \{ (\alpha_{1}, 0.5), (\alpha_{2}, 0.4), (\alpha_{3}, 0), (\alpha_{4}, 0.4), (\alpha_{5}, 0.6), (\alpha_{6}, 0.7), (\alpha_{7}, 0.4), (\alpha_{8}, 0) .$$

## **Decision No For Dissimilarity** = $D_{No} = D_N$

 $D_{N} = \{ (\alpha_{1},0), (\alpha_{2},0.4), (\alpha_{3},0.5), (\alpha_{4},0.7), (\alpha_{5},0.2), (\alpha_{6},0), (\alpha_{7},0.6), (\alpha_{8},0.8) .$ 





# Step 4: Calculate Membership based on Fuzzy Dissimilarity Decision Yes such that

$$\mu_{Dy}\left(\left[\alpha_{i}\right]\right) = \frac{\sum_{S \in \left[\alpha\right] \cap D_{y}} \mu\left(y\right)}{\sum_{s \in D_{y}} \mu\left(s\right)}.$$

| 1. | $ \left\{ (\alpha_{1},0), (\alpha_{2},0.6), (\alpha_{3},0.4), (\alpha_{4},1), (\alpha_{5},0.4), (\alpha_{6},0.4), (\alpha_{7},0.6), (\alpha_{8},0.4) \cap \left\{ (\alpha_{1},0.5), (\alpha_{2},0.4), (\alpha_{3},0) \right\} \right\} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. | $\{(\alpha_1,0),(\alpha_2,0.0),(\alpha_3,0.4),(\alpha_4,1),(\alpha_5,0.4),(\alpha_6,0.4),(\alpha_7,0.0),(\alpha_8,0.4)++\{(\alpha_1,0.5),(\alpha_2,0.4),(\alpha_3,0),(\alpha_4,0.4),(\alpha_5,0.6),(\alpha_6,0.7),(\alpha_7,0.4),(\alpha_8,0)=\{(\alpha_1,0),(\alpha_2,0.4),(\alpha_3,0),(\alpha_4,0.4),(\alpha_5,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha_6,0.4),(\alpha$ |
|    | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|    | $(\alpha_7,0.4)$ $(z_8,0)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    | $\mu_{Dy}(\alpha_1) = \frac{[\alpha_1] \cap D_y}{[\alpha_1]} = 2/3.8 = 0.526.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2. | $\{(z_1,0.6),(z_2,0),(z_3,0.2),(z_4,0.4),(z_5,0.6),(z_6,0.6),(z_7,0.4),(z_8,0.6)\cap\{(z_1,0.5),(z_2,0.4),(z_3,0.6)\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    | $(z_{6}, 0.4), (z_{7}, 0.4), (z_{7}, 0.4), (z_{7}, 0.4), (z_{8}, 0.5), (z_{1}, 0.5), (z_{2}, 0.5), (z_{2}, 0.5), (z_{3}, 0.5), (z_{4}, 0.4), (z_{5}, 0.6), (z_{6}, 0.7), (z_{7}, 0.4), (z_{8}, 0.7), (z_{1}, 0.5), (z_{1}, 0.5), (z_{2}, 0.6), $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    | $(0.6)$ , $(z_7, 0.4)$ , $(z_8, 0)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|    | $\mu_{Dy}(\alpha_2) = \frac{[\alpha_2] \cap D_y}{[\alpha_2]} = 2.5 / 3.4 = 0.735.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3. | $ \big\{ \; (\alpha_1, 0.4) \; , (\alpha_2, 0.2) \; , (\alpha_3, 0) \; , (\alpha_4, 0.6) \; , (\alpha_5, 0.8) \; , (\alpha_6, 0.4) \; , (\alpha_7, 0.6) \; , (\alpha_8, 0.4) \; \cap \; \big\{ \; (\alpha_1, 0.5) \; , (\alpha_2, 0.4) \; , (\alpha_8, 0.4) \; , (\alpha_8, 0.4) \; \big\} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    | $,(\alpha_{3},0)\;,(\alpha_{4},0.4)\;,(\alpha_{5},0.6)\;,(\alpha_{6},0.7)\;,(\alpha_{7},0.4)\;,(\alpha_{8},0)=\left\{\;(\alpha_{1},0.4)\;,(\alpha_{2},0.2)\;,(\alpha_{3},0)\;,(\alpha_{4},0.4)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5}$                                                                                  |
|    | $(\alpha_6,0.4),(\alpha_7,0.4),(\alpha_8,0)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    | $\mu_{Dy}(\alpha_3) = \frac{[\alpha_3] \cap D_y}{[\alpha_3]} = 2.4 / 3.4 = 0.706.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4. | $\left\{ (\alpha_{1},1),(\alpha_{2},0.4),(\alpha_{3},0.6),(\alpha_{4},0),(\alpha_{5},0.6),(\alpha_{6},0.6),(\alpha_{7},0.6),(\alpha_{8},0.6) \cap \left\{ (\alpha_{1},0.5),(\alpha_{2},0.4),(\alpha_{3},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),(\alpha_{1},0.6),$                                                                                                                                                                           |
|    | $,(\alpha_{4},0.4),(\alpha_{5},0.6),(\alpha_{6},0.7),(\alpha_{7},0.4),(\alpha_{8},0) = \{ (\alpha_{1},0.5),(\alpha_{2},0.4),(\alpha_{3},0),(\alpha_{4},0),(\alpha_{5},0.6),(\alpha_{6},0.6) \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|    | $(\alpha_7,0.4),(\alpha_8,0)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|    | $\mu_{Dy}(\alpha_4) = \frac{[\alpha_4] \cap D_y}{[\alpha_4]} = 2.5 / 4.4 = 0.568.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5. | $ \{ (\alpha_1,0.4), (\alpha_2,0.6), (\alpha_3,0.8), (\alpha_4,0.6), (\alpha_5,0), (\alpha_6,0.8), (\alpha_7,0.6), (\alpha_8,0.8) \cap \{ (\alpha_1,0.5), (\alpha_2,0.4) \} \} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    | $,(\alpha_{3},0)\;,(\alpha_{4},0.4)\;,(\alpha_{5},0.6)\;,(\alpha_{6},0.7)\;,(\alpha_{7},0.4)\;,(\alpha_{8},0)=\left\{\right.\\ \left.(\alpha_{1},0.4)\;,(\alpha_{2},0.4)\;,(\alpha_{3},0)\;,(\alpha_{4},0.4)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,(\alpha_{5},0.6)\;,($                                                                              |
|    | $(\alpha_6,0.7),(\alpha_7,0.4),(\alpha_8,0)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    | $\mu_{Dy}(\alpha_5) = \frac{[\alpha_5] \cap D_y}{[\alpha_5]} = 2.3 / 4.6 = 0.5.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6. | $ \left\{ (\alpha_{1},0.4), (\alpha_{2},0.6), (\alpha_{3},0.4), (\alpha_{4},0.6), (\alpha_{5},0.8), (\alpha_{6},0), (\alpha_{7},0.4), (\alpha_{8},0) \cap \left\{ (\alpha_{1},0.5), (\alpha_{2},0.4), (\alpha_{3},0.4), (\alpha_{3},0.4), (\alpha_{1},0.5), (\alpha_{2},0.4), (\alpha_{3},0.4), (\alpha_{1},0.5), (\alpha_{2},0.4), (\alpha_{3},0.4), (\alpha_{3},0.4),$                                                                                                                                                                                                                                            |
|    | $,(\alpha_{4},0.4),(\alpha_{5},0.6),(\alpha_{6},0.7),(\alpha_{7},0.4),(\alpha_{8},0) = \{ (\alpha_{1},0.4),(\alpha_{2},0.4),(\alpha_{3},0),(\alpha_{4},0.4),(\alpha_{5},0.6),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_{6},0.7),(\alpha_$                                                                                                                                                                                  |
|    | $,(\alpha_{7},0.4),(\alpha_{8},0)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | $\mu_{Dy}(\alpha_6) = \frac{[\alpha_6] \cap D_y}{[\alpha_6]} = 2.2 / 3.2 = 0.688.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7. | $ \{ (\alpha_1,0.6),(\alpha_2,0.4),(\alpha_3,0.6),(\alpha_4,0.6),(\alpha_5,0.6),(\alpha_6,0.4),(\alpha_7,0),(\alpha_8,0.4) \cap \{ (\alpha_1,0.5),(\alpha_2,0.4) \} \} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | $(\alpha_3,0),(\alpha_4,0.4),(\alpha_5,0.6),(\alpha_6,0.7),(\alpha_7,0.4),(\alpha_8,0) = \{ (\alpha_1,0.5),(\alpha_2,0.4),(\alpha_3,0),(\alpha_4,0.4),(\alpha_5,0.6) \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | $(\alpha_6,0.4),(\alpha_7,0),(\alpha_8,0)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    | $\mu_{Dy}(\alpha_7) = \frac{[\alpha_7] \cap D_y}{[\alpha_7]} = 2.3 / 3.6 = 0.639.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8. | $\left\{ (\alpha_{1},0.4),(\alpha_{2},0.6),(\alpha_{3},0.4),(\alpha_{4},0.6),(\alpha_{5},0.8),(\alpha_{6},0),(\alpha_{7},0.4),(\alpha_{8},0) \cap \left\{ (\alpha_{1},0.5),(\alpha_{2},0.4),(\alpha_{3},0) \right\} \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    | $,(\alpha_{4},0.4),(\alpha_{5},0.6),(\alpha_{6},0.7),(\alpha_{7},0.4),(\alpha_{8},0) = \{ (\alpha_{1},0.4),(\alpha_{2},0.4),(\alpha_{3},0),(\alpha_{4},0.4),(\alpha_{5},0.6),(\alpha_{6},0) \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|    | $(\alpha_7,0.4),(\alpha_8,0)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|    | $\mu_{D_y}(\alpha_s) = \frac{[\alpha_8] - D_y}{2} = 2.2 / 3.2 = 0.688$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    | $[\alpha_8]$ 2.27 3.2 3.600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Step 5 : Calculate Membership based on Fuzzy Dissimilarity Decision No

$$\mu_{Dn}\left(\left[lpha_{i}
ight]
ight)=\ rac{\sum_{Sarepsilon\left[lpha_{i}
ight]\cap D_{n}}\ \mu\left(y
ight)}{\sum_{S\ arepsilon D_{n}}\ \mu\left(s
ight)}.$$

| 1. | $ \big\{ \left(\alpha_{1},0\right), \left(\alpha_{2},0.6\right), \left(\alpha_{3},0.4\right), \left(\alpha_{4},1\right), \left(\alpha_{5},0.4\right), \left(\alpha_{6},0.4\right), \left(\alpha_{7},0.6\right), \left(\alpha_{8},0.4\right) \cap \big\{ \left(\alpha_{1},0\right), \left(\alpha_{2},0.4\right), \left(\alpha_{3},0.5\right), \left(\alpha_{1},0\right), \left(\alpha_{2},0.4\right), \left(\alpha_{2},0.4\right), \left(\alpha_{2},0.4\right), \left(\alpha_{3},0.4\right), \left(\alpha_{2},0.4\right), \left(\alpha_{3},0.4\right), \left(\alpha_{2},0.4\right), \left(\alpha_{3},0.4\right), \left(\alpha_$ |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | $,(\alpha_{4},0.7),(\alpha_{5},0.2),(\alpha_{6},0),(\alpha_{7},0.6),(\alpha_{8},0.8) = \{ (\alpha_{1},0),(\alpha_{2},0.4),(\alpha_{3},0),(\alpha_{4},0.4),(\alpha_{5},0.4),(\alpha_{6},0.4) \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | $(\alpha_7,0.4),(\alpha_8,0)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | $\mu_{DN}(\alpha_1) = \frac{[\alpha_1] \cap D_N}{[\alpha_1]} = 2.9 / 3.8 = 0.763.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2. | $ \{ (\alpha_1,0.6), (\alpha_2,0), (\alpha_3,0.2), (\alpha_4,0.4), (\alpha_5,0.6), (\alpha_6,0.6), (\alpha_7,0.4), (\alpha_8,0.6) \cap \{ (\alpha_1,0), (\alpha_2,0.4), (\alpha_8,0.6), (\alpha_8,0.6), (\alpha_8,0.6) \} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    | $,(\alpha_{3},0.5),(\alpha_{4},0.7),(\alpha_{5},0.2),(\alpha_{6},0),(\alpha_{7},0.6),(\alpha_{8},0.8) = \{ (\alpha_{1},0.5),(\alpha_{2},0),(\alpha_{3},0),(\alpha_{4},0.4),(\alpha_{5},0.6) \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | $(\alpha_6,0.6),(\alpha_7,0.4),(\alpha_8,0)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    | $\mu_{DN}(\alpha_2) = \frac{[\alpha_2] \cap D_N}{[\alpha_2]} = 2.2 / 3.4 = 0.647.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3. | $\{ (\alpha_1,0.4), (\alpha_2,0.2), (\alpha_3,0), (\alpha_4,0.6), (\alpha_5,0.8), (\alpha_6,0.4), (\alpha_7,0.6), (\alpha_8,0.4) \cap \{ (\alpha_1,0), (\alpha_2,0.4), (\alpha_8,0.4), (\alpha_8,0.4), (\alpha_8,0.4) \} \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|    | $,(\alpha_{3},0.5),(\alpha_{4},0.7),(\alpha_{5},0.2),(\alpha_{6},0),(\alpha_{7},0.6),(\alpha_{8},0.8) = \{ (\alpha_{1},0.4),(\alpha_{2},0.2),(\alpha_{3},0),(\alpha_{4},0.4),(\alpha_{5},0.6),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_{6},0.8),(\alpha_$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | $(\alpha_6,0.4),(\alpha_7,0.4),(\alpha_8,0)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    | $\mu_{DN}(\alpha_3) = \frac{[\alpha_3] \cap D_N}{[\alpha_3]} = 2.6 / 3.4 = 0.765.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4. | $\left\{ (\alpha_{1},1),(\alpha_{2},0.4),(\alpha_{3},0.6),(\alpha_{4},0),(\alpha_{5},0.6),(\alpha_{6},0.6),(\alpha_{7},0.6),(\alpha_{8},0.6) \cap \left\{ (\alpha_{1},0),(\alpha_{2},0.4),(\alpha_{3},0.5) \right\} \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    | $,(\alpha_{4},0.7),(\alpha_{5},0.2),(\alpha_{6},0),(\alpha_{7},0.6),(\alpha_{8},0.8) = \{ (\alpha_{1},0.5),(\alpha_{2},0.4),(\alpha_{3},0),(\alpha_{4},0),(\alpha_{5},0.6),(\alpha_{6},0.6) \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | $(\alpha_7,0.4),(\alpha_8,0)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | $\mu_{DN}(\alpha_4) = \frac{[\alpha_4] \cap D_N}{[\alpha_4]} = 2.7 / 4.4 = 0.614.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5. | $ \{ (\alpha_1,0.4), (\alpha_2,0.6), (\alpha_3,0.8), (\alpha_4,0.6), (\alpha_5,0), (\alpha_6,0.8), (\alpha_7,0.6), (\alpha_8,0.8) \cap \{ (\alpha_1,0), (\alpha_2,0.4) \} \} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    | $,(\alpha_{3},0.5)\;,(\alpha_{4},0.7)\;,(\alpha_{5},0.2)\;,(\alpha_{6},0)\;,(\alpha_{7},0.6)\;,(\alpha_{8},0.8)=\left\{\;(\alpha_{1},0.4)\;,(\alpha_{2},0.4)\;,(\alpha_{3},0)\;,(\alpha_{4},0.4)\;,(\alpha_{5},0)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5},0.2)\;,(\alpha_{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | $(\alpha_6,0.7),(\alpha_7,0.4),(\alpha_8,0)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    | $\mu_{DN}(\alpha_5) = \frac{[\alpha_5] \cap D_N}{[\alpha_5]} = 2.9 / 4.6 = 0.63.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6. | $ \left\{ \left. (\alpha_{1},0.4), (\alpha_{2},0.6), (\alpha_{3},0.4), (\alpha_{4},0.6), (\alpha_{5},0.8), (\alpha_{6},0), (\alpha_{7},0.4), (\alpha_{8},0) \cap \left\{ \left. (\alpha_{1},0), (\alpha_{2},0.4), (\alpha_{3},0.5) \right. \right. \right. \right. $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    | $,(\alpha_{4},0.7)\;,(\alpha_{5},0.2)\;,(\alpha_{6},0)\;,(\alpha_{7},0.6)\;,(\alpha_{8},0.8)=\left\{\;(\alpha_{1},0.4)\;,(\alpha_{2},0.4)\;,(\alpha_{3},0)\;,(\alpha_{4},0.4)\;,(\alpha_{5},0.6)\;,(\alpha_{6},0)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6},0.6)\;,(\alpha_{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | $,(\alpha_7,0.4),(\alpha_8,0)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|    | $\mu_{DN}(\alpha_6) = \frac{[\alpha_6] \cap D_N}{[\alpha_6]} = 2.6 / 3.2 = 0.813.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7. | $ \{ (\alpha_1,0.6), (\alpha_2,0.4), (\alpha_3,0.6), (\alpha_4,0.6), (\alpha_5,0.6), (\alpha_6,0.4), (\alpha_7,0), (\alpha_8,0.4) \cap \{ (\alpha_1,0), (\alpha_2,0.4), (\alpha_8,0.4), (\alpha_8,0.4), (\alpha_8,0.4) \} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    | $, (\alpha_{3}, 0.5), (\alpha_{4}, 0.7), (\alpha_{5}, 0.2), (\alpha_{6}, 0), (\alpha_{7}, 0.6), (\alpha_{8}, 0.8) = \{ (\alpha_{1}, 0.5), (\alpha_{2}, 0.4), (\alpha_{3}, 0), (\alpha_{4}, 0.4), (\alpha_{5}, 0.6), (\alpha_{5}, 0.6), (\alpha_{6}, 0.8), (\alpha_{6}, 0.8),$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    | $,(\alpha_{6},0.4),(\alpha_{7},0),(\alpha_{8},0).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|    | $\mu_{DN}(\alpha_7) = \frac{ \alpha_7  \cap D_N}{[\alpha_7]} = 2.5 / 3.6 = 0.694.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 8. | $ \left\{ (\alpha_{1},0.4), (\alpha_{2},0.6), (\alpha_{3},0.4), (\alpha_{4},0.6), (\alpha_{5},0.8), (\alpha_{6},0), (\alpha_{7},0.4), (\alpha_{8},0) \cap \left\{ (\alpha_{1},0), (\alpha_{2},0.4), (\alpha_{3},0.5) \right\} \right\} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    | $,(\alpha_{4},0.7),(\alpha_{5},0.2),(\alpha_{6},0),(\alpha_{7},0.6),(\alpha_{8},0.8) = \{ (\alpha_{1},0.4),(\alpha_{2},0.4),(\alpha_{3},0),(\alpha_{4},0.4),(\alpha_{5},0.6),(\alpha_{6},0) \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | $(\alpha_7,0.4),(\alpha_8,0)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | $\mu_{DN}(\alpha_8) = \frac{[\alpha_8] \cap D_N}{[\alpha_8]} = 2.6 / 3.2 = 0.813.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|    | ( V )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |



## **5 Results**

This paper presents a comparative analysis of three membership degrees calculated for a given dataset. The first membership degree is derived using the traditional Pawlak approach. The second membership degree is determined by calculating the ratio of the class similarity weight value to the overall similarity weight value between elements. The third membership degree, proposed in this study, is calculated using a novel fuzzy decision system (Yes/No) and a normalized (similarity/dissimilarity) matrix. We will select the class  $\alpha$  that has  $\lambda > 0.5$  and Decision Yes/No > 0.5.

 $D_{Y} = \left\{ \; (\alpha_{1}, 0.5) \; , (\alpha_{2}, 0.4) \; , (\alpha_{3}, 0) \; , (\alpha_{4}, 0.4) \; , (\alpha_{5}, 0.6) \; , (\alpha_{6}, 0.7) \; , (\alpha_{7}, 0.4) \; , (\alpha_{8}, 0) \; . \right.$ 

 $D_{N} = \left\{ (\alpha_{1},0), (\alpha_{2},0.4), (\alpha_{3},0.5), (\alpha_{4},0.7), (\alpha_{5},0.2), (\alpha_{6},0), (\alpha_{7},0.6), (\alpha_{8},0.8) \right\}.$ 

For Similarity case Class  $\alpha = \{ \alpha_5, \alpha_6 . \}$ 

For Dissimilarity case, Class  $\alpha = \{ \alpha_4, \alpha_7, \alpha_8 . \}$ 

#### 1. Membership based on Fuzzy Similarity Decision Yes

| #          | Joint Pain | Headache | Running Nose | Temperature | Lung Diffusion | Decision Yes | μα    | μPawlak | μProposed |
|------------|------------|----------|--------------|-------------|----------------|--------------|-------|---------|-----------|
| $\alpha_1$ | Yes        | Yes      | Yes          | High        | Yes            | 0.5          | 0.353 | 0.4     | 0.595     |
| $\alpha_2$ | Yes        | No       | No           | High        | No             | 0.4          | 0     | 0       | 0.522     |
| $\alpha_3$ | Yes        | No       | No           | High        | Yes            | 0            | 0.167 | 0.2     | 0.543     |
| $\alpha_4$ | No         | No       | No           | Very High   | No             | 0.4          | 0     | 0       | 0.556     |
| $\alpha_5$ | No         | Yes      | Yes          | High        | No             | 0.6          | 0.625 | 0.5     | 0.735     |
| $\alpha_6$ | Yes        | Yes      | No           | Very High   | Yes            | 0.7          | 0.263 | 0.2     | 0.542     |
| $\alpha_7$ | Yes        | Yes      | No           | Normal      | No             | 0.4          | 0.214 | 0.25    | 0.591     |
| $\alpha_8$ | Yes        | Yes      | No           | Very High   | Yes            | 0            | 0.263 | 0.2     | 0.542     |

## 2. Membership based on Fuzzy Similarity Decision NO

| #          | Joint Pain | Headache | Running Nose | Temperature | Lung Diffusion | Decision No | μα    | μPawlak | μProposed |
|------------|------------|----------|--------------|-------------|----------------|-------------|-------|---------|-----------|
| $\alpha_1$ | Yes        | Yes      | Yes          | High        | Yes            | 0           | 0.176 | 0.2     | 0.5       |
| $\alpha_2$ | Yes        | No       | No           | High        | No             | 0.4         | 0.4   | 0.5     | 0.587     |
| $\alpha_3$ | Yes        | No       | No           | High        | Yes            | 0.5         | 0.167 | 0.2     | 0.543     |
| $\alpha_4$ | No         | No       | No           | Very High   | No             | 0.7         | 0.625 | 0.5     | 0.694     |
| $\alpha_5$ | No         | Yes      | Yes          | High        | No             | 0.2         | 0     | 0       | 0.529     |
| $\alpha_6$ | Yes        | Yes      | No           | Very High   | Yes            | 0           | 0.421 | 0.4     | 0.604     |
| $\alpha_7$ | Yes        | Yes      | No           | Normal      | No             | 0.6         | 0.571 | 0.5     | 0.591     |
| $\alpha_8$ | Yes        | Yes      | No           | Very High   | Yes            | 0.8         | 0.421 | 0.4     | 0.604     |

## 3. Membership based on Fuzzy Dissimilarity Decision Yes

| #          | Joint Pain | Headache | Running Nose | Temperature | Lung Diffusion | Decision Yes | μα   | μPawlak | $\mu$ Proposed |
|------------|------------|----------|--------------|-------------|----------------|--------------|------|---------|----------------|
| $\alpha_1$ | Yes        | Yes      | Yes          | High        | Yes            | 0.5          | 0    | 0       | 0.526          |
| $\alpha_2$ | Yes        | No       | No           | High        | No             | 0.4          | 0.5  | 0.5     | 0.735          |
| $\alpha_3$ | Yes        | No       | No           | High        | Yes            | 0            | 0.4  | 0.333   | 0.706          |
| $\alpha_4$ | No         | No       | No           | Very High   | No             | 0.4          | 0.3  | 0.333   | 0.568          |
| $\alpha_5$ | No         | Yes      | Yes          | High        | No             | 0.6          | 0.19 | 0.167   | 0.5            |
| $\alpha_6$ | Yes        | Yes      | No           | Very High   | Yes            | 0.7          | 0.4  | 0.333   | 0.688          |
| $\alpha_7$ | Yes        | Yes      | No           | Normal      | No             | 0.4          | 0.25 | 0.25    | 0.639          |
| $\alpha_8$ | Yes        | Yes      | No           | Very High   | Yes            | 0            | 0.4  | 0.333   | 0.688          |

| #          | Joint Pain | Headache | Running Nose | Temperature | Lung Diffusion | Decision No | μα    | μPawlak | μProposed |
|------------|------------|----------|--------------|-------------|----------------|-------------|-------|---------|-----------|
| $\alpha_1$ | Yes        | Yes      | Yes          | High        | Yes            | 0           | 0.727 | 0.667   | 0.763     |
| $\alpha_2$ | Yes        | No       | No           | High        | No             | 0.4         | 0.25  | 0.25    | 0.647     |
| $\alpha_3$ | Yes        | No       | No           | High        | Yes            | 0.5         | 0.6   | 0.667   | 0.765     |
| $\alpha_4$ | No         | No       | No           | Very High   | No             | 0.7         | 0.3   | 0.333   | 0.614     |
| $\alpha_5$ | No         | Yes      | Yes          | High        | No             | 0.2         | 0.476 | 0.5     | 0.63      |
| $\alpha_6$ | Yes        | Yes      | No           | Very High   | Yes            | 0           | 0.3   | 0.333   | 0.813     |
| $\alpha_7$ | Yes        | Yes      | No           | Normal      | No             | 0.6         | 0.25  | 0.25    | 0.694     |
| $\alpha_8$ | Yes        | Yes      | No           | Very High   | Yes            | 0.8         | 0.3   | 0.333   | 0.813     |

#### 4. Membership based on Fuzzy Dissimilarity Decision NO

#### **6 Conclusions**

This study has presented a comparative analysis of three membership degree calculation methods within the context of fuzzy decision-making systems applied to medical diagnosis. The dataset, consisting of eight patients with varying combinations of symptoms and corresponding fuzzy decisions (YES/NO), was used to evaluate the performance of the original Pawlak approach, a method based on dissimilarity weights, and a novel fuzzy decision system. The results demonstrate that the proposed fuzzy decision system consistently outperforms the traditional Pawlak approach and the dissimilarity weight-based method. This suggests that the novel approach is more effective in capturing the complex relationships between symptoms and disease outcomes, leading to more accurate and informative diagnoses.

Furthermore, the analysis revealed that the proposed method is less influenced by individual dissimilarity values, indicating its robustness to potential outliers or anomalies in the medical data. This is particularly important in medical diagnosis, where data can be noisy or incomplete. In conclusion, the findings of this research highlight the potential benefits of the proposed fuzzy decision system for improving the accuracy and reliability of medical diagnoses. Future studies could explore the applicability of this approach to a wider range of medical conditions and datasets, as well as investigate its integration with other diagnostic tools and techniques.

This study can be further expanded by exploring additional fuzzy rough set models or hybrid models that incorporate machine learning techniques. This would allow for a more comprehensive evaluation of different approaches and potentially lead to improved performance. Additionally, validating the methodology's practical applicability by testing it on real-world datasets from hospitals or clinical trials is crucial. This would provide insights into the effectiveness and generalizability of the proposed system in real-world medical diagnosis scenarios.

#### References

- [1] Kozioł-Nadolna, Katarzyna, and Karolina Beyer. "Determinants of the decision-making process in organizations." Procedia Computer Science 192 (2021): 2375-2384.
- [2] Pawlak, Z. Rough Sets, Theoretical Aspects of Reasoning about Data; Springer: Dordrecht, Netherlands, 1991. [CrossRef]
- [3] El-Bably, Mostafa K., and Mohammad El-Sayed. "Three methods to generalize Pawlak approximations via simply open concepts with economic applications." Soft Computing 26.10 (2022): 4685-4700.
- [4] El-Gayar, M. A., et al. "Economic Decision-Making Using Rough Topological Structures." Journal of Mathematics 2023.1 (2023): 4723233.





- [5] Abu-Gdairi, Radwan, et al. "Two different views for generalized rough sets with applications." Mathematics 9.18 (2021): 2275.
- [6] L. A. Zadeh, "Fuzzy sets," Information and Control, vol. 8, no. 3, pp. 338-353, 1965. https://doi.org/10.1016/S0019
- [7] M. B. Gorzałczany, "A method of inference in approximate reasoning based on interval-valued fuzzy sets," Fuzzy Sets and Systems, vol. 21, no. 1, pp. 1-17, 1987. https://doi.org/10.1016/0165-0114(87)90148-5
- [8] Taher, D. I., et al. "Correction: Decision-making in diagnosing heart failure problems using basic rough sets." AIMS Math 9.12 (2024): 34270-34271.
- [9] Dai, J.H.; Gao, S.C.; Zheng, G.J. Generalized rough set models determined by multiple neighborhoods generated from a similarity relation. Soft Comput. 2018, 22, 2081–2094. [CrossRef]
- [10] Chakraborty, M. K.: Membership function based rough set. Int. J. Approx. Reason. 55, 402–411 (2014). https://doi.org/10.1016/j.ijar.2013.10.009
- [11] Pawlak, Z., Skowron, A.: Rough membership function: a tool for reasoning with uncertainty, Algebraic Methods in Logic and in Computer Science Banach Center Publications, 28, Institute of Mathematics Polish Academy of Sciences Warszawa. 28(1), 135–150 (1993).
- [12] El-Sayed, M. K.: Similarity based membership of elements to uncertain concept in information system. Int. Sch. Sci. Res. Innov. 12(3), 58–61 (2018).
- [13] Pawlak, Z.: Rough sets. Int. J. Inf. Comput. Sci. II, 341–356 (1982). https://doi.org/10.1007/BF01001956
- [14] Abu-Gdairi, Radwan, and Mostafa K. El-Bably. "The accurate diagnosis for COVID-19 variants using nearly initial-rough sets." Heliyon 10.10 (2024).
- [15] Pawlak, Z., Skowron, A.: Advances in the Dempster-Shafer theory of evidence. Chapter Rough membership functions, 251-271. Wiley, New York (1994)
- [16] Rico, Noelia, et al. "Similarity measures for interval-valued fuzzy sets based on average embeddings and its application to hierarchical clustering." Information Sciences 615 (2022): 794-812.
- [17] D'Orazio, Marcello. "Gower's similarity coefficients with automatic weight selection." arXiv preprint arXiv:2401.17041 (2024).
- [18] El-Gayar, Mostafa A., and Radwan Abu-Gdairi. "Extension of topological structures using lattices and rough sets." AIMS Mathematics 9.3 (2024): 7552-7569.
- [19] Abu-Gdairi, Radwan, et al. "On fuzzy point applications of fuzzy topological spaces." International Journal of Fuzzy Logic and Intelligent Systems 23.2 (2023): 162-172.