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1. Introduction

Modeling the linear relationship between a response variable and specific explanatory variables has
garnered considerable attention in statistics lately. For this reason, econometrics often uses time series
data that represent a single entity, usually an economy or market. Another category of data is referred
to as ”panel data” in the literature on econometrics; in the biological sciences, it is also occasionally
referred to as longitudinal data. Cross-sectional measurements are tracked over time in panel data, a
type of two-dimensional data. As noted by Hsiao [1], this kind of data usually allows us to account
for both intra-individual dynamics and the unobserved individual-specific variability. As a result, these
estimates typically offer a more thorough source of variance that is more educational, allowing for
more accurate model parameter estimation and reliable testing of more intricate behavioral models
with less constrictive assumptions.

Panel data models encompass information in two dimensions, including time series (T ) and cross-
sectional (N). Generally speaking, the panel’s time dimension (T ) it is short and its cross-sectional
dimension (N) it is very large. We search for estimation consistency along the dimension (N) in that
case. This is the case because the research’s primary focus is variability between units, and panel data
are frequently used for cross-sectional analysis. In panel data research, three primary sources of vari-
ability are usually considered: (i) within variation, which is the variance across both dimensions; (ii)
between variation; and (iii) within variation, which is the fluctuation from observation to observation
in each cross-sectional unit. The statistical appeal of panel data models is frequently derived from
their capacity to control individual variability while focusing particularly on explaining time-varying
variations. Additionally, Baltagi [2] and Hsiao [3] provide a list of some advantages and disadvantages
of using a panel dataset.

The best linear unbiased estimator (BLUE) for panel data models and pooled cross-sectional data
is the classical pooling (CP) estimator, based on the standard assumptions of the general linear regres-
sion model. Panel data models are based on the fundamental idea that the people in our dataset are
drawn from a population that shares a regression coefficient vector. This means that the coefficients in
panel data models should be fixed. This assumption is not met by the majority of economic models,
as Livingston et al. [4] and Alcácer et al. [5] have shown. This model is referred to as the ”random
coefficients panel data (RCPD) model” if this assumption is loosened. Swamy has done a lot of re-
search on this RCPD model [6, 7, 8]. Furthermore, this model is also known as the random coefficient
regression (RCR) model or Swamy’s model in a number of statistical and economic papers; see, e.g.,
[9, 10, 11, 12, 13].

Econometric models that allow for various methods of parameter modification have been created in
recent years. Swamy [7] has produced an asymptotically efficient approach for estimating the parame-
ters in a broad RCR model after comparing all of these various schemes. These estimating techniques
are only now being used for the examination of real-world data; for further information, see Fcige
and Swamy [14]. The standard fixed-parameter regression model’s applicability in analyzing cross-
sectional data is limited by the diversity of individual decision units, which implies parameter change
between units, as many econometricians have acknowledged. Micro panel data econometric analyses
using RCR approaches have been demonstrated to yield more informative and fruitful results [15].

The RCR models have been applied across various domains and provide a unifying framework for
addressing many statistical challenges. Practical applications encompass a wide range of disciplines,
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including behavioral and social sciences, economics, finance, and many others. A few consistent esti-
mators for the coefficient mean and variances were proposed by Hildreth and Houck [16] and Swamy
[6] from a parametric perspective, assuming that the covariances vanish. They also looked at ap-
propriate linear models. Furthermore, as the works of Holzmann and Meister [17] and Lewbel and
Pendakur [18] show, a great deal of research has been done in the last several decades in the areas of
non-parametric, non-linear identification and estimation of the joint distribution of the coefficient. The
CP and Swamy methods are typically used to draw statistical conclusions regarding the parameters
of RCR models. In order to get reliable estimates of the RCR model parameters, traditional estimat-
ing methods, however, require specific assumptions that are rarely met in practice, such as stringent
homogeneity and homoscedasticity of the error terms. Therefore, any departure from the model’s as-
sumptions or the presence of outliers may significantly affect the CP and RCR estimators. In addition,
the CP and RCR estimators are highly sensitive to the leverage points due to the distortions caused
by the outliers in the variables involved. Consequently, these estimators, along with popular estima-
tors like the generalized least squares (GLS) estimator for random and fixed models based on several
transformations, may yield imprecise and untrustworthy results.

In order to get over these problems, we looked into alternatives to conventional estimators in order
to create extremely reliable techniques with a high breakdown point (BP). It is believed that robust
methods are the only workable way to deal with outliers. When outliers are present in RCR models,
robust estimates are necessary to detect them and generate reliable, resilient results. To our knowledge,
very little research has been done on the resilience of conventional estimating methods when used with
static linear panel data models, see Kamel [19]. Other noteworthy references on robust multivariate
regression are the M-estimation of seemingly unrelated regression equations (SURE) model by Kamel
[19] and the adaptation of S-estimator and MM-estimator to the SURE model by Youssef et al. [20, 21].

The main aim of this paper is to introduce a novel robust M-estimator that excels in performance
across various contaminated datasets while maintaining high efficiency. This proposed robust M-
estimator surpasses traditional methods in both efficiency and robustness, delivering impressive results.
To accomplish this, we analyze the efficiency of three proposed robust M-estimators’ objective func-
tions in RCR models containing outliers, comparing them with the non-robust estimators. This is done
through a Monte Carlo simulation study and a practical application on an energy management systems
dataset.

This paper is structured as follows. In the beginning, we introduced the basic notation needed
throughout the paper. In Section 2, we give a brief overview of the RCR model specifications and
assumptions. Section 3 examines the classical estimation methods of the RCR model in our study. In
Section 4, we introduce the outlier identification and repercussions in the RCR model. Section 5 offers
a novel robust M-Estimator with an algorithm of the previously discussed RCR models that may be
used to reduce the impact of outlier occurrences. The Monte Carlo simulation study and application of
energy management systems are described in Sections 6 and 7, respectively. Finally, Section 8 provides
some conclusions and recommendations.

2. The RCR Model and Assumptions

The RCR models provide a wide range of consequences for situations involving decision-making
difficulties. A choice in the ordinary least squares model affects only the mean, whereas in the RCR
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model, it impacts both the mean and the variance. In this case, we loosen the typical regression as-
sumptions by allowing the development factors to vary randomly. We consider the Hildreth and Houck
[16] model, in which the response coefficients in a broad linear model are treated as random variables,
and the mean of their distribution can be determined.

Consider the observations for N cross-sectional units across T periods. Assume the response vari-
able y for the i-th unit at the time t is expressed as a linear function of K strictly explanatory variables,
denoted as xkit, k = 1, ...,K, in the following form:

yit =

K∑
k=1

βkixkit + εit = xitβi + εit, i = 1, . . . ,N; t = 1, . . . ,T (2.1)

where βi is the K×1 vector of coefficients, xit is a 1×K vector of explanatory variables, and εit denotes
the random error term. With time, the stacking Equation (2.1) model mentioned above yields

yi = Xiβi + εi, (2.2)

where yi = (yi1, ..., yiT )′, Xi = (x′i1, ..., x
′
iT )′, βi = (βi1, ..., βiK)′, and εi = (εi1, ..., εiT )′. The ordinary least

squares (OLS) approach can be used to estimate distinct equation regressions for each individual unit
when the performance of a single individual from the panel data is of interest. The OLS estimator will
be the BLUE under the following assumptions:

A 1. The mean of the random error term is equal to zero, i.e., E(εi) = 0; ∀ i = 1, ...,N.
A 2. The random error term has the same variance:

E(εiε
′
j) =

σ2
εIT for i = j,

0 for i , j,
i, j = 1, . . . ,N. (2.3)

A 3. The explanatory variables (Xi) are fixed in repeated samples (non-stochastic) with full column
rank, i.e., rank(Xi) = K, N > K and T > K; ∀ i = 1, ...,N.
These requirements don’t have to be met in order for the OLS estimator to be optimum. Zellner
[22] referred to this as the SURE model, in which the equations are coupled by the random
errors’ cross-equation correlation, if the covariance’s between εi and ε j (i, j = 1, 2, . . . ,N) do
not equal zero as in assumption (A2) above, then the contemporaneous correlation is existing. If
contemporaneous correlation occurs and the Xi (i = 1, 2, . . . ,N) matrices do not cover the same
column space, the generalized least squares (GLS) estimation method applied to the full system
of equation is a significantly more efficient estimator of βi than the equation-by-equation OLS,
as proved by Zellner [22]. Therefore, with a shared regression parameter β̄, which is a constant
component, and a random component γi, which will enable the coefficients to vary from unit to
unit, we assume that the individuals in our panel data are drawn from a population.

A 4. We suppose that the vector of coefficients βi is categorized as follows for the stationary random
coefficient technique:

βi = β̄ + γi, (2.4)
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where β̄ is the K×1 vector of coefficients, and γi is the K×1 vector of stationary random variables
with zero means and constant variance-covariances as:

E(γi) = 0 and E(γiγ
′
j) =

Ψ for i = j

0 for i , j
, i, j = 1, . . . ,N,

whereΨ = diag{ϕ2
k}; for k = 1, ...,K, where K < N. Furthermore, E(γix jt) = 0 and E(γiε jt) = 0 ∀ i

and j. The model in Equation (2.2) may be rewritten as follows with this assumption:

Y = Xβ̄ + e, e = Dγ + ε (2.5)

where Y = (y′1, ..., y
′
N)′, X = (X′1, ..., X

′
N)′, β̄ = (β̄1, ..., β̄K)′, ε = (ε′1, ..., ε

′
N)′, while γ = (γ′1, ..., γ

′
N)′,

and D = diag{Xi}; for i = 1, ...,N.
A 5. Furthermore, Swamy [6] assumed that the errors have different variances among individuals:

E(εiε
′
j) =

σiiIT for i = j

0 for i , j
, i, j = 1, ...,N.

Under all the above assumptions, the model in Equation (2.5) is called the RCR model.

3. The Classical Methods of Estimation

The RCR models extend the standard regression framework, sometimes called mixed-effects mod-
els or hierarchical linear models, which permit the regression coefficients to differ among individuals
or groups. This recognizes that the independent and dependent variables may not have a consistent
connection across the population. The conventional approaches of RCR model estimation are cov-
ered in this section. After estimating the model parameters, statistical inference can be carried out.
This entails doing hypothesis tests to determine the significance of the effects and computing standard
errors for the estimated coefficients and variance components. Wald tests and likelihood ratio tests
are frequently employed when assessing hypotheses in RCR models. RCR model parameters can be
estimated using a variety of techniques, the most popular as follows:

3.1. Classical Pooling Estimator

A simple technique for estimating a common link across several groups or periods in econometrics,
especially when working with panel data, is the classical pooling (CP) estimator. In essence, it ignores
the unique group or time-specific properties and does a standard regression on all the data as if it were a
single, huge sample. The individuals in our database were selected from a population having a common
regression vector of coefficients β̄. When all of their coefficients are equal (β1 = β2 = · · · = βN = β̄). In
this case, a more efficient estimate of β̄ can be obtained by pooling the observations for each individual
and performing a single regression. The CP estimator of β̄ is therefore provided by;

ˆ̄βRCRCP = (X′X)−1X′Y, (3.1)

The variance-covariance matrix of the estimated coefficients ˆ̄βRCRCP is given by:
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Var( ˆ̄βRCRCP) = (X′X)−1X′δX(X′X)−1, (3.2)

where;

δ =


σ2

1IT 0 · · · 0
0 σ2

2IT · · · 0
...

...
. . .

...

0 0 · · · σ2
N IT


where I is an (NT ×NT ) identity matrix, the unknown parameters σ2

i can be consistently estimated by:

σ̂2
i =

1
(T − K)

T∑
t=1

ε̂2
it for i = 1, ...,N; t = 1, ...,T,

where ε̂it are the residuals derived from solving an equation i using OLS estimation. A straightforward
but frequently unsuitable technique for panel data is the RCRCP estimator. It overlooks important
facets of the data structure, which could produce skewed and inaccurate conclusions. Unless you have
good evidence that your data fulfills the tight assumptions, it’s advisable to utilize one of the more
advanced panel data approaches [23].

3.2. Mean Group Estimator

A panel data analysis technique called the mean group (MG) estimator is employed when you have
reason to believe that the relationship between your variables may differ for each individual or group in
your dataset. It is especially helpful when you have a reasonable number of time periods (T ) and a com-
paratively high number of individuals (N). The link is estimated independently for each person by the
MG estimator. To provide a general picture of how independent variables affect dependent variables, it
merely averages the individual estimates. A well-established concept that has been investigated in sev-
eral contexts is estimating a common mean by averaging estimates of individual cross-sectional units
in a panel. More general assumptions about βi and the regressors can also yield a consistent estimator
of β̄. This estimator is known as the MG estimator. Pesaran and Smith [24] demonstrate its consistency
when estimating long-term associations in panel data models. The average of these separate estimates
is the MG estimator of the total impact of independent variables on dependent variables:

ˆ̄βRCRMG =
1
N

N∑
i=1

β̂i, (3.3)

The MG estimator’s variance-covariance matrix considers both the variances and the covariances
among individual estimates of the coefficients. Standard errors and hypothesis testing on the average
impact of your variable are made possible by this. The variance-covariance matrix for the MG estimator
is given by:

Cov
( ˆ̄βRCRMG

)
=

1
N

Ψ̂∗ − 1
N

N∑
i=1

σ2
i (X′i Xi)−1

 + 1
N2

N∑
i=1

σ2
i E[(X′i Xi)−1] =

1
N
Ψ̂∗, (3.4)

where;
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Ψ̂∗ =
1

N − 1

N∑
i=1

σβ̂.

The MG estimator is a useful tool for analyzing panel data when you suspect that the connection
between your variables is heterogeneous. It offers a method to adjust for individual differences and is
comparatively easy to utilize. Knowing its limitations is crucial, though, and when appropriate, taking
into account other approaches. Methods that presume homogeneity will be more efficient than the MG
estimator, which will have bigger standard errors if the true connection is the same for everyone. is
susceptible to outliers: A small number of people with highly odd relationships may have an excessive
impact on the average. Not taking time effects into account: Time-varying relationship changes are not
taken into account by the basic MG estimator [25].

3.3. Swamy’s Estimator

In econometrics, Swamy’s estimator is a widely used method for analyzing RCR models. It’s
beneficial when you want to consider the heterogeneity in your analysis and have a suspicion that
the relationship between your variables may differ for each person or group in your dataset. Swamy’s
estimator is a two-step procedure that estimates the population average coefficients ( ˆ̄β) and the variance
components. Swamy [6] suggested that Swamy’s estimator of ˆ̄β is given by;

ˆ̄βRCRS W =
(
X′Ω−1X

)−1
X′Ω−1Y, (3.5)

whereΩ is the variance-covariance matrix of e, accounting for heteroscedasticity across cross-sectional
units. Explicitly, Ω is given by:

E(ee′) = Ω =


X1ΨX′1 + σ

2
1IT 0 · · · 0

0 X2ΨX′2 + σ
2
2IT · · · 0

...
...

. . .
...

0 0 · · · XNΨX′N + σ
2
N IT

 ;

which can be rewritten as:

Ω= (ΣRCRS W⊗IT )+D (IN⊗Ψ) D
′

; (3.6)

where ΣRCRS W= diag {σii}, for i= 1, . . . ,N, and ⊗ is the Kronecker product. Swamy [6] showed that the
ˆ̄βRCRS W estimator is rewriteable as:

ˆ̄βRCRS W=

 N∑
i=1

X
′

i

(
XiΨX

′

i+σiiIT

)−1
Xi

−1 N∑
i=1

X
′

i

(
XiΨX

′

i+σiiIT

)−1
yi, (3.7)

According to the RCR assumptions, the ˆ̄βRCRS W has a variance-covariance matrix as follows:

var
( ˆ̄βRCRS W

)
=
(
X
′

Ω−1X
)−1
=

 N∑
i=1

[
Ψ+σii

(
X
′

i Xi

)−1
]−1


−1

, (3.8)

The ˆ̄βRCRS W estimator contains the unknown σii’s and Ψ. The unknown σii’s can be estimated by;
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σ̂ii = ε̂
′
i ε̂i/(T − K), (3.9)

where ε̂′i = [I − Xi(X′i Xi)−1X′i ]yi = Miyi. For the ˆ̄βRCRS W estimator to be practical, Swamy [8] proposed
the following unbiased estimator for Ψ;

Ψ̂=

 1
N−1

 N∑
i=1

β̂iβ̂
′

i−
1
N

N∑
i=1

β̂i

N∑
i=1

β̂
′

i

−  1
N

N∑
i=1

σ̂ii

(
X
′

i Xi

)−1
 . (3.10)

When N and T → ∞, the ˆ̄βRCRS W is consistent while T → ∞, the ˆ̄βRCRS W is asymptotically efficient
as proved by Swamy [7, 8, 26]. Swamy’s estimator is more flexible; it allows for heterogeneity in
the relationship between the independent and dependent variables across individuals. moreover, under
certain assumptions, Swamy’s estimator is more efficient than the MG and CP estimators, especially
when the number of time periods (T ) is small.

4. Repercussions of Outliers in the RCR Model

Outliers are observations that do not belong to the same population or may be caused by an excep-
tional event (due to a catastrophe). Therefore, outliers can be described as points that do not follow
the trend of the majority of the data, see Abonazel and Rabie [27]. Outliers can wreak havoc on RCR
models, just as they do in standard regression. Because RCR models estimate coefficients for each
individual or group and a population average, outliers can affect both levels of estimation, leading to a
variety of problems. Here’s a breakdown of the consequences:

• Inflated Variance: Outliers can inflate the estimated variance of the individual-specific random
effects. This makes it appear as though there’s more heterogeneity across individuals than exists.
Essentially, the model tries to accommodate the outlier by saying, ”This individual is different,”
even if the difference is spurious.
• Biased Coefficient Estimates: Outliers can directly bias the estimates of the individual coeffi-

cients. Imagine an individual with an extremely high value on the dependent variable. The model
might fit a line with a steeper slope for that individual just to accommodate that one point, even if
the true relationship is different.
• Distorted Standard Errors: The standard errors of the individual coefficient estimates can also

be distorted, leading to incorrect t-statistics and p-values.
• Biased Population Average: Because the population average coefficients are calculated as a

weighted average of the individual coefficients, outliers in the individual data can bias the overall
average. A few extreme values can pull the average in the wrong direction.
• Inflated Standard Errors: Even if the population average isn’t dramatically biased, the inflated

variance from the individual level can still lead to larger standard errors for the population average
estimates. This makes it harder to find statistically significant effects, even if they truly exist, see
Lyu [28].
• Biased Variance Component Estimates: Outliers can bias the estimates of the variances and

covariances of the random effects. This can distort our understanding of the true degree of het-
erogeneity in the population. We might overestimate or underestimate how much the coefficients
vary across individuals.
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• Incorrect Functional Form: In some cases, outliers might even lead the model to suggest an
incorrect functional form for the relationship. For instance, a single outlier might make a linear
relationship appear non-linear.

Outliers can substantially affect RCR models, impacting both individual and population-level esti-
mates, as well as variance components. Detecting or diagnosing outliers is a very important process
in RCR analysis; it helps to increase both robustness and efficiency in the estimated RCR model. It
is a primary step in many dataset applications. Moreover, influential points cause many problems in
regression analysis, so it is important to detect these points for more accurate results. Robust regression
estimators are essential tools in dealing with this problem.

Also, it can often be used with Bayesian estimation and model selection to handle outliers [29, 30,
31, 32, 33, 34]. The main purpose of robust estimation is to provide resistant results in the presence
of outliers. In order to achieve this stability, robust regression limits the influence of outliers, see [19].
It turns out that the outlier robust method constitutes a useful addition to the econometrician’s toolkit.
The estimator provides automatic protection against aberrant observations by replacing the standard
moment conditions with observation-weighted moment conditions. Moreover, the observation weights
produced by the robust estimator can be used as a diagnostic device to assess which observations are
not described by the postulated model. In this way, our robust method can give useful (additional)
guidance for possible directions of model re-specification, see, e.g., [35, 36, 37, 38, 39].

5. A Novel Robust M-Estimator for the RCR Model

The M-estimation method is a generalization of the maximum likelihood (ML) estimator. As the
objective, the M-estimation method minimizes some function of the residual log f (x, ϑ) as in ML
estimation, a more general function ρ(x, ϑ) is allowed. As in the case of M-estimation of location,
the robustness of the estimator is determined by the choice of weight function, since the M-estimation
is based on the residual scale of Swamy’s estimator. If we assume linearity, homoscedasticity, and
uncorrelated errors, the ML estimator of β̄ is simply Swamy’s estimator found by minimizing the sum
of squares function;

ˆ̄βM = min
β̄

N∑
i=1

T∑
t=1

yit −

K∑
k=1

βkixkit

2

= min
β̄

N∑
i=1

T∑
t=1

(εit)2 , (5.1)

Following from M-estimation of location, instead of minimizing the sum of squared residuals, a robust
regression M-estimator minimizes the sum of a less rapidly increasing function of the residuals;

ˆ̄βM = min
β̄

N∑
i=1

T∑
t=1

ρ

yit −

K∑
k=1

βkixkit

 = min
β̄

N∑
i=1

T∑
t=1

ρ (εit) , (5.2)

where the function ρ(εit ) is called the objective function, the solution does not scale equivariant,
and thus the residuals must be standardized by a robust estimate of their scale S, which is estimated
simultaneously. As in the case of M-estimation of location, the median absolute deviation is often
used. Which is used to find ˆ̄βM, a robust estimator of β̄ =

(
β̄1, . . . , β̄K

)′
, defined as:

S = mediani

∣∣∣ri − median j(r j)
∣∣∣ /0.6745,
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where ri are the residuals from an initial fit (e.g., RCRCP). This ensures robustness against outliers and
provides a consistent scale estimate under normality. The standardized residuals εit/S are then used in
the estimating equations. The solution of the minimization problem in Equation (5.2) is equivalent to
simultaneously solving the following equations:

N∑
i=1

T∑
t=1

ψ
(
εit

S

) K∑
k=1

xkit= 0; K= 1, . . . ,k (5.3)

N∑
i=1

T∑
t=1

η
(
εit

S

)
= θ, (5.4)

where ψ(εit) =ρ
′

(εit), η is turns out to be η(εit) =
[
ψ(εit)

]2/2, and η (εit)=εit ψ(εit)−ρ(εit). If we want
S to be asymptotically unbiased for normal errors, we take θ= [(n−k)/n]EΦ(η) withΦ being the normal
distribution.

To reduce the detrimental impact of less frequent spurious values on estimates of variables, param-
eters, or both together, a variety of robust M-estimator objective functions have been proposed in the
robust statistics literature, see De Menezes et al. [40]. A few of these objective functions are covered
below.

5.1. Huber’s M-estimator

In contrast to the typical squared error loss, Huber is a useful loss function in robust statistics and
machine learning to lessen the impact of outliers. it was introduced by Huber in 1964, and residuals
with a magnitude larger than delta are not squared. Typically, εit represents residuals, the difference
between a model prediction and a dataset, see Huber and Ronchetti [41]. The robust Huber M-estimator
has the following objective, score, and weight functions. The Huber objective function (ρ) is first
defined as follows:

ρHU(εit) =

 1
2ε

2
it, for |εit| ≤ 1.345,

1.345|εit| −
1
2 (1.345)2, for |εit| > 1.345.

; i = 1, . . . ,N t = 1, . . . ,T. (5.5)

The derivative of the ρ-function concerning the coefficients ˆ̄β is calculated to yield the Huber score
“influence” function (ψ). Second, the associated ψ-function may be expressed as follows:

ψHU(εit) =

εit, for |εit| ≤ 1.345,
1.345 · sign(εit), for |εit| > 1.345.

(5.6)

Third, by computing the ψ-function by the associated residuals, the weight function (w) is subsequently
generated, that is w (εit) = ψ(εit)/εit. Then the w-function can be expressed as follows;

wHU(εit) =


1, for |εit| ≤ 1.345,
1.345
|εit|

, for |εit| > 1.345.
(5.7)
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When |εit| > 1.345, the tail of the modified standard normal distribution is replaced by an exponential
distribution, and the Huber ρ-function can be thought of as the negative log-likelihood of that distri-
bution. Thus, it can be said that Huber’s robust M-estimator uses the least informative distribution
f (εit) = α−1exp{−ρ(εit)} as a “working likelihood” in the context of parameter estimations, see Wang
and Jiang [42].

5.2. Hampel’s M-estimator

Another possibility for the robust functions is Hampel’s three-part M-estimator. It’s a type of robust
statistical filter used to identify and handle outliers in a dataset it was introduced by Hampel in 1970.
The basic idea behind the Hampel function is to replace data points that are considered outliers with
more representative values, see Hampel [43]. The Hampel’s three-part ρ-function is defined by;

ρHM(εit) =


1
2ε

2
it, for |εit| ≤ 1.35,

(1.35)|εit| −
1
2 (1.35)2, for 1.35 < |εit| ≤ 2.70,

(1.35)(2.70) − (1.35)2

2 +
1.35(5.40−2.70)

2

[
1 −

(
5.40−|εit |

5.40−2.70

)]
, for 1.35 < |εit| ≤ 5.40,

(1.35)(2.70) − (1.35)2

2 +
1.35(5.40−2.70)

2 , otherwise.

(5.8)

The corresponding ψ-function can be expressed as follows;

ψHM(εit) =



εit, for |εit| ≤ 1.35,
1.35 · sign(εit), for 1.35 < |εit| ≤ 2.70,

(1.35)
5.40 − |εit|

5.40 − 2.70
· sign(εit), for 2.70 < |εit| ≤ 5.40,

0, otherwise.

(5.9)

The corresponding w-function is given by:

wHM(εit) =



1, for |εit| ≤ 1.35,
1.35
|εit|

, for 1.35 < |εit| ≤ 2.70,

1.35 · (5.40 − |εit|)
(5.40 − 2.70)|εit|

, for 2.70 < |εit| ≤ 5.40,

0, otherwise.

(5.10)

The ranges vary from 0 < 1.35 ≤ 2.70 < 5.40 < ∞, which is the slope of the redescending part
(εit∈(2.70, 5.40]) is set to −1/2. Note that ψHM (εit) can also be tuned to have a downward slope of
−1/3, see Koller and Stahel [44].

5.3. Tukey’s M-estimator

The Tukey bisquare function, also known as Tukey’s biweight function, is a loss function that is
used in robust statistics and was introduced by Beaton and Tukey in 1974. Tukey’s function is similar
to Huber’s function in that it demonstrates quadratic behavior near the origin. However, it is even
more insensitive to outliers because the loss incurred by large residuals is constant, rather than scaling
linearly as it would for the Huber function. The Tukey’s bisquare ρ-function is defined as;
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ρBI(εit) =


(4.685)2

6

1 −
[
1 −

(
εit

4.685

)2
]3
 , for |εit| ≤ 4.685,

(4.685)2

6
, for |εit| > 4.685.

(5.11)

The corresponding ψ-function can be expressed as follows:

ψBI(εit) =

εit

(
1 −

(
εit

4.685

)2
)2

, for |εit| ≤ 4.685,

0, for |εit| > 4.685.
(5.12)

The corresponding w-function is given by:

wBI(εit) =


[
1 −

(
εit

4.685

)2
]2

, for |εit| ≤ 4.685,

0, for |εit| > 4.685.
(5.13)

According to Beaton and Tukey [45], Tukey’s bisquare function is known for its smoothness and has
been widely and effectively applied across various fields.

5.4. Algorithm of the Proposed Robust M-Estimator

The algorithms required to obtain the proposed robust M-estimator of the RCR model, as stated in
Section 2, are introduced below.

Step 1. Estimate the RCR model coefficients using classical estimation methods ( ˆ̄βRCRCP, ˆ̄βRCRMG, and
ˆ̄βRCRS W), and test all assumptions.

Step 2. Calculate initial regression coefficients by the RCR model ( ˆ̄β
0
).

Step 3. Detect the presence of outliers in the dataset.
Step 4. Calculate the variance-covariance matrix of ( ˆ̄β).
Step 5. Similarly, as in Huber and Dutter [46], we can obtain a proposed robust M-estimator by minimiz-

ing;

1
T

T∑
t=1

ρ

(
yit −

∑K
k=1 βkixkit

Si

)
Si + θiSi, (5.14)

to obtain ˆ̄β
M

i a robust M-estimator of β̄i =
(
β̄1i, . . . , β̄ki

)′
and Si, for i = 1, . . . ,N. In practice,

we must compute ˆ̄β
M

i and scale estimator Si using simultaneous iterations. The minimization
problem in Equation (5.14) is solved by simultaneously calculating the following equations:

1
T

T∑
t=1

{
ψ

[
yit −

∑K
k=1 βkixkit

Si

]} T∑
t=1

xkit = 0, (5.15)

(
1
T

) T∑
t=1

{
η

[
yit −

∑K
k=1 βkixkit

Si

]}
= θi, (5.16)
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where ρ(εit), ψ(εit), η(εit),Si, and θi (for unit i = 1, . . . ,N) are as defined in Sections 4 and 5. A
sophisticated technique for simultaneously solving Equations (5.15) and (5.16) can be found in
Huber and Dutter [46]. Letting β̄v

i and Sv
i be trial values for β̄i and Si, then we obtain;

(Si
(ν+1))2 =

1
T − k

T∑
t=1

yit −

K∑
k=1

βkixkit

2

(5.17)

Step 6. Evaluate the robust estimate of σM
ii as follows;

σ̂M
ii =

1
(T − k)

·

∑T
t=1 ψ

(
εit
Si

)2
S2

i[
1
T

∑T
t=1 ψ

′
(
εit
Si

)]2 , (5.18)

where εit = yit −
∑K

k=1 βkixkit and ψ′(εit) = ∂
∂εit
ψ(εit).

Step 7. Calculate the weight values wε (εit) using weight functions.
Step 8. Estimate the robust RCR coefficients of ˆ̄βRCRHU , ˆ̄βRCRHM, and ˆ̄βRCRBI estimator based on wε (εit).
Step 9. Repeat the steps from 4 to 7 until the algorithm converges to obtain a convergent value of ˆ̄βRCRHU ,

ˆ̄βRCRHM, and ˆ̄βRCRBI .
Step 10. Test to determine whether explanatory variables have a significant effect on the response variable,

and evaluate the performance and results of the estimates using some criteria.

When comparing various robust estimators, two commonly utilized key metrics are efficiency and
BP. When the error distribution is precisely normal and there are no outliers, the efficiency is utilized
to calculate the relative efficiency of the robust estimates in comparison to the classical estimation
methods. The goal of BP is to quantify the percentage of outliers that an estimate can handle before
reaching infinity. Therefore, an estimator is more resilient the larger it’s BP. A BP cannot, intuitively,
be more than 0.5. As Yu and Yao [47] shows, the BP of the M-estimator is really BP =1/n→0.

6. Monte Carlo Simulation Study

In this section, a comprehensive Monte Carlo simulation study is conducted to evaluate the overall
performance of the proposed robust M-estimators. We performed a simulation study to compare the
performance of the classical estimation methods and the robust M-estimators. A Monte Carlo study
takes into account several factors that may impact the fitting of the RCR model and the results of the
various approaches.

6.1. Monte Carlo Simulation Algorithms

The datasets have been simulated using varying amounts of contamination. Therefore, the following
procedure for creating data served as the foundation for the Monte Carlo experiments:

yit =

5∑
k=1

βkixkit + εit, i = 1, . . . ,N; t = 1, . . . ,T. (6.1)

Using the general RCR assumptions as in Section 2, the Monte Carlo simulation study was con-
ducted by generating the model in Equation (6.1). The following serves as the foundation for the
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algorithms used in the Monte Carlo simulation study for the RCR model:

1. The explanatory variables,(xkit), were generated from a standard normal distribution with a mean
(µx) equal to zero and a fixed standard deviation (σx) equal to one, where the number of the
explanatory variables was k = 1, 2, 3, 4, and 5.

2. The coefficients, βki, were generated as in Assumption (A4): βi = β̄ + γi, where the vector of
coefficients β̄ = (1, 1, 1, 1, 1)′, and γi were generated from a multivariate normal distribution with
a mean equal to zero and a variance-covariance matrix Ψ = diag

{
ϕ2

k

}
; for k = 1, 2, 3, 4, and 5.

The values of ϕ2
k were chosen to be fixed for all k and equal to 0, 10, and 20. Take notice that

when ϕ2
k = 0, the coefficients are fixed, as in Abonazel [10].

3. The errors, εit, were generated from a normally distributed, independent of the xkit values, with a
mean equal to zero and a standard deviation (σεii) equal to 5 and 15, and maintained fixed across
all cross-sectional units.

4. For N and T values were selected to be 5, 10, 15, 20, and 25 to symbolize moderate and small
samples in terms of both the total number of individuals and the time dimension. Three distinct
sampling schemes, each containing four pairings of N and T , have been created in our simula-
tion to examine the sample performance for the various robust and non-robust estimators. The
following designs were created:

• Case I: N < T , the pairs are (N, T ) = (5, 10), (10, 15), (15, 20), or (20, 25).
• Case II: N > T , the pairs are (N, T ) = (10, 5), (15, 10), (20, 15), or (25, 20).
• Case III: N = T , the pairs are (N, T ) = (5, 5), (15, 15), (20, 20), or (25, 25).

5. The outlier’s percentage (τ%), were generated from a normal distribution with a mean equal to
(10 × IQR), where IQR is the interquartile range of (yit) values, with different percentages of
outliers (τ = 0%, 5%, 15%, and 25%) in the RCR model, as in [20, 48].

6. We performed 1000 replications for all experiments of the Monte Carlo simulation, and the find-
ings of every separate experiment are derived utilizing the same set of arbitrary integers. Also, to
increase the effectiveness of evaluating the classical estimation methods and robust M-estimators’
performances, we compute the total mean squared error (TMSE) for ˆ̄β;

TMSE =
1

1000

1000∑
l=1

( ˆ̄βl − β̄)′( ˆ̄βl − β̄) (6.2)

where ˆ̄βl is the estimated coefficient vector of β̄ in Equation (6.1) at l-th experiment of 1000 Monte
Carlo experiments, while β̄ is the vector of true coefficients.

6.2. Monte Carlo Simulation Results

The Monte Carlo simulation results are summarized in Tables 1- 6. The TMSE values of various
estimators are specifically shown in Tables 1-3 for σεii= 5, and in cases of N < T , N >T , and N= T , re-
spectively. While Tables 3-6 depict the situation of σεii= 15 for the same cases of N and T . According
to the results of the Monte Carlo simulation, we concluded the following:

1. The non-robust (RCRCP, RCRMG, and RCRSW) estimators’ performance was the worst of the
given estimators in the presence of an outlier problem, as expected.
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2. An increase in the value of the percentage of outliers (τ%) leads to higher TMSE values in most
scenarios.

3. In the absence of outliers (τ = 0%), the non-robust estimators (RCRCP, RCRMG, and RCRSW)
perform better than the proposed robust M-estimators (RCRHU, RCRHM, and RCRBI) across
all N, T , σεii, and ϕ2

k in the RCR model. Moreover, it can be noted that the RCRMG estimator
performs well even in small samples, while the RCRSW estimator performs well even in large
samples.

4. Increasing the value of (σεii), leads to an increase in TMSE values in all cases of the Monte Carlo
simulation.

5. In most cases, the values of TMSE increase as the value of (ϕ2
k) increases for the various scenarios

adopted in the simulation.
6. When outliers’ problem existed in the RCR model (i.e.,τ > 0%), the proposed robust M-

estimators (RCRHU, RCRHM, and RCRBI) were better than the non-robust (RCRCP, RCRMG,
and RCRSW) estimators, for all N, T , σεii, and ϕ2

k values.
7. The values of TMSE for the various scenarios adopted in the simulation decrease when N and T

are raised.
8. Finally, the proposed robust M-estimator (RCRBI) achieved the best performance among all given

estimators when the outlier problem existed in the RCR model in most situations of the Monte
Carlo simulation.

Graphically, we depend on another comparative performance level called relative efficiency (RE).
The RE values are given by dividing the TMSE of RCRCP by the TMSE of the non-robust (RCRMG,
and RCRSW) and the proposed robust M-estimators (RCRHU, RCRHM, and RCRBI). The RE values
of the estimates for each N and T are independent.

We report the results of RE values by 2D graphs are shown in Figures 1 and 2, respectively. Figure
1, indicates that when the absence of outliers (τ = 0%), the RCRMG estimator performs well even
in small samples, while the RCRSW estimator performs well even in large samples for each cross-
section (N) value. Moreover, the proposed robust M-estimator (RCRBI) RE values are greater than
those of different robust M-estimators (RCRHU and RCRHM) for each cross-section (N) value. Since
the proposed robust M-estimator (RCRBI) has the largest RE values, and as a result, we can conclude
that the proposed robust M-estimator (RCRBI) is more efficient and reliable than the other robust M-
estimators (RCRHU and RCRHM) for different N, T , τ% and ϕ2

k values.
However, when N and τ% increase, the efficiency of the proposed robust M-estimator increases. In

Figure 2, the efficiency of the proposed robust M-estimators (RCRHU, RCRHM, and RCRBI) is close,
but the RCRBI estimator is still more efficient than the different robust M-estimators.

7. Application of Energy Management Systems: Results and Discussion

Using a real energy dataset, we investigate the effectiveness of the non-robust estimators and pro-
posed robust M-estimators of the RCR model in this application. By examining the dependence of
carbon dioxide (CO2) emissions on nuclear, renewable, and non-renewable energy sources in the top 5
G20 countries between 2000 and 2024, this study investigates attitudes and opinions regarding nuclear
and renewable energy production technologies. China, the United States, India, Russia, and Japan are
the top 5 G20 countries in terms of carbon dioxide emissions, as shown in Figure 3. Large industrial
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Table 1. TMSE values for various estimators when N < T and σεii = 5.
τ = 0% τ = 5% τ = 15% τ = 25%

(N,T ) (5,10) (10,15) (15,20) (20,25) (5,10) (10,15) (15,20) (20,25) (5,10) (10,15) (15,20) (20,25) (5,10) (10,15) (15,20) (20,25)
ϕ2

k = 0
RCRCP 1.996 0.166 0.129 0.073 14.157 3.300 1.319 0.848 45.934 9.130 3.244 1.980 68.437 13.259 5.381 2.803
RCRMG 0.674 0.205 0.084 0.053 5.150 1.918 0.905 0.606 16.752 5.119 2.402 1.479 23.985 7.153 3.695 2.231
RCRSW 0.679 0.276 0.082 0.051 5.160 1.942 0.910 0.606 16.946 5.091 2.416 1.475 23.927 7.247 3.688 2.233
RCRHU 0.696 0.165 0.089 0.055 0.764 0.216 0.114 0.065 1.443 0.401 0.187 0.108 13.117 1.737 0.634 0.345
RCRHM 0.676 0.175 0.085 0.053 0.666 0.178 0.092 0.056 2.027 0.213 0.097 0.059 25.318 7.428 3.897 2.361
RCRBI 0.708 0.305 0.089 0.055 0.729 0.184 0.095 0.058 0.760 0.215 0.099 0.061 9.790 0.219 0.134 0.061

ϕ2
k = 10

RCRCP 4.605 0.851 0.380 0.204 37.358 8.044 3.284 2.107 117.928 21.369 7.881 4.787 161.872 30.947 12.512 6.805
RCRMG 1.671 0.532 0.282 0.154 13.058 4.803 2.235 1.492 40.402 12.217 5.994 3.481 57.288 16.563 8.669 5.476
RCRSW 1.679 0.532 0.281 0.148 13.109 4.855 2.249 1.495 40.950 12.203 6.021 3.473 56.889 16.772 8.663 5.469
RCRHU 1.715 0.574 0.295 0.166 1.876 0.684 0.355 0.192 4.432 1.160 0.622 0.309 28.676 4.735 1.916 1.066
RCRHM 1.649 0.551 0.282 0.152 1.625 0.582 0.292 0.157 7.260 0.622 0.350 0.179 60.678 17.052 9.011 5.657
RCRBI 1.799 0.612 0.304 0.170 1.783 0.615 0.319 0.172 2.282 0.627 0.351 0.183 22.320 1.702 0.403 0.220

ϕ2
k = 20

RCRCP 7.296 1.394 0.627 0.334 58.902 12.768 5.170 3.320 181.197 33.801 12.424 7.491 254.016 48.179 19.631 10.556
RCRMG 2.765 0.901 0.475 0.257 20.554 7.631 3.532 2.353 62.768 19.476 9.434 5.411 90.118 26.020 13.576 8.501
RCRSW 2.770 0.902 0.477 0.241 20.627 7.711 3.555 2.359 63.651 19.467 9.472 5.397 89.447 26.322 13.568 8.486
RCRHU 2.824 0.958 0.497 0.278 3.052 1.148 0.607 0.330 7.529 1.906 1.047 0.510 47.459 7.653 3.121 1.774
RCRHM 2.733 0.917 0.476 0.252 2.646 0.981 0.493 0.268 11.933 1.044 0.592 0.300 95.344 26.720 14.074 8.721
RCRBI 3.020 1.036 0.522 0.291 2.973 1.057 0.560 0.304 3.669 1.056 0.600 0.306 35.375 3.520 0.674 0.384

Table 2. TMSE values for various estimators when N > T and σεii = 5.
τ% τ = 0% τ = 5% τ = 15% τ = 25%

(N,T ) (10,5) (15,10) (20,15) (25,20) (10,5) (15,10) (20,15) (25,20) (10,5) (15,10) (20,15) (25,20) (10,5) (15,10) (20,15) (25,20)
ϕ2

k = 0
RCRCP 2.038 0.519 0.139 0.072 28.382 5.962 1.727 0.849 67.597 15.468 4.572 2.443 92.492 22.808 7.021 3.146
RCRMG 0.332 0.171 0.084 0.046 4.004 2.083 0.941 0.574 9.057 4.542 2.748 1.527 13.651 7.647 3.430 1.990
RCRSW 0.335 0.182 0.080 0.037 4.066 2.087 0.941 0.572 9.204 4.570 2.740 1.543 13.749 7.661 3.418 2.002
RCRHU 0.354 0.195 0.089 0.048 0.473 0.212 0.102 0.075 0.804 0.349 0.208 0.112 6.731 2.165 0.609 0.326
RCRHM 0.338 0.184 0.085 0.046 0.393 0.182 0.086 0.063 0.413 0.198 0.107 0.062 14.347 7.953 3.611 2.105
RCRBI 0.359 0.195 0.090 0.048 0.412 0.188 0.090 0.064 0.427 0.204 0.108 0.063 4.081 1.077 0.101 0.069

ϕ2
k = 10

RCRCP 4.293 1.299 0.403 0.253 68.770 14.750 4.350 2.013 155.045 37.360 10.959 5.751 217.119 56.690 17.572 7.571
RCRMG 0.871 0.461 0.293 0.174 9.543 5.005 2.465 1.386 20.756 11.340 6.533 3.698 31.988 18.648 8.667 4.724
RCRSW 0.888 0.477 0.282 0.161 9.739 5.019 2.466 1.384 21.047 11.388 6.513 3.729 32.205 18.683 8.649 4.746
RCRHU 0.957 0.503 0.303 0.176 1.384 0.668 0.351 0.216 2.230 1.171 0.613 0.348 16.498 6.253 1.935 0.949
RCRHM 0.895 0.474 0.289 0.170 1.150 0.564 0.288 0.190 1.272 0.649 0.347 0.189 33.571 19.140 8.993 4.885
RCRBI 1.041 0.532 0.310 0.183 1.192 0.619 0.306 0.197 1.206 0.609 0.309 0.175 10.528 1.878 0.404 0.222

ϕ2
k = 20

RCRCP 6.748 2.184 0.672 0.425 109.218 22.836 6.810 3.139 245.408 58.998 16.936 9.078 344.459 88.860 27.355 11.626
RCRMG 1.458 0.803 0.496 0.294 15.100 7.688 3.886 2.172 33.035 17.979 10.102 5.835 49.153 28.781 13.480 7.297
RCRSW 1.487 0.812 0.491 0.283 15.422 7.712 3.890 2.169 33.489 18.041 10.075 5.881 49.563 28.839 13.447 7.327
RCRHU 1.557 0.835 0.512 0.301 2.246 1.109 0.600 0.355 3.633 1.938 1.006 0.591 25.908 10.369 3.227 1.560
RCRHM 1.491 0.796 0.485 0.287 1.878 0.943 0.492 0.315 2.117 1.083 0.584 0.322 51.564 29.473 13.926 7.496
RCRBI 1.744 0.904 0.538 0.318 1.944 1.041 0.534 0.330 2.214 1.102 0.588 0.337 18.124 4.192 0.697 0.373
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Table 3. TMSE values for various estimators when N = T and σεii = 5.
τ% τ = 0% τ = 5% τ = 15% τ = 25%

(N,T ) (5,5) (15,15) (20,20) (25,25) (8,8) (15,15) (20,20) (25,25) (5,5) (15,15) (20,20) (25,25) (5,5) (15,15) (20,20) (25,25)
ϕ2

k = 0
RCRCP 2.606 0.206 0.095 0.056 31.400 2.602 1.183 0.622 85.356 5.641 2.869 1.411 111.300 8.901 3.830 2.502
RCRMG 0.474 0.117 0.057 0.040 4.590 1.329 0.795 0.468 13.501 3.302 1.997 1.003 17.897 4.447 2.537 1.762
RCRSW 0.475 0.118 0.057 0.040 4.626 1.321 0.794 0.469 13.566 3.307 2.006 1.002 18.111 4.472 2.534 1.764
RCRHU 0.512 0.119 0.058 0.041 0.537 0.157 0.080 0.051 1.410 0.250 0.153 0.078 10.441 0.804 0.439 0.266
RCRHM 0.489 0.117 0.057 0.040 0.426 0.128 0.066 0.043 1.274 0.136 0.079 0.045 18.640 4.699 2.695 1.855
RCRBI 0.535 0.120 0.059 0.041 0.459 0.131 0.068 0.045 0.558 0.142 0.080 0.047 8.409 0.141 0.076 0.053

ϕ2
k = 10

RCRCP 4.093 0.397 0.208 0.116 55.572 4.438 2.026 1.090 144.456 9.296 4.796 2.362 194.797 15.476 6.631 4.208
RCRMG 0.908 0.242 0.138 0.088 8.097 2.324 1.364 0.823 23.412 5.393 3.412 1.679 29.866 7.485 4.298 3.028
RCRSW 0.914 0.253 0.133 0.082 8.174 2.308 1.361 0.826 23.539 5.402 3.427 1.678 30.105 7.533 4.291 3.033
RCRHU 0.941 0.263 0.144 0.094 1.106 0.298 0.161 0.112 2.746 0.498 0.325 0.160 16.611 1.526 0.888 0.563
RCRHM 0.914 0.253 0.137 0.089 0.896 0.245 0.129 0.095 2.413 0.286 0.173 0.097 31.097 7.866 4.491 3.147
RCRBI 0.989 0.270 0.147 0.095 0.989 0.250 0.135 0.098 1.153 0.296 0.175 0.099 12.139 0.330 0.189 0.121

ϕ2
k = 20

RCRCP 5.828 0.590 0.310 0.177 78.565 6.124 2.853 1.544 193.886 12.958 6.607 3.288 287.534 21.636 9.154 5.814
RCRMG 1.341 0.384 0.213 0.136 11.546 3.260 1.928 1.169 31.177 7.536 4.734 2.337 43.543 10.466 5.930 4.199
RCRSW 1.349 0.388 0.206 0.131 11.665 3.237 1.924 1.173 31.384 7.547 4.755 2.335 43.918 10.534 5.922 4.206
RCRHU 1.382 0.400 0.224 0.146 1.641 0.449 0.244 0.170 3.959 0.742 0.480 0.245 24.473 2.230 1.305 0.848
RCRHM 1.353 0.384 0.211 0.137 1.351 0.369 0.196 0.144 3.355 0.438 0.260 0.150 45.352 10.970 6.161 4.331
RCRBI 1.487 0.416 0.232 0.150 1.474 0.380 0.209 0.151 1.732 0.455 0.263 0.155 17.699 0.512 0.303 0.185

Table 4. TMSE values for various estimators when N < T and σεii = 15.
τ% τ = 0% τ = 5% τ = 15% τ = 25%

(N,T ) (5,10) (10,15) (15,20) (20,25) (5,10) (10,15) (15,20) (20,25) (5,10) (10,15) (15,20) (20,25) (5,10) (10,15) (15,20) (20,25)
ϕ2

k = 0
RCRCP 17.966 2.742 1.158 0.656 116.144 25.988 10.270 6.463 350.290 70.449 25.303 15.073 504.585 101.476 41.223 21.532
RCRMG 6.069 1.477 0.755 0.478 40.265 14.875 7.049 4.672 124.580 39.100 18.798 11.220 181.313 55.403 27.991 16.963
RCRSW 6.109 1.490 0.756 0.457 40.367 15.064 7.089 4.668 126.037 38.883 18.913 11.186 180.586 56.077 27.931 16.983
RCRHU 6.260 1.584 0.805 0.495 6.877 1.941 1.023 0.584 12.988 3.605 1.686 0.971 104.732 15.589 5.703 3.104
RCRHM 6.080 1.486 0.764 0.480 5.992 1.602 0.829 0.512 17.509 1.919 0.895 0.535 190.962 57.478 29.590 17.940
RCRBI 6.374 1.577 0.805 0.496 6.559 1.560 0.854 0.509 6.841 1.934 0.885 0.543 80.718 2.895 1.205 0.548

ϕ2
k = 10

RCRCP 20.290 3.300 1.426 0.787 140.543 31.318 12.561 7.970 456.617 83.870 29.955 18.131 618.624 120.593 49.831 25.778
RCRMG 6.773 1.857 0.966 0.570 49.289 18.184 8.549 5.719 154.999 46.997 22.705 13.347 222.409 64.624 33.726 20.536
RCRSW 6.786 1.843 0.967 0.568 49.399 18.413 8.607 5.722 157.083 46.765 22.832 13.306 221.434 65.555 33.690 20.532
RCRHU 7.053 2.033 1.049 0.606 7.831 2.448 1.240 0.685 16.831 4.350 2.163 1.159 117.729 17.851 7.238 3.892
RCRHM 6.750 1.896 0.987 0.572 6.720 2.032 1.021 0.576 16.284 2.260 1.158 0.661 235.233 66.915 35.560 21.563
RCRBI 7.324 2.052 1.053 0.605 7.163 2.124 1.055 0.601 8.635 2.300 1.169 0.672 81.880 2.429 1.468 0.690

ϕ2
k = 20

RCRCP 22.864 3.848 1.680 0.917 167.312 36.373 14.902 9.210 533.504 96.345 34.888 21.306 717.488 139.850 57.152 30.031
RCRMG 7.731 2.123 1.165 0.669 58.258 21.366 10.140 6.582 178.777 54.669 26.501 15.595 258.211 74.813 38.894 23.987
RCRSW 7.745 2.207 1.161 0.662 58.389 21.621 10.213 6.589 181.365 54.398 26.644 15.553 256.875 75.832 38.855 23.968
RCRHU 8.017 2.448 1.259 0.718 8.869 2.918 1.476 0.809 19.763 5.130 2.612 1.355 134.506 20.953 8.451 4.556
RCRHM 7.723 2.308 1.190 0.671 7.672 2.435 1.220 0.675 26.079 2.663 1.417 0.778 273.701 77.431 40.930 25.086
RCRBI 8.255 2.517 1.269 0.717 8.141 2.542 1.267 0.708 10.239 2.705 1.423 0.794 103.299 2.970 1.740 0.848

Computational Journal of Mathematical and Statistical Sciences Volume 5, Issue 1, 1–30



18

Table 5. TMSE values for various estimators when N > T and σεii = 15.
τ% τ = 0% τ = 5% τ = 15% τ = 25%

(N,T ) (10,5) (15,10) (20,15) (25,20) (10,5) (15,10) (20,15) (25,20) (10,5) (15,10) (20,15) (25,20) (10,5) (15,10) (20,15) (25,20)
ϕ2

k = 0
RCRCP 18.344 4.669 1.252 0.652 232.193 46.510 13.435 6.657 496.529 119.073 35.075 18.727 712.808 173.866 53.450 24.008
RCRMG 2.986 1.630 0.752 0.414 31.568 16.061 7.306 4.493 67.943 34.420 20.692 11.645 103.149 57.945 25.970 15.010
RCRSW 3.014 1.637 0.743 0.402 32.044 16.098 7.303 4.486 68.996 34.628 20.627 11.761 104.111 58.112 25.869 15.105
RCRHU 3.189 1.753 0.803 0.435 4.257 1.911 0.922 0.674 7.236 3.143 1.872 1.006 54.824 19.343 5.477 2.932
RCRHM 3.043 1.652 0.769 0.415 3.537 1.638 0.773 0.563 3.984 1.779 0.960 0.556 107.862 60.249 27.290 15.889
RCRBI 3.234 1.757 0.808 0.435 3.710 1.688 0.808 0.579 3.839 1.836 0.968 0.565 36.441 9.056 0.910 0.620

ϕ2
k = 10

RCRCP 19.919 5.093 1.500 0.861 281.482 56.926 16.217 7.966 600.254 147.303 42.516 22.735 869.769 208.688 65.923 28.851
RCRMG 3.361 1.777 0.981 0.567 38.035 19.404 8.960 5.392 80.064 42.982 25.133 14.239 128.260 69.785 32.146 17.941
RCRSW 3.408 1.798 0.962 0.557 38.573 19.478 8.961 5.384 81.296 43.190 25.041 14.379 129.551 69.940 32.061 18.045
RCRHU 3.695 1.920 1.044 0.587 5.312 2.397 1.184 0.821 8.661 4.130 2.300 1.227 64.941 22.301 6.913 3.585
RCRHM 3.461 1.811 1.003 0.565 4.264 2.031 0.990 0.691 4.620 2.273 1.199 0.672 134.232 72.119 33.668 18.828
RCRBI 3.765 1.952 1.050 0.588 4.571 2.169 1.021 0.720 4.784 2.307 1.227 0.692 41.422 11.364 1.236 0.779

ϕ2
k = 20

RCRCP 22.092 5.830 1.762 1.045 326.764 67.178 18.933 9.338 695.060 171.753 48.712 26.107 984.759 244.148 77.223 34.031
RCRMG 3.880 2.050 1.193 0.698 44.246 22.910 10.585 6.352 92.545 50.944 28.831 16.424 146.611 81.209 37.814 21.121
RCRSW 3.942 2.076 1.193 0.687 44.967 22.988 10.586 6.343 93.952 51.191 28.723 16.577 148.199 81.393 37.724 21.242
RCRHU 4.282 2.225 1.262 0.717 6.289 2.853 1.432 0.972 10.092 4.992 2.723 1.466 69.727 26.065 8.192 4.255
RCRHM 4.012 2.090 1.211 0.692 5.052 2.420 1.191 0.820 5.500 2.732 1.442 0.796 153.993 83.805 39.499 22.113
RCRBI 4.463 2.271 1.269 0.720 5.461 2.607 1.230 0.856 5.691 2.773 1.473 0.819 37.843 10.369 1.545 0.934

Table 6. TMSE values for various estimators when N = T and σεii = 15.
τ% τ = 0% τ = 5% τ = 15% τ = 25%

(N,T ) (5,5) (15,15) (20,20) (25,25) (5,5) (15,15) (20,20) (25,25) (5,5) (15,15) (20,20) (25,25) (5,5) (15,15) (20,20) (25,25)
ϕ2

k = 0
RCRCP 23.453 1.858 0.854 0.504 245.171 20.407 9.146 4.880 632.772 43.183 22.223 10.615 864.609 67.671 28.842 18.971
RCRMG 4.264 1.057 0.511 0.362 36.438 10.421 6.185 3.636 103.511 25.292 15.454 7.439 136.110 33.738 18.823 13.156
RCRSW 4.277 1.063 0.504 0.351 36.715 10.370 6.172 3.645 104.015 25.343 15.512 7.432 137.734 33.932 18.795 13.176
RCRHU 4.606 1.068 0.522 0.371 4.832 1.410 0.718 0.459 12.694 2.253 1.375 0.702 85.778 7.237 3.953 2.396
RCRHM 4.405 1.051 0.516 0.362 3.821 1.148 0.593 0.389 9.732 1.224 0.712 0.404 141.752 35.629 19.998 13.914
RCRBI 4.814 1.077 0.530 0.372 4.129 1.182 0.608 0.403 5.020 1.275 0.717 0.420 69.250 1.270 0.688 0.480

ϕ2
k = 10

RCRCP 24.093 2.042 1.007 0.565 258.329 22.200 9.949 5.331 714.302 48.370 24.967 11.713 925.760 73.492 32.089 20.807
RCRMG 4.704 1.197 0.615 0.429 40.182 11.426 6.710 3.975 117.176 28.004 17.488 8.199 147.152 36.335 20.803 14.577
RCRSW 4.742 1.205 0.608 0.409 40.489 11.359 6.696 3.986 117.599 28.060 17.562 8.192 148.719 36.558 20.778 14.602
RCRHU 4.946 1.236 0.631 0.429 5.374 1.527 0.788 0.527 14.522 2.483 1.608 0.769 94.172 7.890 4.350 2.718
RCRHM 4.798 1.206 0.618 0.409 4.313 1.226 0.637 0.446 15.042 1.362 0.819 0.452 153.139 38.340 22.018 15.375
RCRBI 5.136 1.253 0.635 0.427 4.705 1.263 0.655 0.463 5.723 1.414 0.833 0.465 70.581 1.476 0.801 0.557

ϕ2
k = 20

RCRCP 28.555 2.614 1.347 0.746 331.105 28.230 12.745 6.787 880.369 59.609 30.716 14.787 1154.869 93.885 40.987 26.430
RCRMG 6.008 1.602 0.860 0.552 50.667 14.638 8.543 5.099 143.373 34.561 21.767 10.411 183.401 46.232 26.603 18.702
RCRSW 6.062 1.610 0.852 0.541 51.163 14.536 8.529 5.114 144.039 34.635 21.857 10.402 184.908 46.496 26.563 18.735
RCRHU 6.260 1.669 0.886 0.588 7.090 1.953 1.033 0.709 18.178 3.223 2.125 1.018 111.844 10.035 5.742 3.624
RCRHM 6.066 1.611 0.857 0.556 5.747 1.577 0.828 0.604 17.580 1.806 1.105 0.606 190.640 48.671 27.979 19.585
RCRBI 6.441 1.708 0.896 0.589 6.354 1.614 0.853 0.623 7.483 1.876 1.122 0.623 80.351 2.041 1.136 0.762
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Figure 1. Relative efficiency for various estimators when σεii = 5.
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Figure 2. Relative efficiency for various estimators when σεii = 15.

Computational Journal of Mathematical and Statistical Sciences Volume 5, Issue 1, 1–30



21

sectors, high energy consumption, and reliance on fossil fuels are some of the reasons why these na-
tions routinely rank at the top. The International Energy Agency (IEA) [49], BP Statistical Review of
World Energy [50], and World Bank Development Indicators [51], an online database for G20 coun-
tries, were the sources of annual data from 2000 to 2024. With 125 observations for each of the top 5
G20 countries, the balanced panel data are matched by year and country. For more details about the
dataset, see Alghamdi et al. [52].

Figure 3. The top 5 G20 countries with the highest CO2 emissions, source [53].

According to historical data, the energy sector, specifically the generation of heat and electricity,
is the largest contributor to world emissions, accounting for 76% of total greenhouse gas emissions.
Figure 4, provides important information about the increase and decrease in carbon emissions over
the past 20 years in the top 5 G20 countries. The fact that nations like China and India have been on
an upward trajectory since the year 2000 is noteworthy. However, the USA has experienced a slight
increase or continuous drop since 2010, even if it is still at number two on the list. Additionally, there
is evidence that almost all nations saw a reduction in emissions during the first year of the COVID-19
epidemic, which was 2019–2020. This was probably brought on by the worldwide lockdown, which
led fewer people to travel, businesses to close, and less fuel to be consumed worldwide.

In our energy management systems application, the response variable (yit) is the total CO2 emis-
sions, while the explanatory variables include: the non-renewable energy (X1,it), the renewable energy
(X2,it), and the nuclear energy (X3,it). In this application, we will use the algorithm described in Section
5 to obtain the results of the proposed robust M-estimators. The descriptive statistics for the variables
taken into consideration in this investigation are shown in Table 7. From the results, it can be noted
that for all variables, the Positive skewness (skewness > 0) and high kurtosis (kurtosis > 3) suggest
heavy-tailed distributions with outliers. Also, from Jarque-Bera test results, all variables have p-values
of 0.0000, confirming that the null hypothesis of normality is rejected at any significance level. Fur-
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Figure 4. Annual CO2 emissions for the top 5 G20 countries, source [54].

thermore, as indicated by Table 8, the insurance dataset does not exhibit a multicollinearity problem,
since all the Variance Inflation Factor (VIF) values for all variables are less than 5 [55]. Figure 5,
displays the description of the study variables. It is clear that some bubbles stand out due to their size
or position; these could represent outliers. Based on the correlation coefficient results shown in Figure
6, it can be observed that the highest correlation exists between X1,it and X3,it, whereas the lowest cor-
relation is found between yit and X3,it, while yit and X3,it have a very weak and non-significant negative
correlation.

Table 7. Descriptive statistics for all variables.

Statistics yit X1,it X2,it X3,it

Mean 3922.2770 37.4023 19.9649 255.9833
Median 2021.2710 18.8090 3.0678 150.3420
Maximum 14524.4800 205.5945 160.1453 890.7809
Minimum 994.8629 -2.9667 0.0680 -14.5179
Std. Dev. 3423.0310 50.1913 34.7762 297.3365
Skewness 1.3986 1.9368 2.3943 1.2021
Kurtosis 4.0498 5.7124 8.1843 2.8728
Jarque-Bera 46.4942 116.4651 259.4185 30.1915
Probability 0.0000 0.0000 0.0000 0.0000
Number of observations 125 125 125 125
VIF — 3.9660 3.0474 4.3716

In the R programming language, we used the “lmtest” package to get the likelihood ratio test (LRT)
statistic for testing the random coefficients of the RCR model, see Baltagi [2]. The results of the LRT
showed that the alternative hypothesis (H1) was accepted, meaning that the coefficients are random.
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Since the LRT results chisq = 13.932, df = 6, with p-value < 0.001.

Figure 5. Description of the study variables.

Figure 7, indicates that the residuals of the RCR model are not normally distributed. This is con-
firmed by Shapiro-Wilk test results of the residuals: W-statistic = 0.81867 with P-value < 0.0001.
Since the p-value less than 0.05, then reject H0, this means that the residuals are not assumed to be
normally distributed. Moreover, we will check the outliers by plotting the Cook’s distance and boxplots
of the CO2 emissions for each top 5 G20 countries, as in Figure 8, the values are plotted to identify
outlier points, the outlier points identified by the Boxplots appeared to be the same as was observed
in the leverage values (hii) as is evident from the Cook’s distance. This figure shows that the energy
management systems panel dataset contains outlier values.

7.1. Non-robust RCR Estimators Results

The existence of outlier values in this dataset of energy management systems has been confirmed.
The RCR model’s coefficients will then be estimated using non-robust estimators (RCRCP, RCRMG,
and RCRSW); Table 8 displays the estimation outcomes. For each variable in the estimation results
using non-robust estimators, Table 8, shows the estimated coefficient values and standard errors. These
results imply that the RCRSW estimator has the lowest standard errors. We came to the conclusion
that the RCRSW estimate outperforms the RCRCP and RCRMG estimators based on the data in Table
8. When compared to the RCRCP and RCRMG estimators, it is evident that the RCRSW estimator
has the lowest values of all goodness-of-fit metrics, as indicated by the mean absolute error (MAE),
mean square error (MSE), root of mean square error (RMSE), Akaike’s information criterion (AIC),
and Bayesian information criterion (BIC).

7.2. Proposed Robust RCR M-Estimator Results

The robust RCR model was employed using the proposed robust M-estimators (RCRHU, RCRHM,
and RCRBI) in an effort to get around the outlier problem, which violates the RCR Model’s assump-
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Figure 6. Correlation coefficients of the study variables.

Table 8. Non-robust RCR estimators results.

Variables RCRCP RCRMG RCRSW

Coefficient Std. Error Coefficient Std. Error Coefficient Std. Error

Intercept 3456.7244*** 404.5349 1300.5662*** 352.5499 1465.6321*** 321.8854
X1,it -11.8757 12.0087 35.8617*** 9.3844 17.3237** 8.2138
X2,it -24.3222** 10.9126 -25.1939*** 7.4555 -15.7299** 6.8863
X3,it 5.4508** 2.6291 -3.1673 2.1215 -6.3068*** 1.7754

Goodness-of-fit Measures

MAE 2398.4426 1958.5027 1835.6429
MSE 994841.7526 127496.9248 110882.2819
RMSE 997.4175 357.0671 332.9899
AIC 2391.3527 1438.3658 1262.5682
BIC 2405.4936 1504.2843 1318.9531

Note: * p < 0.1, ** p < 0.05, *** p < 0.01.
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Figure 7. Residual analysis of the energy management systems dataset.

Figure 8. Cook’s distance and boxplots of the CO2 emissions for the top 5 G20 countries of
the energy management systems dataset.
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tions, and to get good results for examining the three key variables influencing CO2 emissions in the
top 5 G20 countries. The results are displayed in Table 9.

Table 9, demonstrates that most independent variables for the proposed M-estimator are signifi-
cant because their p-values are less than 5%. These findings show that the proposed M-estimator
(RCRHU, RCRHM, and RCRBI) has the smallest standard errors when compared to non-robust
(RCRCP, RCRMG, and RCRSW) estimators. Furthermore, as compared to the M-estimator (RCRHU,
RCRHM, and RCRBI) estimator, the RCRBI approach has the lowest values of all goodness-of-fit in-
dices, MAE, MSE, RMSE, AIC, and BIC values. This indicates that, as compared to the non-robust
estimators (RCRCP, RCRMG, and RCRSW) approaches, the robust M-estimation method increased
the RCR model’s significance and efficiency. We may conclude that the proposed robust M-estimator
is the best estimation technique for the energy management systems dataset.

Furthermore, the RCRBI estimate results in Table 9 indicate that CO2 emissions will rise by
18.8775% for each percentage point of energy consumption that is classified as non-renewable for
all five of the top 5 G20 countries. Additionally, all five of the top 5 G20 countries saw a 17.5483%
reduction in CO2 emissions for every 1% increase in their use of renewable energy. Likewise, all
five of the top 5 G20 countries will see a 1.8645% decrease in CO2 emissions for every 1% rise in
nuclear energy usage. Across the top 5 G20 countries, the results show that nuclear and renewable en-
ergy consumption are considerably inversely correlated with CO2 emissions, but non-renewable energy
consumption is significantly positively correlated with CO2 emissions.

Table 9. Proposed robust RCR M-estimator results.

Variables RCRHU RCRHM RCRBI

Coefficient Std. Error Coefficient Std. Error Coefficient Std. Error

Intercept 1770.9111*** 163.7294 1185.0288*** 102.743 986.1811*** 86.9888
X1,it 10.3421** 4.8603 17.3763*** 3.0563 18.8775*** 2.5823
X2,it -8.4061** 3.9482 -15.8953*** 3.8586 -17.5483*** 3.2669
X3,it -2.0523* 1.0641 -1.9012** 0.6677 -1.8645*** 0.5654

Goodness-of-fit Measures

MAE 1042.7174 993.6138 941.8425
MSE 82901.2482 76207.6931 70448.0936
RMSE 287.9258 276.0574 265.4206
AIC 972.3394 925.1749 901.8626
BIC 989.4817 939.3165 913.0435

Note: * p < 0.1, ** p < 0.05, *** p < 0.01.

8. Conclusion and Recommendations

In the RCR model, the problem of outliers causes the classical estimators to be inefficient. In this
case, the robust RCR reduces the effects of the outlier values. Therefore, in this paper, we proposed
a novel robust M-estimator with different objective functions and compared these with the non-robust
(RCRCP, RCRMG, and RCRSW) estimator. To examine the performance of the estimators, we con-
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ducted a Monte Carlo simulation study and a practical empirical application to Energy Management
Systems. The simulation result shows that, in case there are no outliers (τ = 0%), the classical estima-
tors are better, while the robust M-estimators have lower performance. However, it can be noted that the
RCRMG estimator performs well even in small samples, while the RCRSW estimator performs well
even in large samples. While in the presence of outliers, the proposed robust M-estimators (RCRHU,
RCRHM, and RCRBI) are more effective compared to the classical estimators (RCRCP, RCRMG, and
RCRSW) regardless of whether the coefficients of regression are random or fixed. Also, the findings
of the energy management systems application show that proposed robust M-estimators (RCRHU,
RCRHM, and RCRBI) are better than non-robust estimators (RCRCP, RCRMG, and RCRSW) with
outlier values. In addition, the RCRBI estimator is more efficient than RCRHU and RCRHM. We
conclude by advising practitioners to estimate the regression parameters of the RCR model using the
novel robust M-estimator if an outlier problem arises. For academics and policymakers engaged in
scientific research and development, this study is anticipated to yield valuable information. Addition-
ally, it makes the statistical techniques for analyzing the panel data better, especially when handling
outliers. Future work will concentrate on expanding the model’s scalability and suitability for con-
temporary large-scale panel datasets by utilizing penalized robust estimates, shrinkage techniques, and
distributed computing frameworks to manage high-dimensional settings. To address the issue of out-
liers in the RCR and generalized RCR models, we also want to create new robust estimators, such as
the robust S-estimator, the robust MM-estimator, and others.
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