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Abstract 

This study evaluates advanced machine learning (ML) models for forecasting daily average 

temperatures in Egypt, using a dataset from one of the world’s most climate databases, the GHCN-D of 

the NCEI under NOAA (United States). The dataset spans nine years (January 1, 2015 - December 31, 

2023) and consists of 73,562 daily records from 23 climate stations across Egypt, covering eight 

climate features. A comparative analysis was conducted between LSTM networks and other 

algorithms, involving XGBoost, Random Forest, Gradient Boosting, Support Vector Regression, 

ARIMA, and Linear Regression. The LSTM model represented clear superiority achieving R² = 0.97, 

MAE = 0.07 °C, and MSE = 0.01 °C², strongly outperforming all other models, specifically in 

capturing long-term temporal dependencies in time series of climate. The study forecasted Egypt’s 

daily average temperature for August 2025. The results present a steady upward trend from about 33°C 

on August 1 to around 34.4°C on August 29. This gradual height aligns with peak summer in Egypt’s 

desert climate, which may indicate seasonal broader climate variance influences, consistent with the 

previous predictions of increasing temperatures. The results confirm that deep learning, specifically 

LSTM, presents improvements over traditional methods for temperature forecasting, providing a 

highly accurate predictive model. Our research contributes to advancing climate change capabilities in 

Mediterranean and dry regions, with practical influence for agricultural planning, environmental 

monitoring, and climate adaptation. 
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1. Introduction 

Climate change significantly affects plant growth, food production, sustainable economic 

development, and people's health. With the increasing availability of comprehensive 

historical climate data and the growing demand for accurate production prediction, there is a 

pressing need for reliable methods to identify the stochastic relationship between past and 

future values. Accurate temperature forecasting plays a crucial role in climate change risk 
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management, as it supports early warning systems and mitigates the adverse impacts of 

weather events, like heat, droughts, heavy rainfall, and cold spells [8]. Thus, developing 

forecasting accuracy has become a priority for enhancing both scientific understanding [1]. 

Recent advances in numerical weather prediction models and observational technologies, 

involving meteorological satellites, have significantly increased the accuracy of temperature 

forecasting at various spatial and temporal regions [6]. Statistical models often rely on 

simplified assumptions regarding data distribution [18]. Advanced ML approaches have 

gained importance in recent years. Especially deep learning DL techniques have shown strong 

potential in capturing high-dimensional, nonlinear, and dynamic meteorological data, 

enabling more adaptive predicting outcomes [4]. Machine learning techniques, such as CNNs 

and hybrid CNN-LSTM models, have shown remarkable progress in predicting extreme 

climate events [10]. These models address the limitations of traditional methods by handling 

long-term dependencies and nonlinear relationships, offering superior accuracy for predicting 

temperature, precipitation [10]. Also, ML applications extend to climate mitigation areas like 

optimising transportation and energy systems, as well as adaptation strategies such as 

improving disaster management [16]. However, challenges remain, involving the 

computational intensity of models and their reliance on huge datasets [15]. The scarcity of 

reliable observational data for past extreme events further complicates forecasting, often 

requiring ensembles of dynamic models that may misinterpret drivers due to model 

limitations [15]. 

Advanced computational methods are vital for capturing climate impacts. Ibrahim et al. 

(2021) [13] used ML with satellite data for climate change in North-East Africa, while Shams 

et al. (2023) [17] developed machine learning based temperature forecasting models under 

climate change effects, supporting capabilities to address climate change in agriculture 

challenges. ML presents promise for water resource management. Elbeltagi et al. (2023) [9] 

employed ML and best subset regression to predict daily reference evapotranspiration in 

Egypt, aiding irrigation planning and water optimisation. Also, machine learning combined 

with remote sensing revolutionises environmental monitoring. Vulova et al. (2021) [20] 

integrated remote sensing, flux footprints, and AI to effectively model urban 

evapotranspiration, yielding agriculturally relevant insights for water management and 

climate analysis. Hybrid approaches combining multiple ML techniques with economic 

analysis significantly enhance forecasting accuracy and present insights for agricultural and 

policy planning, addressing the complex interplay of environmental and economic factors [2]. 

Despite these advances, challenges remain in integrating diverse data sources, capturing 

temporal dependencies, which require further research.  

Traditional econometric methods, like linear regression and time series analysis, have been 

widely used for agricultural cost forecasting [14]. However, these methods struggle to 

monitor the complex interactions and non-linear relationships between different 

environmental factors [7]. Time series models, like ARIMA, are applied to agricultural price 

forecasting but often fail to incorporate exogenous variables like environmental features, 

limiting their precision and applicability to dynamic farm systems [19].  ML techniques, 

including tree-based models and DL, have emerged as more efficient alternatives. RF and DT 

have been used for forecasting agricultural production costs and presented predictive 

capabilities when managing diverse input factors [3]. Even so, Deep learning approaches, 

such as LSTM networks, have shown in addressing these limitations by monitoring long-term 

dependencies in time-series data and improving prediction accuracy [11]. Despite their 

success, these methods can be computationally dense and may require huge datasets to 

achieve optimal coefficients. 

2. Related work 

Temperature prediction in Egypt is a main issue in addressing climate change, due to its 

direct impact on water resources management, agriculture, and public health. Research has 

shown that ML techniques can monitor complex climatic patterns and achieve forecast 

accuracy that surpasses traditional approaches. Houssein et al. (2025) [12] introduce the 
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proposed approach is a deep long short-term memory model using genetic algorithms and the 

mountain gazelle optimiser, which collectively fine-tune the architecture of the DLSTM 

model. It used historical climate data from nine Egyptian cities: Dakhalia, Bane-Suef, Aswan, 

Behira, Menoufia, Minia, Sharkia, Qalyubia and Sohag to estimate the model’s performance. 

The effectiveness of the MGO-GA-DLSTM model was compared with other forecasting 

models. The results demonstrate that the MGO-GA-DLSTM model outperforms existing 

methods in climate forecasting, offering improved accuracy. 

Berk, et al., (2025) [5], used Gradient Boosting to forecast the air temperature and the 

Steadman Heat Index. Paris, France, during the late summer and spring months, is the focus. 

The years 2018 through 2024. The data are curated as a multiple time series for each year. 

Predictors involve seven collected indicators of weather. Predicting uncertainty is addressed 

with conformal prediction areas. Cairo, Egypt, is a second location using data over the same 

years and months. Cairo is a more challenging setting for temperature prediction because its 

desert climate can build abrupt and erratic temperature variance. However, there is some 

progress in predicting hot days. Vulova et al. (2021) [20] improved a model for estimating 

urban evapotranspiration by combining remote sensing data with flux footprints and AI. 

Using 2018–2020 datasets from urban areas in Germany, they compared an Artificial Neural 

Network incorporating flux footprint data with a satellite-only model. achieving R² = 0.91 

versus R² = 0.79. 

Similarly, Barakat et al. (2025) [2] created a hybrid ML to predict agricultural production 

costs in Egypt by integrating environmental analysis with sensitivity assessments to climate 

variables. Using 2010–2023 data that involved economic indicators such as input prices, 

production costs and climate variables like temperature and precipitation, they combined (RF) 

with Multiple Regression. This hybrid method achieved R² = 0.89, MR alone (R² = 0.77), 

demonstrating its reliability for agricultural planning under economic and climate uncertainty. 

Elbeltagi et al. (2023) [9] developed forecasting models for daily reference evapotranspiration 

in key Egyptian locations using 1980–2020 climate data. Comparing Best Subset Regression, 

RF, and ANNs, they found ANNs achieved the highest accuracy (R² = 0.94, RMSE = 0.21) 

versus BSR’s RMSE of 0.26, confirming ANNs’ superiority for accuracy in agriculture and 

water management in arid regions. Ibrahim et al. (2021) [13] used an RF algorithm to detect 

climate change signals in Northeast Africa with 2000–2020 satellite-based temperature and 

precipitation data. By combining spatial and temporal datasets, they improved the model 

efficiency to R² = 0.87, the spatial-only model (R² = 0.81), presenting the value of temporal 

data combining for large-scale climate change monitoring. Shams et al. (2023) [17] 

developed an advanced ML-based modeling specifically designed to predict temperature 

patterns across Egypt, using climatic datasets spanning 35 years (1985 -2020) to ensure 

temporal coverage and reliable pattern identification, implementing a comparative analysis 

between present Linear Regression, Random Forest regressor, Decision Tree regressor, 

(KNN) regressor, (SVM) regressor, and Cat Boost Regressor as machine learning regressors. 

The results indicated that CBR achieved increased results compared to the recent machine 

learning techniques. The evaluation of the proposed model investigated that the CBR 

achieved (MSE), (RMSE), (MAE), and the determination Coefficient R2 are 0.003, 0.054, 

0.0036, and 92.40%, respectively. 

3. Objectives 

The primary objective of this research is to evaluate ML models for accurately forecasting 

daily TAVG over a nine-year historical period, with a focus on comparing deep learning 

approaches, specifically Long Short-Term Memory networks, with other algorithms such as 

XGBoost, RF, GB, SVR, ARIMA, and LR. This study aims to determine the most efficient 

predictive methodology for monitoring long-term temporal dependencies and minimizing 

predicting errors, thus enhancing climate forecasting accuracy. 

4. Research Gap 
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Despite the research on climate change prediction using ML in Egypt, important gaps remain, 

involving the scarcity of long-term forecasting models that account for climate variance 

scenarios extending to 2050 or 2100, the absence of studies combining global climate models 

with ML algorithms at the local level, the limited incorporation of real-time data in predictive 

models, which hampers the accuracy of urgent decision-making, and the insufficient 

integrated spatial-temporal analysis, especially when integrating satellite imagery with long-

term time-series data. 

5. Methodology  

Figure 1 presents the methodological model to process and analyze climate change in Egypt 

from 2015 to 2023 over 9 years, aiming to build an accurate predictive model using 

regression technique algorithms. The research followed an approach, beginning with data 

collection from sources, followed by data cleaning and processing to determine and address 

missing values. The data was then transformed into formats suitable for machine learning.   

The researchers used a set of statistical models and advanced ML algorithms such as LSTM, 

XGBoost, and RF. The efficiency of each model was estimated using standard metrics (MAE, 

MSE, R²) to measure prediction accuracy. The experimental analysis ensured fair 

comparisons via models by splitting the data into training and test sets using methods 

compatible with the temporal data. This methodology presents a practical model for future 

applications, like early warning systems, enhancing the understanding of climate change in 

Egypt, and supporting decision-making in the agricultural and environmental sectors.   

 

Figure 1: model for predictive temperature with machine learning. 
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5.1 Dataset Description   

This paper relied on precise climate data obtained from one of the world's most 

comprehensive databases, the National Centers for Environmental Information (NCEI) under 

the National Oceanic and Atmospheric Administration (NOAA) in the United States. The 

data was specifically extracted from the Global Historical Climatology Network Daily 

(GHCN-D), which presents reliable climate data from thousands of ground-based monitoring 

stations worldwide.   

The data covers 9 years, from 1 January 2015 to 31 December 2023. Annual data files in CSV 

format were downloaded and merged utilizing advanced tools such as Google Colab and 

Python to ensure consistency.  Since the research focuses on a specific region, the dataset was 

filtered to extract only the readings recorded by climate monitoring stations in Egypt, 

determined by the country code EG. This resulted in 73,563 rows representing daily records 

of different climate features.  After completing the processing stages, the final dataset was 

ready for analysis, containing 73,562 climate readings distributed by 8 different climate 

variables, including 23 climate stations in Egypt determined from NOAA's database. This 

provides a robust and informative foundation for the study.   

A comprehensive list of the 23 GHCND stations utilized in this analysis, including their IDs, 

names, data coverage, geographic coordinates, and rates of missing data, is provided in 

Appendix C. 

5.2 Key Variables in the Dataset:   

A singular national daily average temperature series was created by consolidating records 

from the 23 GHCN-D stations for the national aggregation of station data.  The aggregate was 

conducted as an unweighted arithmetic mean over all accessible stations daily. In instances of 

absent data from a station on a specific day, the mean was computed utilizing the data from 

the other stations. This method guarantees a uniform national signal while reducing the 

impact of localized deficiencies. Table 1 presents the primary columns and variables in 

dataset. 

Table 1: Description of dataset. 

Variable 

Name 

Description 

station Monitoring station code 

date Date of the recorded observation (format: YYYYMMDD) 

element Type of climate variable (e.g., TMAX, TMIN, PRCP, SNOW, TAVG) 

value Measured value of the specified element (originally stored in tenths of °C; converted 

to °C for TMAX, TMIN, and TAVG) 

time Time of observation (e.g., hour of the day, may be missing in some records) 

PRCP Precipitation amount (tenths of millimeters) 

TMAX Maximum temperature of the day (tenths of °C) 

TMIN Minimum temperature of the day (tenths of °C) 

SNOW Snowfall amount (tenths of millimeters, typically 0 for Egypt) 

TAVG Average temperature of the day (tenths of °C, not always available) 
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5.3 Data Preprocessing   

Several stages were implemented to process and refine the data before its use in the models, 

as follows:   

5.3.1 Data Merging   

All station-specific files for Egypt were combined into a single comprehensive CSV file.   

5.3.2 Variable Selection  

Conversion of Units: The GHCN-D dataset documents temperature measurements (TMAX, 

TMIN, TAVG) in tenths of degrees Celsius.  Prior to executing any data cleaning, imputation, 

statistical analysis, model training, or visualization, all temperature variables were 

standardized to °C by dividing the raw values by 10. 

For instance: 

                              (1) 

After this stage, the study uniformly presents temperatures in °C (and °C² for squared-error 

measures) throughout all tables, figures, and evaluation metrics (MAE, MSE, R²). 

The following variables were used in the models:   

Table 2: Description of Dataset Variables 

Variable Name Description 

DATE Daily recording date 

TAVG Daily average temperature (°C), converted from GHCN tenths 

PRCP Daily precipitation amount (millimeters) 

STATION Monitoring station code 

ID Combined country and station identifier (e.g., EG000062304) 

 

5.3.3 Data Cleaning   

Unnecessary columns were excluded; The DATE column was converted to DATETIME 

format. Finally, the data was sorted chronologically.   

5.3.4 Handling Missing Values  

Mean Imputation was utilised, where missing values in columns were filled using the mean of 

each column. Missing values were computed using the mean of each variable, computed 

strictly within the training split to avoid any information leakage from the test set. 

Specifically, for each feature (TAVG, TMAX, TMIN, PRCP), the mean was calculated using 

only the training portion of the data (2015–2021) and then applied to both the training and 

test periods. This ensured that the test set remained unseen and independent during model 

evaluation. 
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Treatment of missing TAVG values. In cases where the daily average temperature (TAVG) 

was not available in the GHCN-D records, it was inferred as the arithmetic mean of the 

corresponding TMAX and TMIN values, following the NOAA convention: 

                      (2) 

This rule was applied only when both TMAX and TMIN were present, which covered 

approximately 4.5% of the missing TAVG entries. Days with incomplete TMAX or TMIN 

records were excluded from the analysis. 

5.3.5 Quality Verification     

Checks were performed to confirm that no duplicate values or overlapping dates existed. 

After cleaning, the data was ensured to be ready for use in models.   

5.3.6 Time Series Analysis     

The aim was to observe temperature trends in Egypt (2015 to 2023). By two steps, A Table 

was created to structure each row as a day with values for each feature: TMAX, TMIN, and 

TAVG. Then, the evolution of the average temperature TAVG over the years was plotted. 

All temperature values shown in the following figures are expressed in °C after conversion 

from GHCN tenths. 

   

Figure 2: average daily temperature in Egypt (2015-2023). 

Figure 2 shows the change in daily average temperatures in Egypt (2015 to 2023), helping to 

determine general trends of increase or decrease over time, higher temperatures in summer 

and lower temperatures in winter. The X-axis represents dates in a specific period. The y-axis 

represents average temperature in Celsius (°C). The Blue Line represents the change in daily 

average temperature over time.   

6. Analysis and Visualization of Maximum (TMAX) and Minimum (TMIN) 

Temperatures     

https://doi.org/10.21608/jaiep.2025.415474.1020
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Figure 3: daily max and min temperatures in Egypt (2015 – 2023) 

Figure 3 presents the daily maximum and minimum temperatures in Egypt (2015 to 2023), 

represented as a time series. The red line fluctuates between 25°C and 40°C, peaking in 

summer months mid-year 2015, 2016, etc., while the blue line varies between 5°C and 25°C, 

dipping in winter periods. The seasonal pattern is evident, with increasing temperatures in 

summer and decreasing temperatures in winter across all years. The overall trend suggests 

stable climatic conditions, though short-term variability is visible within each year. 

7. Statistical Distribution Analysis of Temperatures     

 

Figure 4: Distribution of Maximum Temperature (TMAX): 

Figure 4 illustrates the distribution of maximum temperature in degrees Celsius (°C). The 

vertical axis reflects the number of occurrences for each temperature category. The figure 

presents a bell-shaped distribution with a peak frequency around 30°C to 35°C, where the 

highest columns reach approximately 120-140 occurrences, indicating this range as the most 

common TMAX. The distribution is a symmetrical normal distribution, with frequencies 

decreasing on both sides, lower frequencies below 20°C and above 40°C, with minimal 

occurrences near the extremes, e.g., 10°C and 45°C. A symmetrical pattern, indicating that 

the data follows a unimodal distribution centered around the 30-35°C range, which is typical 

for areas with a warm climate through the monitoring period, such as summer months. 
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8. Distribution of Minimum Temperature (TMIN):     

 

Figure 5: Distribution of Minimum Temperature (TMIN) 

Figure 5 shows the statistical distribution of minimum temperatures in Egypt, highlighting a 

concentration of values within moderate temperature ranges, along with the occurrence of 

some extremely cold days, particularly during the winter season. The vertical axis presents 

the number of days on which a minimum temperature was recorded. The data are displayed as 

a frequency distribution of temperatures, while the blue line over the columns depicts the 

Kernel Density Estimate (KDE), representing the overall probabilistic distribution of 

temperature values. This frequency distribution and KDE enable a more understanding of the 

spread of minimum temperatures, indicating the most common values and their different 

range, thereby assisting in the analysis of climatic patterns. 

9. Distribution of Average Temperature (TAVG):     

 

Figure 6: Distribution of Average Temperature (TAVG) 

Figure 6 presents the statistical distribution of average temperatures in Egypt, an effective 

tool for determine months with moderate or hot climates. The data are displayed as the 

frequency distribution of temperatures within defined thermal bins, while the line above the 

columns depicts the KDE, which provides the overall probabilistic distribution of 
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temperature. This combination of frequency distribution and KDE present an understanding 

of the average temperature distribution patterns, thereby contributing to the evaluation of 

climatic features and the identification of periods with moderate or hot weather conditions 

within the study period. 

10. Distribution of Precipitation (PRCP):     

 

Figure 7: distribution of precipitation (PRCP) 

figure 7 presents the distribution of precipitation (PRCP) meaning distribution of precipitation 

amounts in millimetres, with the horizontal axis from 0 to 250 mm in regular intervals, and 

the vertical axis providing frequency from 0 to 350 for the number of observations per 

category, indicating a positively skewed distribution with a high peak at 0 mm (about 340 

occurrences) indicating dry days and minimal precipitation, followed by a sharp low in 

frequency as precipitation increases (50-100 at 0-10 mm, and less than 10 above 50 mm), 

reflecting the prevalence of light rains and the rarity of floods, with significant different 

supporting climate analysis and modelling using distributions like gamma. 

11. Monthly Average of Temperature (TAVG) and Precipitation (PRCP) in Egypt 

(2015–2023):     

 

Figure 8: Monthly Average of Temperature (TAVG) and Precipitation (PRCP). 

Figure 8 presents the monthly averages of temperature in dark blue and PRCP in light blue 

with shading in Egypt. The TAVG line starts at about 13–15°C in January, rises to its peak of 

28–30°C in July and August, then reduction to 15°C in December, which reflects the seasonal 

cycle of a hot climate, with an annual average of about 20–22°C and a seasonal range 
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reaching 15°C.  The PRCP line presents very low precipitation, less than 10 mm, with two 

peaks in winter (December–February: 5–10 mm) because of Mediterranean storms, and a 

drop to near zero in summer (June–August) under the influence of high-pressure systems. 

This ensures an extremely arid climate with an annual average below 50 mm, an inverse 

relationship between temperature and precipitation, supporting climate change research and 

environmental risk, such as drought evaluation, despite limitations such as the lack of 

influence of anomalous years. 

12. Data Splitting    

The dataset was temporally split into 80% training to learn historical patterns and 20% 

testing, confirming that the temporal sequence was preserved without randomization. Seven 

models, combining statistical methods, ML algorithms, and neural networks, as shown in 

Table 3, using regression techniques through the scope of time series forecasting, were 

employed for climate data analysis: ARIMA, LSTM, RF, XGBoost, GBR, SVR, and LR. 

This set of models enables an evaluation of predictive effectiveness via different methods for 

forecasting climate patterns. 

All records from January 1, 2015, to December 31, 2021 (80% of data) were utilized for 

training, but the remaining records from January 1, 2022, to December 31, 2023 (20% of 

data) were reserved for testing.  This temporal division guarantees that the model was 

assessed solely on previously unobserved future data.  Figure 9 illustrates a schematic 

representation of the division. 

 

Figure 9: Dataset Temporal split into training (2015–2021) and testing (2022–2023) subsets. 

Each input sequence contained of the previous 30 consecutive days of temperature and 

climate variables, and the model was trained to predict the next day’s average temperature 

(TAVG) (horizon = 1). The stride was set to 1 day, resulting in overlapping windows. 

Exogenous regressors involving TMAX, TMIN, and PRCP were incorporated in multivariate 

models (LSTM, XGBoost, RF, GBR, SVR), while univariate ARIMA and LR were tested 

with and without seasonal features.  

The models were trained using a sliding window approach (30-day input window with 1-day 

horizon). A schematic of this setup is shown in Figure 10. The final hyperparameters for all 

models are reported in Table 4. 

 

Figure 10: Sequence-to-one prediction setup used in this study (30-day input window, 1-day horizon). 
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Table 3: Models Used for Supervised Regression-Based Time Series Forecasting . 

Model Name Abbreviation Description 

AutoRegressive 

Integrated Moving 

Average 

ARIMA A statistical model combining autoregressive terms, differencing 

(to ensure stationarity), and moving averages to model temporal 

dependencies in time-series data. 

Long Short-Term 

Memory 

LSTM A type of recurrent neural network (RNN) designed to capture 

both short-term and long-term patterns in sequential data by using 

memory cells and gating mechanisms. 

Random Forest 

Regressor 

RFR An ensemble learning method that builds multiple decision trees 

and aggregates their predictions to improve accuracy and reduce 

overfitting. 

Extreme Gradient 

Boosting 

XGBoost An optimized and highly efficient gradient boosting framework 

that builds trees sequentially to minimize prediction errors, 

particularly effective with complex datasets. 

Gradient Boosting 

Regressor 

GBR A gradient boosting algorithm that sequentially fits models to 

correct the errors of previous ones, focusing on improving 

prediction accuracy in regression tasks. 

Support Vector 

Regression 

SVR A regression method based on Support Vector Machines (SVMs) 

that seeks an optimal function within a specified margin of 

tolerance, effective for nonlinear relationships. 

Linear Regression LR A fundamental statistical model that assumes a straight-line 

(linear) relationship between independent variables and a 

dependent variable. 

   

13. Discussion 

The final hyperparameters selected for each model after tuning are summarized in Table 4. 

These values were strongminded through grid/random search with validation on the training 

set. 

Table 4: Final hyperparameters of the models. 

Model Key Hyperparameters (Final) 

LSTM window = 30 days; hidden units = 64; dropout = 0.2; epochs = 100; batch 

size = 32; Adam (lr=0.001); seed = 42 

XGBoost n_estimators = 500; max_depth = 6; learning_rate = 0.05; subsample = 

0.8; colsample_bytree = 0.8 

Random Forest n_estimators = 300; max_depth = None; min_samples_split = 2; 

random_state = 42 

Gradient Boosting n_estimators = 400; learning_rate = 0.05; max_depth = 5; subsample = 

0.8 

SVR kernel = RBF; C = 100; epsilon = 0.1; gamma = scale 

ARIMA Seasonal ARIMA (p,d,q) = (2,1,2), seasonal (P,D,Q,12) = (1,1,1,12) 

Linear Regression Ordinary Least Squares with seasonal Fourier features (k=3) 
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13.1 AutoRegressive Integrated Moving Average ARIMA model 

     

Figure 11: comparison between the actual daily average temperature (TAVG) and the predicted 

TAVG using an ARIMA 

Figure 11 shows a comparison between the actual daily (TAVG) and the predicted daily 

TAVG using an ARIMA model over the period from January 2023 to January 2024. The 

horizontal axis represents the date, with a notable extension into a predicted period starting 

around mid-2023. The vertical axis represents the TAVG in (°C), ranging from about 15°C to 

35°C. The actual TAVG exhibits a fluctuating pattern with a general upward trend from the 

start of 2023, peaking around mid-2023 at about 30-35°C, followed by a decrease toward the 

end of 2023, reflecting seasonal variations and climatic conditions. The predicted TAVG 

remains constant at around 20°C within the actual and predicted periods, indicating a stable 

forecast that does not account for seasonal fluctuations present in the actual data. This 

discrepancy highlights limitations in the ARIMA model's ability to capture the dynamic 

seasonal changes, suggesting that the model may be based on a short-term average, making it 

less performance for long-term temperature forecasting. 

13.2 Long Short-Term Memory LSTM model 

 

Figure 12: compares the actual daily average temperature TAVG with the predicted TAVG 

using LSTM. 
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Figure 12 compares the actual daily TAVG with the predicted daily TAVG using the LSTM 

model. The X-axis represents the sample index, ranging from 0 to 600, and the Y-axis 

represents temperature in arbitrary units, spanning about 15 to 35°C. The predicted daily 

TAVG closely follows the actual values, capturing fluctuations with high accuracy, indicating 

the LSTM model's effectiveness in time-series data.  MAE of 0.07 °C suggests an average 

deviation of only 0.07 °C, a MSE of 0.01 °C² represent minimal squared errors  and R² Score 

of 0.97 indicates that 97% of the variance in the actual data is demonstrated by the model, 

explain a superior predictive capability compared to models such as ARIMA, due to LSTM's 

ability to handle sequential dependencies and non-linear patterns in the temperature data. 

13.3 Random Forest Regressor RFR model    

 
Figure 13: compares the actual daily average temperature (TAVG) with the predicted TAVG 

using a Random Forest Regressor model 

Figure 13 compares  (Actual TAVG) values with the  (Predicted TAVG) values using a RFR 

model across 100 samples index, where the average temperature ranges between 15 and 

35 °C, with an actual peak reaching 34-35 °C around sample 50 and a low of 15-16 °C around 

sample 20, while the predicted values range from 17-18 °C as a minimum to 32-33 °C as a 

maximum, with a variance ranging between 1 and 3 °C in most samples, reflecting a good 

predictive ability with an error that requires improvement. On the other hand, the actual 

TAVG presented important fluctuations, reflecting daily or short-term temperature changes, 

while the predicted TAVG closely follows the actual score, capturing the overall trend and 

variability with slight deviations. 

13.4 Extreme Gradient Boosting Regressor XGBoost model    

 
Figure 14: compares the actual daily average temperature (TAVG) with the predicted TAVG using an 

XGBoost Regressor model 
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Figure 14 shows (Actual TAVG) with (Predicted TAVG) using an XGBoost Regressor model 

across 100 sample indexes. The actual TAVG exhibits significant fluctuations, peaking 

around 34-35°C near sample 50 and decreasing to about 15-16°C around sample 20. The 

predicted TAVG follows a similar trend but with slightly smoother variations, reaching a 

peak of about 32-33°C and a low of about 17-18°C. The variance between the actual and 

predicted values ranges from 1 to 3°C, reflecting that the XGBoost model provides a 

reasonable prediction with some deviations, particularly in cases of high variability. 

13.5 Gradient Boosting Regressor GBR model 

 

Figure 15: compares the actual daily average temperature (TAVG) with the predicted TAVG 

using a Gradient Boosting Regressor (GBR) 

Figure 15 compares the actual daily (TAVG) with the predicted TAVG using the GBR model, 

with the X-axis representing the sample index from 0 to 100 and the Y-axis presenting the 

TAVG in (°C), ranging from approximately 15 to 35°C. The actual TAVG reflects daily or 

short-term temperature changes, while the predicted TAVG closely tracks the actual values, 

capturing the overall variability with minor deviations. A Mean Absolute Error of 0.63 °C 

reflect an average deviation of 0.63 °C, a MSE of 0.76 °C² suggests low squared errors and an 

R² Score of 0.99 indicates that the model explains 99% of the variance, reflecting an excellent 

fit. This strong performance underscores GBR's effectiveness in iteratively enhancing 

predictions by minimizing errors, making it a strong approach. 

13.6 Support Vector Regression (SVR) model 

 
Figure 16: compares the actual daily average temperature (TAVG) with the predicted TAVG using a 

Support Vector Regression (SVR) model 
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Figure 16 compares the actual daily (TAVG) with the predicted using (SVR) model across 

100 samples, the actual temperatures fluctuating thought this range with notable peaks near 

indexes 10, 30, 50, 70, and 90 reaching about 35°C and dips at indexes 20, 40, 60, and 80 

dropping to around 15°C, while the predicted average is depicted as a dashed orange line 

following the general trend of the actual values with slight variations, indicating the SVR 

model's ability to track general temperature trends with minor prediction inaccuracies. 

13.7 Linear Regression     

 

Figure 17: compares the actual daily average temperature (TAVG) with the predicted TAVG 

using a Linear Regression model 

Figure 17 compares the actual daily (TAVG) with the predicted TAVG using a Linear 

Regression model. The actual TAVG reflects significant seasonal fluctuations with peaks 

reaching about 35-40°C in the summer months of mid-2022, mid-2023 and dips to about 10-

15°C in the winter, indicating Egypt's desert climate trends. The predicted TAVG remains 

nearly constant at about 20-22°C across the entire period, failing to monitor the seasonal 

changes in the actual data. The performance metrics reveal poor model accuracy, the MAE of 

6.13 °C reflects an average deviation of 6.13 °C, the MSE of 53.19 °C² suggests substantial 

squared errors, and an R² Score of -0.12 explains that the model performs worse than a simple 

mean predictor, demonstrates a negative proportion of the variance and highlighting its 

inadequacy for modeling the non-linear, seasonal temperature patterns in this context. 

14.  Comparison of Climate Prediction Models in Egypt (2015–2023)     

This research applied seven different models to predict daily average temperatures (TAVG) 

in Egypt using climate data from 2015 to 2023. The models included traditional, statistical, 

and deep learning-based algorithms. Below is a detailed comparison of their performance 

based on three key evaluation metrics as shown in fig 17:   

 
Figure 18: Comparison Performance of Climate Prediction Models in Egypt (2015–2023) 
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Table 5 compares the performance of different models for predicting the daily (TAVG) based 

on MAE, MSE, and R² Score, with an evaluation of model performance. The ARIMA and LR 

models show poor performance (MAE >5, R² <0) due to high errors of 8.70, 6.13 and 

negative variance explanation. In contrast, the LSTM, RF, XGBoost, GB, and SVR models 

explain strong performance (MAE <1, R² >0.95) due to low errors and high variance 

explanation (R² up to 0.99), making them highly efficient for accurate temperature 

forecasting. However, the LSTM model stands out as the best model, thanks to its low MAE 

(0.07) and MSE (0.01) values, along with an exceptional R² score (0.97), indicating its 

superior ability to explain variance and minimise errors. 

Table 5: Performance Comparison of Regression Models 

Model MAE (°C) MSE (°C²) R² 

Score 

Performance 

SARIMA 8.70 10.07 -1.99 Worse due to MAE > 5 and R² < 0 

LSTM 0.07 0.01 0.97 Better due to MAE < 0.1 and R² > 0.95 

Random Forest 0.71 0.93 0.98 Better due to MAE < 1 and R² > 0.95 

XGBoost 0.62 0.73 0.99 Better due to MAE < 1 and R² > 0.95 

Gradient Boosting 0.63 0.76 0.99 Better due to MAE < 1 and R² > 0.95 

SVR 0.62 0.80 0.98 Better due to MAE < 1 and R² > 0.95 

Linear Regression 6.13 53.19 -0.12 Worse due to MAE > 5 and R² < 0 

 

Performance of SARIMA and Linear Regression. 

The ARIMA and LR baselines were re-estimated with seasonal components.  

ARIMA was extended to a SARIMA configuration with monthly seasonality, and LR was 

augmented with seasonal Fourier terms and month-of-year dummy variables. Despite these 

modifications, both models still displayed substantially lower accuracy than the machine 

learning approaches as shown in Table 5. This indicates that purely linear or statistical models 

cannot adequately capture the nonlinear and complex temporal dynamics of daily temperature 

in Egypt. 

15. Results Analysis:  

We verified that imputing missing values based on training-only statistics did not materially 

change the performance metrics compared to imputation using the full dataset, confirming the 

robustness of the results.   

Based on the different models, projections have been made for Egypt's future daily TAVG, 

reflecting an upward temperature trend that may be linked to long-term climate variance 

effects. The forecasts indicate that temperatures in Egypt will continue to increase during the 

upcoming summer, reaching peaks of about 38–40°C, especially in July and August. On the 

contrary, a gradual decrease in temperatures is anticipated within the autumn months, settling 

at moderate levels of 20–25°C. Winter temperatures are forecast to range between 12 and 

18°C on average, with occasional dips down to 10°C. 

All results represented in this section correspond to the national daily average temperature 

series, acquired by aggregating the 23 GHCN-D stations into an unweighted daily mean. This 
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guarantees that the reported accuracy reflects the overall national-scale climate dynamics 

rather than localized station variability. 

To consider uncertainty, 95% prediction intervals were counted using a bootstrap approach 

with 1000 resamples from the residual distribution on the test period (2022–2023). For 

August 2025, the predicted daily TAVG ranged from 33.0°C at the beginning of the month to 

34.4°C at the end, with corresponding 95% prediction intervals of (32.5°C – 33.6°C) on 1 

August and (33.8°C – 34.8°C) on 29 August. The intervals covered 94% of the observed 

values in the test period, indicating good calibration. 

 

Figure 19: Forecasting of daily average temperature in Egypt for August 2025 using the LSTM   

model 

Figure 19 illustrates the forecasted daily (TAVG) in Egypt for August 2025 using the LSTM 

model. The predicted TAVG shows a steady upward trend throughout the month, starting at 

about 33.0°C on 1 August and rising to about 34.4°C by 29 August. This linear increase 

reflects a gradual warming over the month, consistent with the peak summer conditions in 

Egypt's desert climate, where temperatures are forecasted to reach their highest levels. The 

regular rise indicates a potential influence of seasonal climate change trends, aligning with 

earlier forecasting of increasing temperatures, and indicates the data's projection. The main 

points: 

• Time Frame:   1 August to 29 August 2025.   

• General Trend:   A slight, gradual high in predicted temperatures, starting at about 33°C   and 

reaching just above   34.5°C   by the month's end.   

• Stability:   No sharp fluctuations, reflecting relatively stable weather conditions.   

 

16. Contribution 

Our study explains the clear superiority of the Long Short-Term Memory model compared to 

previous studies that were based on traditional or hybrid algorithms. related works, such as 

Vulova et al. 2021 [20] using ANN with remote sensing data (R² = 0.91), Barakat et al. 2025 

[2] combining RF and multiple regression (R² = 0.89), Elbeltagi et al. 2023 [9] using ANN 

(R² = 0.94, RMSE = 0.21), and Shams et al. 2023 [17] using RF (R² = 0.93, MAE = 0.27°C), 

resulted in good results but could not capture long-term temporal dependencies in time series 

data. In contrast, our research applies LSTM, a deep learning algorithm designed for 

sequential data, enabling the learning of temporal patterns without the extensive feature 

engineering required by models like XGBoost. A systematic comparison with XGBoost, RF, 

GB, SVR, ARIMA, and LR confirmed LSTM as the best-performing model, achieving R² = 
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0.97, MAE = 0.07, and MSE = 0.01. This efficient advantage is due to the use of a 9-year 

dataset from 2015 to 2023, LSTM’s memory-based structure, and comprehensive evaluation 

metrics, making it a more accurate and reliable approach for daily average temperature 

forecasting in wet and dry regions in Egypt. 

17. Recommendation   

Based on this comparison, the best model for predicting average temperatures in Egypt is 

LSTM, followed by XGBoost and Gradient Boosting, especially when sufficient resources 

are available for training and processing. In contrast, ARIMA and Linear Regression are not 

recommended due to their poor performance in representing climate variations.   

18. Future Work 

Expand the study to involve other climate factors (humidity, wind, solar radiation). Also, 

combine satellite imagery and remote sensing data with numeric values to obtain results. 

Finally, apply spatial models by combining geographic variables.   
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Appendix A 

 Example Python code for converting GHCN-D temperature values from tenths to °C 

 

Appendix B 

 Example Python code for mean imputation using training-only statistics
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Appendix C 

List of GHCN-D stations used in this study 

The table includes the station IDs, names, geographic coordinates, elevation, data coverage period, and 

the percentage of missing data for the years 2015–2023. 

Station ID Station Name Latitude Longitude 
Elevation 

(m) 

Data 

Availability 

(Years) 

Missing 

Data (%) 

EG000062306 
Cairo Intl 

Airport 
30.12 31.40 74 2015–2023 2.1 

EG000062407 Tanta 30.79 31.00 12 2015–2023 3.4 

EG000062408 Mansoura 31.04 31.38 11 2015–2023 4.8 

EG000062414 
Alexandria 

Airport 
31.20 29.95 7 2015–2023 1.9 

EG000062417 Port Said 31.28 32.30 6 2015–2023 3.0 

EG000062419 Damietta 31.42 31.82 4 2015–2023 2.7 

EG000062422 Ismailia 30.59 32.27 14 2015–2023 2.2 

EG000062426 Suez 29.97 32.55 10 2015–2023 3.1 

EG000062430 El Arish 31.13 33.80 37 2015–2023 2.8 

EG000062432 Rafah 31.28 34.25 36 2015–2023 4.2 

EG000062435 
Sharm El Sheikh 

Airport 
27.97 34.40 42 2015–2023 1.5 

EG000062440 Hurghada 27.15 33.72 16 2015–2023 2.0 

EG000062442 Luxor Airport 25.67 32.70 89 2015–2023 1.7 

EG000062445 Aswan Airport 23.97 32.78 192 2015–2023 1.6 

EG000062450 Minya 28.08 30.75 52 2015–2023 3.3 

EG000062455 Beni Suef 29.07 31.10 33 2015–2023 2.9 

EG000062460 Fayoum 29.30 30.83 29 2015–2023 3.7 

EG000062463 Assiut 27.05 31.00 52 2015–2023 3.0 

EG000062470 Sohag 26.55 31.70 68 2015–2023 3.4 

EG000062472 Qena 26.17 32.72 76 2015–2023 2.5 

EG000062475 Marsa Matruh 31.35 27.22 21 2015–2023 1.8 

EG000062480 
Al Wadi Al 

Jadid (Kharga) 
25.45 30.55 75 2015–2023 3.9 

EG000062490 Abu Simbel 22.38 31.62 188 2015–2023 2.6 
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