

Citation: Egypt. *Acad. J. Biolog. Sci. (D-Histology and histochemistry) Vol.17(2) pp87-101(2025)* **DOI:** 10.21608/EAJBSD.2025.458967

Egypt. Acad. J. Biolog. Sci., 17(2):87-101 (2025)

Egyptian Academic Journal of Biological Sciences D. Histology & Histochemistry ISSN 2090 – 0775 http://eaibsd.journals.ekb.eg

Possible Protective Role of Selenium on Adverse Effect of Bisphenol A on the Adrenal Cortex in Adult Male Albino Rats: A Histological, Immunohistochemical, and Biochemical Study

Waleed A. Abd Algaleel*; Heidar H. Abdo; Mai M. El-Sayed Badran; and M. D. A. Elsayed

Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Egypt.

E-mail: walid.abdelgaleel@karalainy.edu.eg

ARTICLE INFO

Article History

Received:8/9/2025 Accepted:14/10/2025 Available:18/10/2025

Keywords:

Bisphenol A (BPA), selenium (Se), adrenal cortex injury, oxidative stress, apoptosis.

ABSTRACT

Background: Bisphenol A (BPA) is a common endocrine disruptor that induces oxidative stress and apoptosis in endocrine organs. The adrenal cortex, essential for stress hormone regulation, may be particularly vulnerable. Selenium, a potent antioxidant, has been proposed as a protective agent. Methods: Twenty-one adult male albino rats were randomized into three groups (n = 7 each): control, BPA (10 mg/kg/dav). and BPA + sodium selenite (0.5 mg/kg/day). Adrenal tissues were evaluated histologically, immunohistochemically (caspase-3), and biochemically (Malondialdehyde, Glutathione Peroxidase, Adrenocorticotropic Hormone corticosterone). Morphometric analyses quantified cortical thickness, collagen deposition, and apoptotic index. Results: BPA exposure disrupted adrenocortical architecture, with cytoplasmic vacuolations, capsular fibrosis, and significant reduction in zone thickness (ZG: $68.14 \pm 1.91 \, \mu m$; ZF: $256.54 \pm 12.51 \mu m$; ZR: $100.61 \pm 6.52 \mu m$, p < 0.001). Caspase-3 expression and collagen deposition increased markedly (23.41 \pm 2.54%). Biochemically, BPA elevated MDA (167.23 \pm 3.84) and ACTH (385.03 \pm 6.44), while reducing GPx (59.97 \pm 4.55) and corticosterone (51.07 \pm 1.38). Selenium co-treatment significantly reversed these effects: cortical thickness improved, caspase-3 and fibrosis were reduced (3.02 \pm 0.63%), MDA decreased (61.07 \pm 3.02), and GPx activity increased (112.11 \pm 3.37). Hormone levels normalized toward control values. Conclusion: Se Supplementation significantly attenuates BPA-induced oxidative stress, fibrosis, and apoptosis in the adrenal cortex, thereby restoring both structural and functional integrity. These findings support selenium's potential as a protective agent against endocrine disruptor-induced adrenal injury, although further studies on dosing, duration, and clinical translation are warranted.

INTRODUCTION

One of the most common environmental contaminants and a famous endocrine disruptor is bisphenol A (BPA), which is used in polycarbonate plastics such as water and baby bottles. It is also present in polymers used in dental materials and food packaging (Chapin *et al.*, 2008).

BPA is a potential endocrine-disrupting chemical (EDC), because it can strongly interfere with the function of endocrine glands and can affect many organs in the body.

Citation: Egypt. Acad. J. Biolog. Sci. (D-Histology and histochemistry) Vol.17(2) pp87-101(2025)

The effects of its toxicity have been discussed in several experimental and clinical studies (Sartain and Hunt, 2016). Current knowledge regarding the impact of BPA on the histological, morphometric, and immunehistochemical characteristics of the adult adrenal cortex remains scarce (Medwid, 2017). The cellular toxicity of BPA is primarily linked to oxidative stress, driven by excessive production of harmful free radicals. Reactive oxygen species (ROS) play a pivotal role in regulating normal cellular functions; however, when their levels rise, they can damage DNA, RNA, and proteins, ultimately leading to cellular dysfunction and apoptosis (Huang et al., 2018; Rahman et al., 2019).

The oxidative stress of BPA results in functional disruption and cell apoptosis with caspase 3 acting as a key player (Li *et al.*, 2009).

BPA intake can also induce structural changes in the adrenal cortex, such as loss of normal arrangement of cells, increased vacuolization of cytoplasm, nuclear pyknosis, thickening of the capsule, and reduction of the thickness of all three layers (Bushra and Hassanin, 2023).

Selenium (Se) has shown antioxidant properties against oxidative stress. It inhibits the generation of free radicals to alleviate damage to cells (Ozturk and Ozdemir, 2023).

Sodium selenite is a synthetic form of selenium that is used to promote growth and prevent selenium deficiency diseases. Selenium compounds such as sodium selenite are generally absorbed from the gastrointestinal tract (Fordyce, 2012). Selenium has a wide antioxidant effect on different body organs (Dominiak *et al.*, 2016).

Although Se has several advantages, there is limited literature investigating its effects on BPA-induced adrenal damage. The aim of this study is to fill in this gap by looking into whether Se can reduce the damage produced by BPA in the adrenal gland by modulating

the levels of oxidative stress. Specifically, we examined the histopathological,

immunohistochemical, and molecular changes in adrenal tissue. By elucidating the BPA's cytoprotective mechanisms, this research could pave the way for targeted therapies against BPA poisoning and other oxidative stress-related disorders

MATERIALS AND METHODS

1. Chemicals:

A- Bisphenol A (BPA): In the form of powder dissolved in distilled (EL-Gomhoria Company, Egypt). Each milliliter contained 10 mg/kg (Olukole *et al.*, 2019).

B- Sodium selenite (SS): In the form of powder dissolved in distilled water. Each milliliter contained 0.5 mg/kg (Boyacioglu *et al.*, 2021).

2. Animals and Ethical Approval:

This experiment was carried out following the ethical guidelines of the Laboratory Animal Committee at Kasr El-Ainy and with prior approval from the Institutional Review Board (Approval No.: CU-III-F-2-23). A total of 21 adult Sprague-Dawley albino rats, weighing between 180 and 220 g, were used. The animals were supplied by the Animal House, Faculty of Medicine, Cairo University, and were allowed a two-week acclimatization period before the initiation of the study. They were maintained in cages under controlled laboratory and environmental conditions, with free access to standard rat chow, pellets, and water.

3. Experimental Design and Grouping:

Twenty one rats were randomly allocated into three groups: (a) control group, (b) BPA group that received 10 mg/kg/day BPA *via* gastric gavage for 4 weeks (Olukole et al., 2019), and (c) Se group that received sodium selenite 0.5 mg /kg /day orally in the form of suspension *via* gastric gavage (Ahmed Zaki *et al.*, 2021; Boyacioglu *et al.*, 2021) for 4 weeks.

4.Humane Endpoints Monitoring and Specimen Collection:

At the end of the 4-week experiment, blood samples were collected from the rat tail vein after applying local anesthetic cream for serological studies. Then the rats were sacrificed by intraperitoneal injection of phenobarbitone sodium (50 mg/kg) after application of local anesthetic cream on abdominal skin (Khafaga et al., 2019). Then the abdomen was opened through a ventral midline incision, periadrenal fat was removed, and the adrenal glands of both sides were rapidly dissected out. The right adrenal gland was fixed in 10% formol saline solution for the histological and immunohistochemical studies, while the left gland was preserved in phosphate buffered solution for biochemical studies.

5. Serological Study:

Serum Levels of ACTH and Corticosterone:

Plasma ACTH levels measured using the chemiluminescence technique with an **IMMULATE** automated analyzer (DPC, Los Angeles, CA, USA), and results were reported as pg ACTH/ml of plasma. Serum corticosterone concentrations were assessed with a commercial ELISA kit (Immunodiagnostic System Ltd, Boldon, UK), and values were expressed as ng CORT/ml of serum (Xi et al., 2011).

6. Biochemical Study:

A-Tissue Level of Malondialdehyde (MDA):

MDA, a marker of lipid peroxidation, was measured as an indicator of oxidative stress in tissues. The assay kits were obtained from Bio Diagnostics (Egypt). The procedure involved mixing 0.5 ml of tissue homogenate with 2.5 ml of 20% trichloroacetic acid and 1 ml of 0.6% thiobarbituric acid (TBA). The mixture was then heated in a boiling water bath for 30 minutes and rapidly cooled. Subsequently, 4 ml of n-butanol was used to extract the resulting chromogen. The absorbance of the organic layer was read

at 530 nm using a spectrophotometer, with butanol as the blank. MDA concentration was calculated based on a standard curve (Onaolapo *et al.*, 2017)

B- Determination of Adrenal Glutathione Peroxidase (GPx) Activity:

Enzymatic activity in the tissue homogenate was assessed by evaluating the inhibition of nitroblue tetrazolium reduction by superoxide anions generated through the xanthine/xanthine oxidase system. One unit of GPx activity was defined as the enzyme quantity required to produce 50% inhibition in 1 ml of reaction mixture per gram of tissue protein, with results expressed as U/g of tissue (Ahmed *et al.*, 2021).

7. Histological (Light microscopic) Study:

Tissue samples from all groups were fixed in 10% formol saline solution, followed by dehydration in graded alcohol, clearing in xylene, and paraffin embedding. Five µm sections were cut and stained with hematoxylin and eosin for routine histological evaluation (Avwioro, 2010) and with Masson's trichrome to demonstrate collagen (Ross and Pawlina, 2011).

8. Immunohistochemical Staining: Caspase-3: (Sadek *et al.*, 2021):

Deparaffinized tissue sections were rehydrated in distilled water and incubated with 3% H2O2. To minimize nonspecific binding, the sections were blocked with 1.5% goat serum in PBS and then incubated with the primary antibody for 45 minutes at room temperature. Immunoreactivity was assessed using a rabbit monoclonal anticaspase-3 antibody (#ab184787, 1:1000, Abcam, Cairo, Egypt).

9. Quantitative Morphometric Study: A. Measurement of the Thickness of Adrenocortical Zones:

The mean thickness of the three classical zones of the adrenal cortex was measured in 7 serial H&E-stained sections in all groups (Fig. 1).

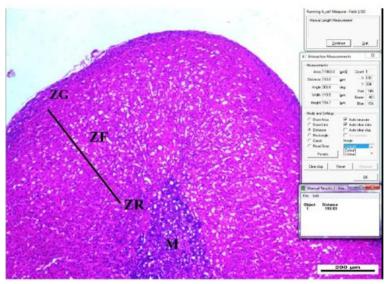


Fig (1): Representative image from the analyzer monitor showing measurements of the adrenal cortex zones' thickness in a section of the adrenal gland from an adult male rat. (Hx &E \times 100)

B. Measurement of the Area Percentage of Collagen Fibers in Masson's Trichrome Stained Sections:

This was observed at the X40 objective lens in 7 non-overlapping fields

for each adrenal cortex in all groups. Measurements were generated by a binary image for the blue color in the stroma (Fig. 2).

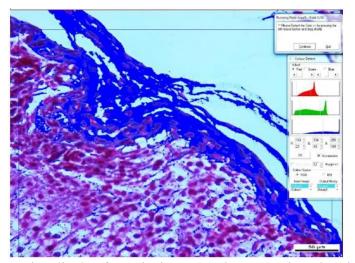


Fig. (2): Representative display from the image analyzer monitor showing measurement of the area percentage of collagen fibers in a Masson's trichrome stained section of the adrenal gland from an adult male rat. Collagen fibers appear in blue and are delineated within the standard measuring frame. (Masson's trichrome x400).

C. Measurement of the area percentage of immuno-expression in caspase-3-stained sections:

This was done in 7 fields per adrenal cortex by analyzing the

percentage of tissue labeling in each field and the absorbance of caspase-3 immuno-positive cells (Fig. 3).

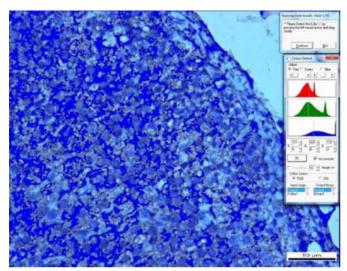


Fig (3): Representative display from the image analyzer monitor showing the measurement of the area percentage of caspase-3 immunoreactivity in a section of the adrenal gland from an adult male rat. Caspase-3—positive areas are masked in blue for quantification in the immunostained sections. (caspase-3 x400)

Statistical Analysis:

Data were tabulated, analysed using SPSS, version 26 and represented as means and standard deviations. Group comparisons were performed using one-way ANOVA followed by Tukey's post-hoc test. All analyses were two-tailed. Significance was recorded at a p-value \leq 0.05.

RESULTS

1.Adrenal Cortex Structure Revealed by H&E Staining:

The BPA group showed the highest severity of inflammation and maximum decrease in the mean of the thickness of ZG, ZF, and ZR, which was 68.14 ± 1.91 , 256.54 ± 12.51 , and 100.61 ± 6.52 µm. These findings confirm that BPA induces significant adrenal cortex injury. The BPA + Se group exhibited a considerable reduction in adrenal cortex damage severity compared to the BPA group. In the Se group, inflammation decreased, and the thin capsules were restored. These reductions imply that Se administration reduces BPA-induced adrenal cortex (Figs 4,5).

2. Masson's trichome results:

As proved by the Mean \pm SD of area % of collagen fibers In the BPA-treated group was 23.41 \pm 2.54, p<0.001, showed marked evidence of thickening of the capsules with lamellar

separation of the capsular collagen bundles while use of Se lead to restoration of the thin capsules with fine thin collagen fibers arranged between the cells of the ZG and ZF, as evidenced by the mean of area percent was 3.02 ± 0.63 . (Figs 6,7)

3. Immunohistochemical Assessment of Caspase-3:

As proved by Mean \pm SD of Caspase 3 area% in the BPA-treated group (23.41 \pm 2.54, p < 0.001), there was marked increase caspase-3 in immunoreactivity, with widespread brown cytoplasmic staining evident in alveolar and bronchial epithelial cells indicating increased apoptotic activity triggered by BPA-induced oxidative stress. Co-treatment with Se significantly attenuated this expression to 3.02 ± 0.63 with a visibly reduced staining intensity and distribution, suggesting a protective, anti-apoptotic effect of selenium. (Figs. 6,8). In both Se -only and control groups, caspase-3 expression remained low and comparable $(3.02 \pm 0.63 \% \text{ vs. } 2.10)$ $\pm 0.28\%$), insuring the non-toxic profile under basal physiological Se conditions (Figs. 6,8).

4.Oxidative Stress Markers:

Exposure to BPA led to a marked increase in MDA level with Mean \pm SD of tissue level of 167.23 \pm

3.84 with downregulation in the GPx level with Mean \pm SD of tissue level of 59.97 \pm 4.55, serum ACTH and Corticosterone serum levels in BPA group showed a Mean \pm SD of 385.03 \pm 6.44, 51.07 \pm 1.38 respectively indicating significant oxidative stress and impaired antioxidant defense. Treatment with Se significantly decreased MDA level with Mean \pm SD of tissue level of 61.07 \pm 3.02 with a visible elevation of GPx level with

Mean \pm SD of tissue level of 112.11 \pm 3.37.

5- Serum Levels of ACTH and Corticosterone:

Treatment of Se significantly decreased the serum level of ACTH (216.47 \pm 4.91) and increased serum level of corticosterone (12.31 \pm 1.01) compared to the control group (Figs. 9,10).

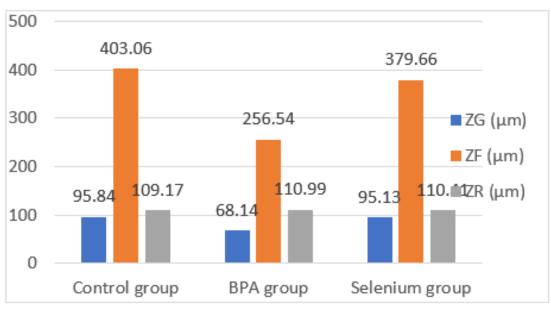
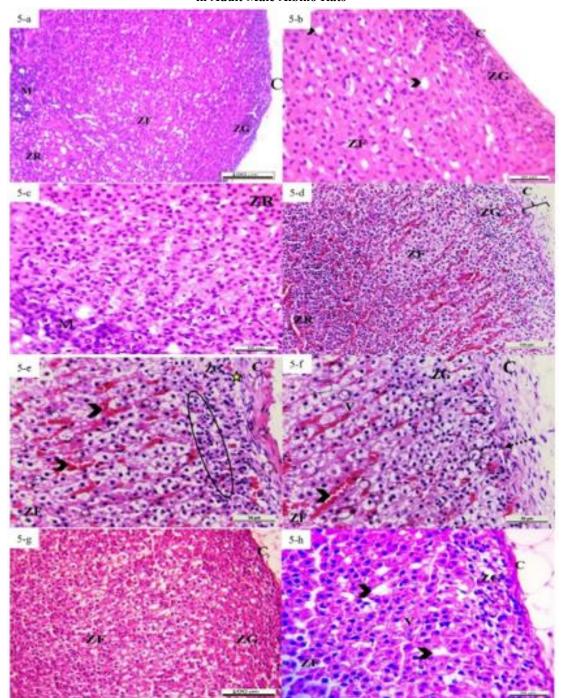



Fig. 4 Bar chart shows mean thickness of ZG, ZF and ZR in all groups.

Fig. 5 The morphology of the adrenal cortex in various groups. Fig. 5- a-c shows normal adrenal gland structure in the control group: the capsule (C), The medulla (M) is also observed, with the regular polyhedral cells of ZG and ZF arranged as regular columns of oval cells separated by blood sinusoids (arrowheads). Fig. 5-d-f, the BPA-affected group shows disruption of part of the covering capsule (C) and the three cortical layers, thickening of the covering capsule (C) and its separation from ZG (yellow star); marked disorganization of ZG cells; and congested blood sinusoids between the ZF cells (arrowheads). Notice: A narrow zone of closely packed cells of zona intermedia is seen between the ZG and ZF (marked area), marked congestion (arrowhead), and vacuolation (V) in ZG and ZF layers. Fig 5- g, h Selenium group shows a thin fibrous connective tissue capsule (C) and three layers of adrenal cortex with restoration of the normal arrangement of the cells of ZG and adjacent ZF with minimal vacuolations (V). The intercellular blood sinusoids show no congestion (arrowheads) (ZG: zona glomerulosa, ZF: zona fasciculata, and ZR: zona reticularis). The scale bar measures 100 m in (Fig. 5-a, g), 50 m in (Fig. b-f, h), and H&E.

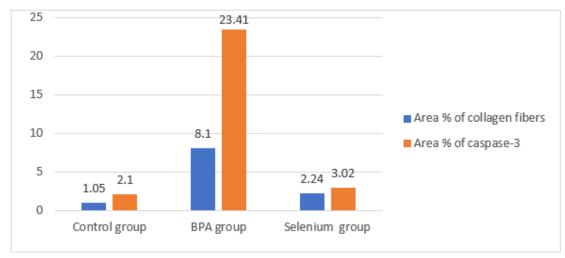
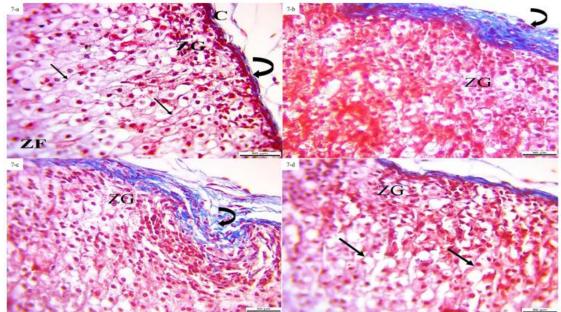
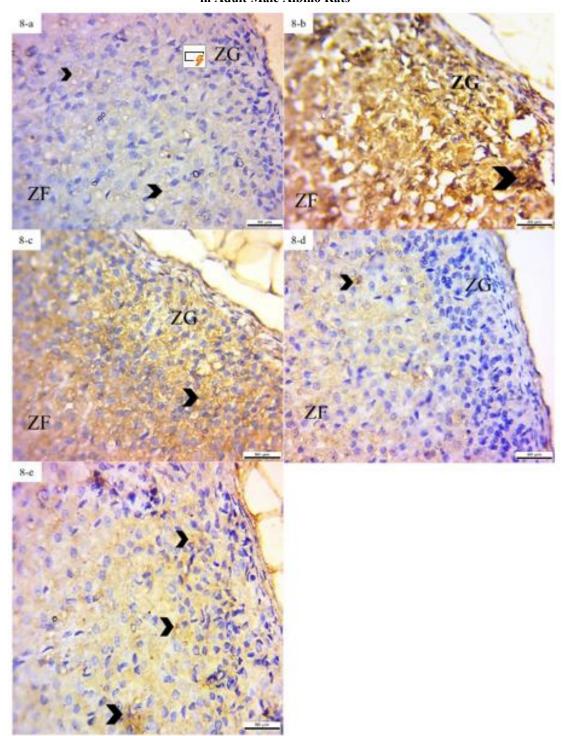




Fig. 6 presents a bar chart that displays the mean percentage area of collagen fibers stained with Masson's trichrome and the levels of caspase-3 across all groups.

Fig. 7 The collagen fiber distribution in the adrenal cortex in various groups: Fig 7a—The control group shows the capsule (C) with a fine network of collagen fibers (curved arrow). The capsule (C) exhibits a regular arrangement of parallel collagen fibers that intervene between the columns of ZF cells, as indicated by the arrows. Fig. 7b, c BPA group shows marked thickening and lamellar separation of collagen fibers of the capsule (curved arrow). Fig 7 d- Selenium group shows a thin, regularly arranged capsule with fine parallel collagen fibers intervening between columns of zona glomerulosa (ZG) cells (arrows). The scale bar measures 50 m, Masson's trichrome.

Fig. 8 The caspase 3 immune expression in the adrenal cortex in various groups: Fig. 8a—The control group shows weak caspase 3 immune expression in the ZG and ZF in the form of very light brown coloration (arrowheads). Fig. 8b—The BPA group shows marked caspase 3 immune expression (arrowhead) in the ZG and ZF. Figs. c and d—The selenium group exhibits a mild to moderate immune reaction for caspase 3 (arrowhead) in the ZF, which is more pronounced than in the ZG. The scale bar measures 50 m, Caspase-3

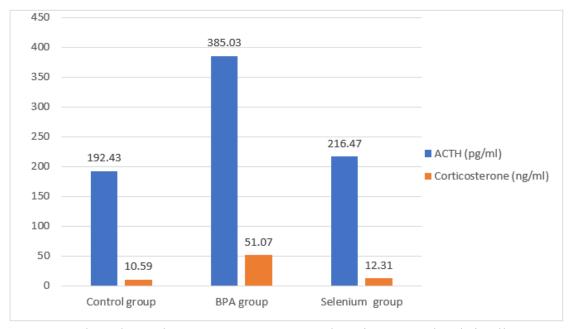


Fig. 9 Bar chart shows the mean serum ACTH and corticosterone levels in all groups

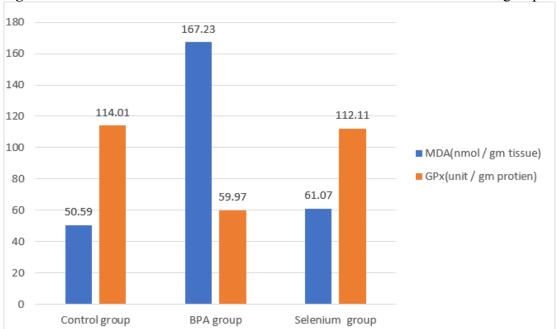


Fig 10. Bar chart shows the mean tissue levels of MDA and GPx in the different groups

DISCUSSION

In this study, BPA exposure significant histological, produced biochemical, and immunohistochemical alterations in the adrenal cortex of adult male albino rats. These changes included distortion of the normal zonal organization, cytoplasmic vacuolations. capsular thickening with lamellar separation of collagen fibers, increased caspase-3 immunoreactivity. Collectively, these findings confirm that BPA induces oxidative stress-mediated structural damage and apoptosis within the adrenal cortex. Se supplementation effectively ameliorated these alterations, highlighting its protective, antioxidant, and anti-apoptotic properties.

Adrenocortical Structural Changes:

BPA disrupted the normal arrangement of cells in all cortical zones (ZG, ZF, and ZR), with nuclear pyknosis, vacuolation, and karyolysis, consistent with apoptotic cell death. These findings agree with previous studies reporting that oxidative stress induced by BPA promotes adrenal cell degeneration and apoptosis. Vacuolation observed in the ZG and ZF likely represents an early stage of degeneration, as described by

Laast *et al.* (2014). Congested and dilated blood sinusoids, observed in the BPA group, may be explained by excessive ACTH release and prostaglandin-mediated vascular changes, in line with Zidan and Elnegris (2013). Se cotreatment reduced both vacuolation and congestion, supporting its protective role reported by Hassan *et al.* (2016) and Abdallah (2018).

Capsular and Fibrotic Alterations:

One of the remarkable findings was capsular thickening and irregular collagen deposition after BPA exposure, which mirrors previous reports on endocrine disruptor-induced fibrosis (Bushra & Hassanin, 2023). Since the adrenal capsule plays a critical role in cell renewal and zonation (Vidal et al., 2016), its disruption may impair cortical regeneration. Se administration restored normal capsule architecture, with thin parallel collagen fibers, suggesting an antifibrotic effect. This aligns with recent reports on Se's ability to inhibit fibroblast activation and multi-organ fibrosis (Xiao et al., 2025).

Apoptotic Pathways:

Immunohistochemical analysis showed a marked increase in caspase-3 expression following BPA exposure, reflecting activation of the intrinsic apoptotic pathway. Similar findings were reported by Jiang et al. (2020) and Omran et al. (2017), confirming BPA's ability to trigger apoptosis through excessive ROS generation. Se treatment significantly caspase-3 attenuated expression, consistent with its known anti-apoptotic effects (Albrakati et al., 2021; Mehanna et al., 2022; Zhang et al., 2024). These results reinforce the Se confers concept that cellular protection by limiting oxidative stress and blocking downstream apoptotic signaling.

Biochemical Findings:

The biochemical assays further support the histological observations. BPA exposure significantly elevated MDA levels, indicating enhanced lipid peroxidation, and reduced GPx activity, reflecting impaired antioxidant defenses.

These findings are consistent with earlier studies demonstrating oxidative degradation of adrenal phospholipids by BPA (Yiin et al., 2000; Anjum et al., 2011). Se supplementation reversed these changes by lowering MDA levels enhancing GPx activity, and agreement with previous reports of its ROS-scavenging and enzyme-stabilizing effects (Zaki et al., 2020; Ahmed Zaki et al., 2021).

Hormonal Dysregulation:

BPA exposure was associated elevated serum ACTH with corticosterone levels, reflecting hypothalamic-pituitary-adrenal (HPA) axis hyperactivation. Similar results were described by Olukole et al. (2019), who attributed such changes to disruption of adrenal steroidogenesis. Se treatment normalized these hormone levels. suggesting a modulatory effect on HPA axis regulation. These findings align with previous studies demonstrating Se's ability to attenuate stress responses and endocrine disruption (Al-Amoudi, 2018; Khalaf et al., 2019).

Study Implications and Limitations:

Taken together, the present results provide evidence that Se mitigates BPA-induced adrenal toxicity reducing oxidative stress, preventing downregulating capsular fibrosis. caspase-3-mediated apoptosis, and restoring hormonal balance. This highlights Se as a promising protective agent against endocrine disruptor-related adrenal injury.

However, the study limitations: the sample size was small, long-term effects were not assessed, and mechanistic pathways beyond oxidative apoptosis stress and (such mitochondrial function or signaling molecules) were not investigated. Moreover, extrapolation to humans should be cautious, as BPA exposure levels, Se bioavailability, and adrenal physiology differ across species.

Conclusion

This study demonstrates that BPA induces significant structural and functional injury in the adrenal cortex

through oxidative stress, fibrosis, and caspase-3-mediated apoptosis. Supplementation effectively attenuated these alterations by restoring cortical architecture, reducing collagen deposition, normalizing oxidative stress markers, and modulating ACTH and corticosterone levels.

These findings suggest that Se confers a protective effect against BPA-induced adrenal toxicity and may represent a potential adjunct in mitigating endocrine disruptor—related oxidative damage. However, translation to clinical practice requires further investigation, particularly regarding dose optimization, long-term safety, and pharmacokinetic profiles in humans.

These experimental findings may pave the way for translational studies evaluating Se as an adjunctive protective strategy in humans exposed to endocrine disruptors.

List of Abbreviations

ACTH	Adrenocorticotropic Hormone
BPA	Bisphenol A
CORT	Corticosterone
EDC	Endocrine Disrupting Chemical
GPx	Glutathione Peroxidase
HPA	Hypothalamic-Pituitary-Adrenal
MDA	Malondialdehyde
NOAEL	no-observed-adverse-effect level
ROS	Reactive Oxygen Species
Se	Selenium
SS	Sodium Selenite
ZF	Zona Fasciculata
ZG	Zona Glomerulosa
ZR	Zona Reticularis
ZU	Zone of Undifferentiated cells
	(Zona intermedia)

Declarations:

Ethics Approval: The study was conducted in accordance with ethical standards for animal research and approved by the Institutional Animal Care and Use Committee (IACUC) under protocol number CU-III-F-2-23.

Competing Interests: The authors declare that they have no competing interests

Author contribution: All authors contributed equally to this work and approved the final version of the manuscript. Data Availability Statement: Data supporting the findings of this study are available from the corresponding author upon reasonable request

Funding Information: This study was self-funded and received no external financial support.

Acknowledgment: Not applicable. **REFERENCE**

Abdallah, E. A. (2018). Potential protective role of selenium on acrylamide-induced oxidative stress in rats: A biochemical, histopathological study. The Egyptian Journal of Forensic Sciences and Applied Toxicology, 18(3), 95-113.

Ahmed Zaki, M. S., Haidara, M. A., Abdallaa, A. M., Mohammed, H., Sideeg, A. M., & Eid, R. A. (2021). Role of dietary selenium in alleviating bisphenol A toxicity of liver albino rats: Histological, ultrastructural, and biomarker assessments. *Journal of Food Biochemistry*, 45(5), e13725.

Al-Amoudi, W. M. (2018). Antioxidant activity of selenium on bisphenol-induced apoptosis and testicular toxicity of rats. *African Journal of Pharmacy and Pharmacology*, 12(21), 278-289.

Albrakati, A., Alsharif, K. F., Al Omairi, N. E., Alsanie, W. F., Almalki, A. S., Abd Elmageed, Z. Y., ... & Kassab, R. B. (2021). Neuroprotective efficiency of prodigiosins conjugated with selenium nanoparticles in rats exposed to chronic unpredictable mild stress is mediated through antioxidative, anti-inflammatory, apoptotic, and neuromodulatory activities. International Journal of Nanomedicine, 8447-8464.

Anjum, S., Rahman, S., Kaur, M., Ahmad, F., Rashid, H., Ansari, R. A., & Raisuddin, S. (2011).

- Melatonin ameliorates bisphenol A-induced biochemical toxicity in testicular mitochondria of mouse. *Food and chemical toxicology*, 49(11), 2849-2854.
- Avwioro, O.G. (2010): Histochemistry and tissue pathology, principles and techniques. *Journal of North American of medical sciences*, (8):319-376.
- Boyacioglu, M., Gules, O., & Sahiner, H. S. (2021). Protective effect of sodium selenite on 4-nonylphenol-induced hepatotoxicity and nephrontoxicity in rats. *Biological Trace Element Research*, 199(8), 3001-3012.
- Bushra, R. R., & Hassanin, H. M. (2023). The Possible Protective Role of Vitamin C against Bisphenol-A-Induced Structural Changes on the Adrenal Cortex of Adult Male Albino Rat: Histological, Immunohistochemical and Morphometric Study. Egyptian Journal of Histology, 46(3), 1418-1430.
- Chapin, R. E., Adams, J., Boekelheide, K., Gray Jr., L. E., Hayward, S. W., Lees, P. S., McIntyre, B.S., Portier, K. M., Schnorr, T. M., Selevan, S. G., Vandenbergh, J. G., Woskie, S. R. (2008). NTP-CERHR expert panel report on the reproductive and developmental toxicity of bisphenol Defects Birth a. Research. Part В, Developmental and Reproductive Toxicology, 83, 157–395.
- Dominiak, A., Wilkaniec, A., & Adamczyk, A. (2016): Selenium in the therapy of neurological diseases. Where is it going?. *Current neuropharmacology*, 14(3): 282-299.
- Fordyce, F. M. (2012). Selenium deficiency and toxicity in the environment. In *Essentials of medical geology: Revised*

- *edition* (pp.375-416).Dordrecht: Springer Netherlands.
- Hassan, K. A., Ahmed, M. A., Hassanein, K. M., & Waly, H. (2016). Ameliorating effect of vitamin C and selenium against nicotine induced oxidative stress and changes of p53 expression in pregnant albino rats. *Journal of Advanced Veterinary and Animal Research*, 3(4), 321-331.
- Huang, F. M., Chang, Y. C., Lee, S. S., Ho, Y. C., Yang, M. L., Lin, H. W., & Kuan, Y. H. (2018). Bisphenol A exhibits cytotoxic genotoxic potential oxidative stress-associated mitochondrial apoptotic murine pathway in macrophages. Food and Chemical Toxicology, 122, 215-
- Jiang, W., Zhao, H., Zhang, L., Wu, B., & Zha, Z. (2020). Maintenance of mitochondrial function by astaxanthin protects against bisphenol A-induced kidney toxicity in rats. *Biomedicine & Pharmacotherapy*, 121, 109629.
- Khafaga AF, Noreldin AE, Taha AE (2019). The adaptogenic antiageing potential of resveratrol against heat stress-mediated liver injury in aged rats: Role of HSP70 and NF-kB signalling.

 Journal of Thermal Biology; 83:8-21.
- Khalaf, A. A., Ahmed, W. M. S., Moselhy, W. A., Abdel-Halim, B. R., & Ibrahim, M. A. (2019). Protective effects of selenium and nano-selenium on bisphenol-induced reproductive toxicity in male rats. *Human & experimental toxicology*, 38(4), 398-408.
- Laast, V. A., Larsen, T., Allison, N., Hoenerhoff, M. J., & Boorman, G. A. (2014). Distinguishing cystic degeneration from other aging lesions in the adrenal cortex of Sprague-Dawley rats. *Toxicologic pathology*, 42

- (5), 823-829.
- Li, Y. J., Song, T. B., Cai, Y. Y., Zhou, J. S., Song, X., Zhao, X., & Wu, X. L. (2009). Bisphenol A exposure induces apoptosis and upregulation of Fas/FasL and caspase-3 expression in the testes of mice. *Toxicological Sciences*, 108(2), 427-436.
- Medwid, S. (2017). Effects of Prenatal Bisphenol A Exposure on Adrenal Gland Development and Steroidogenic Function (Doctoral dissertation, The University of Western Ontario (Canada)).
- Mehanna, E. T., Khalaf, S. S., Mesbah, N. M., Abo-Elmatty, D. M., & Hafez, M. M. (2022). Antioxidant, anti-apoptotic, and mitochondrial regulatory effects of selenium nanoparticles against vancomycin induced nephrotoxicity in experimental rats. *Life Sciences*, 288, 120098.
- Olukole, S. G., Lanipekun, D. O., Ola-Davies, E. O., & Oke, B. O. (2019). Melatonin attenuates bisphenol A-induced toxicity of the adrenal gland of Wistar rats. Environmental Science and Pollution Research, 26, 5971-5982.
- Omran, B., Abdallah, E., & Abdelwahab, M. (2017). Study of probable toxic effects of bisphenol A & the protective role of vitamin E on testes and prostate of adult male albino rats. Ain Shams Journal of forensic medicine and clinical toxicology, 29(2), 7-18.
- Onaolapo, A. Y., Onaolapo, O. J., and Nwoha, P. U. (2017). Methyl aspartylphenylalanine, the pons and cerebellum in mice: An evaluation of motor, morphological, biochemical, immunohistochemical and apoptotic effects. *Journal of Chemical Neuroanatomy*, 86, 67-77.

- Ozturk Kurt, B., & Ozdemir, S. (2023). Selenium heals the chlorpyrifosinduced oxidative damage and antioxidant enzyme levels in the rat tissues. *Biological Trace Element Research*, 201(4), 1772-1780.
- Rahman, M. S., Kang, K. H., Arifuzzaman, S., Pang, W. K., Ryu, D. Y., Song, W. H., ... & Pang, M. G. (2019). Effect of antioxidants on BPA-induced stress on sperm function in a mouse model. *Scientific reports*, 9(1), 10584.
- Ross, M. H. and Pawlina, W. (2011): Histology. A Text and Atlas with correlated cell and molecular biology; 6th ed: 327-330, 402–407.
- Sadek MT, El-Abd SS, Ibrahim MA (2021). Effect of Chronic Unpredictable Mild Stress on Adrenal Cortex of Adult Rat and The Possible Protective Role of Licorice Extract: A Histological and Immunohistochemical Study. Egyptian Journal of Histology, 44(4): 887-901.
- Sartain, C. V., & Hunt, P. A. (2016). An old culprit but a new story: bisphenol A and "NextGen" bisphenols. Fertility and sterility, 106(4), 820-826.
- Vidal V, Sacco S, Rocha S, da Silva F, Panzolini C, Dumontet T, et al. 2016. The adrenal capsule is a signaling center controlling cell renewal and zonation Rspo3. *Genes & Development*, 30:1389-1394.
- Xi, W.; Lee, C. K. F.; Yeung, W. S. B. et al. (2011): Effect of perinatal and postnatal bisphenol A exposure to the regulatory circuits at the hypothalamus—pituitary—gonadal axis of CD-1 mice. *Reproductive toxicology*, 31(4), 409-417.
- Xiao, X., Huang, G., Yu, X., & Tan, Y. (2025). Advances in Selenium and Related Compounds Inhibiting Multi-Organ

Possible Protective Role of Selenium on Adverse Effect of Bisphenol A on the Adrenal Cortex 101 in Adult Male Albino Rats

- Fibrosis. Drug Design, Development and Therapy, 19, 251-265.
- Yiin, S. J., Sheu, J. Y., & Lin, T. H. (2000). Lipid peroxidation in rat adrenal glands after administration cadmium and role of essential metals. *Journal of Toxicology and Environmental Health Part A*, 62(1), 47-56.
- Zaki, M. S. A., Haidara, M. A., Heitham, M., Asim, A., Massoud, E. E. S., & Eid, R. A. (2020). Antioxidant activity of selenium on bisphenol-induced apoptosis and testicular toxicity of Albino rats. *International*

- Journal of Morphology, 38(6), 1786-1796.
- Zhang, S., Zhang, G., Wang, P., Wang, L., Fang, B., & Huang, J. (2024). Effect of selenium and selenoproteins on radiation resistance. *Nutrients*, 16(17), 2902.
- Zidan, R. A., & Elnegris, H. M. (2013). A histological study on the effect of noise on the adrenal cortex of adult male guinea pigs and the possible role of combined vitamins (A, C, and E) supplementation. Egyptian Journal of Histology, 36(4), 857-868.