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Abstract 
 

Dental caries is a disease that is common worldwide. Dental caries remains one of the most prevalent 

oral diseases globally, necessitating accurate and early detection to enable timely interventions and 

preserve tooth structure. This study presents a lightweight and task-specific Convolutional Neural 

Network (CNN) architecture, called DentalNet-Lite, designed for the multiclass classification of 1200 

RGB intraoral images into three diagnostic categories: normal tooth, early dental caries, and advanced 

dental caries. The model DentalNet-Lite is a custom CNN designed for the automated detection of 

dental caries. The model was trained and evaluated, benchmarked against five pretrained CNNs: 

MobileNetV2, DenseNet121, ResNet50V2, Xception, and InceptionResNetV2. employing accuracy, 

precision, recall, and F1-score as evaluation criteria. DentalNet-Lite achieved a test accuracy of 

99.07%, exceeding all competing approaches while maintaining low computing complexity, hence 

demonstrating its suitability for real-time, resource-limited clinical applications. 

Keywords: Dental Caries, Deep Learning, Convolutional Neural Networks (CNN), AI in Dentistry, Early 

Detection. 

 

1. INTRODUCTION 
 

Dental caries is a disease that is common worldwide [1]. Dental caries is considered as one of the most 

prevalent oral diseases worldwide, impacting approximately 60–90% of school-aged children and a large 

proportion of adults[2]. According to the World Health Organization (WHO), dental caries (tooth decay) is 

defined as the degradation of the enamel layer of the tooth due to acids generated by bacterial action on 

sugars, thereby categorizing it as one of the most prevalent non-communicable diseases (NCDs). This 

suggests that the decline in dental health will ultimately result in an increased incidence of tooth loss [3–5]. 

Conventional techniques for detecting dental caries predominantly depend on clinical assessments 

conducted by dentists, using instruments such as dental probes, mirrors, and radiographic imaging (e.g., 

panoramic X-rays or color intraoral Images RGB). Although these procedures are helpful in numerous 

instances, they encounter considerable constraints, such as reliance on the examiner's expertise, imaging 

quality, and probable tissue overlap that may mask lesions. These factors increase the risk of diagnostic 

errors or inconsistencies, underscoring the need for more objective, efficient, and accurate diagnostic 
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approaches.  If it can be detected early, minimally invasive treatment is possible, which can contribute to 

tooth substance preservation more conservatively and effectively [6]. Therefore, this technique was 

recommended as a minimally invasive treatment by preempting surgical intervention among some non-

cavitated caries [7]. Artificial intelligence (AI)  techniques and, particularly, deep neural networks have 

recently brought about a significant transformation in the field of medical diagnosis and treatments, 

surpassing human performance in various instances through the analysis and extraction of key features from 

images [8–10]. The use of a convolutional neural network (CNN), a deep learning (DL) algorithm, is a very 

efficient method for image data processing [11–12]. With the application of CNN, the development of 

medical decision support systems has become a topic of interest in both the medical academia and industry 

[13] . This trend is also true for the field of dentistry. Given the crucial impact of oral health on individuals' 

overall quality of life, dentistry plays a vital role in the digestive process and in enhancing an individual's 

facial aesthetics and self-assurance [14]. Radiological interpretation and visual and tactile examination are 

the most common ways for dental professionals to diagnose caries. These procedures are mostly based on 

clinical experience, which means that different persons may obtain different results; hence, there arises a 

need for an artificial intelligence-based diagnostic system to support clinical decision-making and assist in 

the training of new dentists. Deep learning, a type of artificial intelligence (AI), has recently become a 

feasible approach to automatically and reliably discover tooth decay by looking at dental images. 

 

2. RELATED WORK 
 

Several studies from the last few years have looked into how convolutional neural networks (CNNs) can 

be used to find and classify the dental caries. Priyanka A et al. (2025) performed a systematic analysis of 14 

studies that used AI methodologies for predicting Early Childhood Caries (ECC) through diverse colored 

image datasets. Significant outcomes comprise: 587 smartphone color images using SVM, achieving 

88.76% accuracy. 3,000 periapical radiographs   using CNN, achieving 89% accuracy. 2,417 intraoral 

photographs using CNN, achieving 93.3% accuracy. 45 primary molar images with occlusal caries using 

ANN, achieving 99% accuracy. 226 extracted teeth with near-infrared imaging using ResNet50, resulting 

in an accuracy of 74%. Kaggle dataset images using a Convolutional Neural Network, attaining an accuracy 

of 71.43%. The review affirms that deep learning, particularly CNN and ANN, has superior diagnostic 

efficacy utilizing colored dental images, with significant potential for individualized and early detection of 

caries in children[15]. Syed Muhammad Faizan Ahmed et al. (2025) presented the inaugural publicly 

available annotated intraoral image dataset aimed at AI-based dental caries detection. The collection 

comprises 6,313 colored photographs (RGB) of individuals aged 10 to 24, gathered in Mithi, Sindh, 

Pakistan, and annotated useing software, validated by professional dentists. The annotations were 

transformed into YOLO, COCO, and PASCAL VOC formats. Five AI models were assessed, with 

YOLOv8s attaining the superior performance (mAP = 0.841 at 0.5 IoU). Images were captured from diverse 

intraoral views, using both cheek retractors and without. The dataset seeks to enhance automated caries 

detection with deep learning algorithms [16]. Rouhbakhshmeghrazi et al. (2024) performed a study using 

500 RGB color images obtained through an intraoral camera for six months.  The research employed the 

YOLOv8 object detection algorithm, with the YOLOv8s variant achieving the best performance: (84%) 

precision, (79%) recall, and (85% mAP@0.5). The research emphasizes the efficacy of color images for the 

early identification of tooth caries and the prospective establishment of a mobile oral healthcare system[17]. 

In 2024, Shima Minoo et al. conducted a study for the classification of dental diseases: Calculus, Tooth 

Discoloration, and Caries using 3392 RGB images. The authors employed three CNN architectures: VGG16, 

VGG19, and ResNet50.ResNet50 attained the highest performance with an accuracy of 95.23%, indicating 

its potential as the optimal model for clinical dental diagnostics[18]. Sohee Kang et al. (2024) performed a 

study using 2,682 color (RGB) intraoral images for the identification of dental caries. The authors utilized 

deep learning models such as ResNet50, Inceptionv3, and Inception-ResNetv2. The model that worked best, 

Inception-ResNetv2, got an accuracy of 94.4%.The work shows how deep CNN models could help diagnose 
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caries using (RGB) intraoral images[19].Yanshan Xiong et al. (2024) conducted a pilot study using (1020) 

color (RGB) intraoral images from (762) volunteers to simultaneously detect dental caries and fissure 

sealants. They developed a deep learning model called ToothNet on a revised version of the YOLOX 

framework. at the image level ,ToothNet achieved an AUC of 92.50% for caries detection and 90.20% for 

sealants . At the tooth level, its F1-score for caries detection was (81.00%), outperforming a dentist with (1 

year) of experience. The research illustrates the efficacy of multi-task deep learning models in intelligent 

dentistry diagnosis[20]. Carneiro et al. (2024) looked closely at how deep learning can be used in dental 

radiography, focusing on how to determine, separate, and classify teeth, caries, and restorations. Of the 393 

papers that were located, 68 were good enough to be included. This means that AI is growing better at 

spotting problems in dental health imaging [21].Niha Adnan et al. (2024) developed a based on artificial 

intelligence mobile applicationfor dental caries detection using 7,465 colored intraoral images. The 

YOLOv5s model was trained, achieving 90.7% precision, 85.6% sensitivity, and an F1-score of 88.0%, 

outperforming junior dentists. A Detection Transformer was additionally fine-tuned for comparative 

analysis. The annotated dataset and application of explainable AI facilitated a comprehensive evaluation. 

The research indicates that this methodology may facilitate the evaluation of caries indices at the population 

level [22]. Parsa ForouzeshFar et al. (2024) performed a study to diagnose dental caries using 713 bitewing 

radiographic images collected from the Samin Maxillofacial Radiology Center in Tehran. The dataset 

consisted of 6032 pictures after preprocessing. The authors used four CNN architectures: VGG16, VGG19, 

DenseNet121, and ResNet50. Among them, VGG19 had the best accuracy of (93.93%). These results 

support the feasibility of developing AI-based diagnostic tools for automatic caries diagnosis from 

radiographs, potentially implementable through mobile applications or cloud-based systems[23]. 

Researchers Pérez de Frutos et al, (2024) used (13.887)  bitewing radiographs from the (HUNT4) Oral 

Health Study to train and test three deep learning architectures YOLOv5, Retinanet (Resnet50) and 

EfficientDet (D0, D1) to find proximal caries.  The YOLOv5 model showed the highest performance, 

achieving a mean average precision (mAP) of (0.647), F1-score of (0.548), and false negative rate of (0.149), 

which is the best, The study demonstrates that AI can effectively assist in caries diagnosis [24]. Toshiyuki 

Kawazu et al. (2024) conducted  study using domain-specific transfer learning to detection dental caries 

from (1094) intraoral images and (50) simulated panoramic images. A CNN architecture with three 

convolution and max-pooling layers was developed. Diagnostic performance on intraoral images reached 

(84.6%) (C0), (90.6%) (C1), and (88.6%) (C2). When tested on simulated panoramic images, the model 

achieved (75.0%) (C0), (80.0%) (C1), (80.0%) (C2), with an overall accuracy of (78%). The results suggest 

that domain-specific transfer learning is a promising approach to build diagnostic models with limited 

datasets and reduced training time[25]. Faruk Oztekin et al. (2023) introduced an explainable deep learning 

model for the detection of dental caries using 562  panoramic radiograph images. The research evaluated 

three pre-trained convolutional neural network models: EfficientNetB0, DenseNet121, and ResNet50. The 

highest performing model, ResNet50, attained an accuracy of 92.00%, a sensitivity of 87.33%, and an F1-

score of 91.61%.The model provides a promising and interpretable method for the early and reliable 

detection of caries [26].Divakaran and Vasanth (2023) conducted a study for the automatic classification of 

dental caries using (150) dental X-ray images. The Inception-based model was the best of the four models 

tested: ResNet, Deeper GoogLeNet, and Mini VGGNet. It had the highest accuracy (98%), making it highly 

suitable for clinical applications [27]. Mai Thi Giang Thanh et al. (2022) explored the use of deep learning 

for the detection of smooth surface dental caries through smartphone images. trained and tested four deep 

learning models (YOLOv3, Faster R-CNN, RetinaNet, and SSD) on a dataset of 1902 colored intraoral 

images taken with an iPhone 7 from 695 participants.  The diagnosis of caries according to ICCMS 

guidelines. YOLOv3 had the best sensitivity for cavitated lesions at 87.4%, and Faster R-CNN had the 

lowest at 71.4%. while performance dropped for visually non-cavitated lesions (36.9% and 26%). Specificity 

exceeded (86%) for cavitated cases and (71%) for non-cavitated.These results indicate that smartphone-

based AI systems may be beneficial for early dental screening[28]. However, photographic images captured 

by an intraoral camera or smartphone (RGB), having the advantage of convenience and safety, are currently 
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used for the application of an artificial intelligence (AI) model to screen dental caries in many studies [29–

33] and demonstrated significant improvements in performance with various techniques [34–35]. 

 

 

 

3. METHODOLOGY 
 

This research aims to develop and evaluate a custom-designed Convolutional Neural Network (CNN) 

model for classifying RGB intraoral images into three diagnostic categories: normal teeth, early dental 

caries, and advanced dental caries. The proposed architecture, called as DentalNet-Lite, is a simplified and 

lightweight convolutional neural network derived from standard convolutional structures .It is not presented 

as a groundbreaking architectural innovation but rather as an enhanced, task-specific baseline model aimed 

at enhancing computing efficiency and diagnostic performance. DentalNet-Lite is built with the goal of 

balancing high classification accuracy and low computational complexity, making it suitable for deployment 

in both clinical and mobile settings. To benchmark its effectiveness, the model's performance is evaluated 

against five prominent pretrained CNN architectures: MobileNetV2, DenseNet121, ResNet50V2, Xception, 

and InceptionResNetV2, using transfer learning. Every model is trained and evaluated on the same intraoral 

dataset and assessed using standard performance metrics. This chapter details the dataset preparation, 

preprocessing steps, and data augmentation techniques, CNN architecture design, training parameters, and 

evaluation procedures that form the methodological framework of this research. 
 

3.1 Dental Image Database 

 

This research employed a publicly available and clinically confirmed dataset from the Mendeley Data 

platform [36]. The original collection comprises 2,000  RGB intraoral images, each illustrating an individual 

tooth. All images were classified into three diagnostic categories: healthy (normal), early dental caries, and 

advanced dental caries as shown in Figure 1. A qualified radiologist evaluated and improved the dataset to 

remove medically unnecessary or substandard samples, ensuring clinical relevance and quality. Subsequent 

to the curation procedure, a balanced selection of 1,200 images was chosen, with 400 images designated for 

each diagnostic category. Images were scaled to conform to the input specifications of the individual models 

for training purposes. The bespoke DentalNet-Lite model downsized images during training to conform to 

its architecture, whereas pretrained models preserved their original input resolution of 224×224 pixels to 

ensure architectural compatibility. As a result of these augmentation strategies, the total number of training 

images increased from the original 1,400 curated samples to 4,383 images, as illustrated in Figure 2, while 

maintaining equal class distribution across all three categories. With this expanded dataset, the images were 

split into 70% for training (3,727 images), 10% for validation (226 images), and 20% for testing (430 

images). 
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Figure 1: Examples of the three diagnostic categories.                Figure 2: Dataset size before and after augmentation. 

 

 

 

3.2 Architectural Design and Training Configuration of DentalNet-Lite. 

 

This research aims to develop a lightweight and computationally efficient Convolutional Neural Network 

(CNN) model capable of effectively extracting clinically pertinent visual indicators associated with different 

stages of dental caries. The proposed model, DentalNet-Lite, was meticulously crafted and refined to achieve 

a balance of superior diagnostic performance, rendering it appropriate for deployment in both clinical and 

mobile environments. Table 1 depicts the architectural design of DentalNet-Lite. The model consists of three 

convolutional layers with increasing filter sizes (16, 3 and 64), each followed by max-pooling operations to 

diminish spatial dimensions while retaining essential information. A flattened layer converts the feature into 

a one-dimensional vector, succeeded by a dropout layer (rate = 0.5) to reduce overfitting. The classification 

consists of two dense layers, including a final softmax output layer with three units that denote the diagnostic 

categories: normal, early dental caries, and advanced dental caries. The model was implemented and trained 

using outlined in Table 2. Google Colab Pro was used as the development environment, employing an A100 

GPU to enhance training efficiency. Python was the primary programming language, with Keras and 

TensorFlow serving as the main deep learning libraries. Key hyperparameters were selected based on 

empirical tuning to guarantee stable convergence and high generalization performance on the dental image 

dataset. 

 
Table 1.  Architecture of DentalNet-Lite 

 

Layer Output Shape Parameters 

Conv2D (16 filters) (126, 126, 16) 448 

MaxPooling2D (63, 63, 16) 0 

Conv2D (32 filters) (61, 61, 32) 4,640 

MaxPooling2D (30, 30, 32) 0 

Conv2D (64 filters) (28, 28, 64) 18,496 

Flatten (50176) 0 

Dropout (0.5) (50176) 0 

Dense (64 units) (64) 3,211,328 

Total params: 

Trainable params 

Non-trainable params: 

3,235,107 

3,235,107 

0 

(12.34MB) 

(12.34MB) 

(0.00 MB) 
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Table  2. Training environment and hyperparameter configuration 
 

 

 

 

 

 

 

 

 

 

 

3.3 Evaluation on Multiple Dataset Splits. 

 

To ascertain the robustness and generalization capacity of the proposed DentalNet-Lite model, its 

performance was assessed using three train/validation/test splits: 80/10/10, 70/10/20, and 60/20/20. This 

experimental design aimed to examine whether the model maintains stable performance under varying 

proportions of training and testing data. ensuring that the only variable factor was the dataset partition ratio. 

 

3.4 Pretrained CNN Architectures 

 

 MobileNetV2  Designed for mobile and embedded devices, Google developed a lightweight (CNN) 

architecture called MobileNetV2. It uses ReLU6 activations and 1×1 convolutions to reduce 

dimensionality through inverted residual blocks, which combine expansion and projection layers. It 

is highly efficient for low-power devices, with (3.5 million) parameters and (88) layers [37–38]. The 

main features of MobileNetV2 are minimal memory footprint and quick inference. The main 

limitations of MobileNetV2 are reduced precision on jobs involving fine-grained categorization 

 

 DenseNet121 belongs to the Dense Convolutional Network family, which rely on dense 

connectivity, every layer receives input from all preceding layers. This increases learning speed, 

mitigates vanishing gradients, and promotes feature reusing.  It has (121) layers and some (8 million) 

parameters [39]. The main features of DenseNet121 are strong generalization, quick training, and 

good performance with limited medical datasets. The main Limitations of DenseNet121 are thick 

connections cause more memory consumption. 
 

 ResNet50V2 Using residual connections, ResNet50V2 is a revised form of the original ResNet that 

tackles the vanishing gradient issue. It reorders the internal block sequence such that Batch Norm → 

ReLU → Conv allows more consistent gradient flow in deep networks. Its (25.6) million parameter 

count accounts for (50) layers [40]. The main limitations of ResNet50V2 are Stable deep learning 

has advantages, including precise even on small datasets. The main limitations of ResNet50V2 are 

Slower inference and bigger model size are limitations. 
 

 Xception Inspired by depthwise separable convolutions, Xception (Extreme Inception) is a more 

effective version of Inception.  About (22.9) million parameters and (71) layers ,it achieves balance 

between complexity and efficiency. [41]. The main Limitations of Xception are lightweight, 

excellent precision for medical imaging classification. The main Limitations of Xception are Slower 

on low-end hardware; requires a modest dataset size. 
 

 InceptionResNetV2 InceptionResNetV2 combines the multi-branch design of Inception with 

Soft/Hard Information Hyperparameters Value 

Prgm  language Python Loss function Categorical cross-entropy 

Platform Google Colab-pro Optimizer Adam 

GPU A100 GPU Learning rate 0.001 

RAM(System) 

RAM(GPU) 

83.5GB 

40.0 GB 

Input size 128*128*3 

Mostused 

packages 

Keras Tensorfow Epochs 250 
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residual connections from ResNet, making it one of the most accurate yet complex models. It consists 

of (164) layers and (56 million) parameters [42]. The main Limitations of InceptionResNetV2 are 

excels fine-grained image classification. The main Limitations of Inceptionresnetv2 are Not fit for 

mobile deployment, quite expensive computationally. 
 

 

 

3.5 Comparative Analysis of CNN Architectures 

 

A comparison analysis was performed to assess the architectural efficiency and scalability of the proposed 

DentalNet-Lite model against five known pretrained CNN models: MobileNetV2, DenseNet121, 

ResNet50V2, Xception, and InceptionResNetV2. The comparison evaluates essential structural 

characteristics, including the number of parameters (in millions), architectural depth (layer count), and 

computational complexity. The comparative results in Table 3 distinctly demonstrate that DentalNet-Lite 

attains a remarkably reduced parameter count and architectural depth compared to the pretrained models. 

Despite having only 8 layers and 3.2 million parameters, the model demonstrates exceptional classification 

accuracy and generalization. Its reduced computational complexity makes it highly suitable for real-time 

deployment in low-resource environments, such as mobile devices and rural clinics. 

 
Table 3. Comparative summary of CNN architectures. 

 

 

 

 

 

 

 

 

 

 

4. RESULTS and DISCUSSION 

 

This section provides the quantitative evaluation and discussion of the proposed DentalNet-Lite model in 

comparison with five pretrained Convolutional Neural Network (CNN) architectures: MobileNetV2, 

DenseNet121, ResNet50V2, Xception, and InceptionResNetV2. All models were trained on an identical 

RGB intraoral dataset using uniform preprocessing, augmentation techniques, and evaluation metrics to 

guarantee equitable comparison. To prove the clinical significance of precise multiclass classification in 

dental diagnostics, four essential performance metrics were employed to evaluate the models: test 

accuracy, precision, recall, and F1-score.These metrics provide a comprehensive assessment of the models' 

ability to reliably detect caries and generalize to unseen clinical specimens. 

 

4.1 Quantitative Performance Analysis 

 

As shown, DentalNet-Lite achieved the highest test accuracy (99.07%) and F1-score among all models, 

despite having the fewest parameters (3.2 million) and only 8 layers. Table 4 displays the results of all 

models. In contrast, deeper models like InceptionResNetV2 and ResNet50V2 exhibited lower accuracy 

despite their increased complexity. Figures 3 and 4 depict the accuracy and loss Graphs during the training 

and validation phases for all models, enabling a thorough assessment of the training dynamics. Figure 3, 

Accuracy Comparison Across Models, illustrates that DentalNet-Lite and Xception consistently exhibited 

Model Parameters (M) Depth (Layers) Computational Complexity 

DentalNet-Lite 3.2 8 Very Low 

MobileNetV2 3.5 88 Low 

Dense Net121 8.0 121 Medium 

ResNet50V2 25.6 50 High 

Xception 22.9 71 Medium-High 

Inception-ResNetV2 56.0 164 Very High 
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strong performance across all datasets, while InceptionResNetV2 demonstrated a decline in validation 

accuracy despite excellent training accuracy. Figure 4, Loss comparison among models, suggests that 

DentalNet-Lite and Xception maintained low loss values through training and validation, further 

demonstrating their robustness and a little overfitting. 

 

4.2 Confusion Matrix and Error Analysis 

 

To evaluate visually the classification performance of DentalNet-Lite, a confusion matrix is provided in 

Figure 5. Confusion Matrix of DentalNet-Lite Forecasts. The matrix shows that out of all 430 test samples, 

only 4 images were misclassified, all from the Early Dental Caries class, being predicted as Advanced 

Dental Caries. This supports the model's high recall and minimal false-positive rate for the other two 

classes. Figure 6, Examples of misclassified images. All four misclassified samples showed early lesions 

that appear severe in texture or lighting, leading the model to confuse them with more advanced Dental 

caries. 

 

 
Table 4. Performance metrics of all CNN models. 
 

 

 

 

 

 

 

 

Model Test Accuracy Precision Recall F1-score 

Dental Net-Lite 0.9907 0.9907 0.9907 0.9907 

Mobile NetV2 0.9625 0.9625 0.9625 0.9623 

Dense Net 121 0.9708 0.9809 0.9708 0.9708 

ResNet 50V2 0.9458 0.9465 0.9458 0.9460 

Xception 0.9860 0.9863 0.9860 0.9860 

Inception-ResNet V2 0.9708 0.9723 0.9708 0.9705 
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Figure. 3 Accuracy comparison across models                    Figure. 4 Loss comparison across models 
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Figure. 5  Confusion matrix of DentalNet-Lite                                  Figure. 6  Misclassified test samples 
 

4.3 Performance Across Different Data Splits. 

 

The table 5 displays the performance characteristics of the proposed model across three train/validation/test 

split configurations. The results indicate that DentalNet-Lite consistently attained remarkable 

performance, with test accuracy surpassing 99.5% in all cases. Notably, even when the training set size 

was reduced to 60% of the dataset, the model maintained a very high classification performance (99.50% 

accuracy, precision, recall, and F1-score), with a test loss of only 0.0136. suggesting its reliability for 

clinical application even under reduced training data scenarios. 

 
Table 5. DentalNet-Lite performance across dataset splits 

 

 

 

 

 

 

 

 

4.4 Confusion Matrix Analysis. 

 

To appraise and analyze the classification performance of the proposed model, a confusion matrix was 

created to examine the distribution of true and false predictions across the three dental categories: 

Advanced dental caries, Early dental caries, and Normal tooth. Table 6 shows the calculated values of True 

Positives (TP), False Positives (FP), False Negatives (FN), and True Negatives (TN) for each category. 

 

Definitions: Let the confusion matrix be denoted as M, where M[i][j] represents the number of samples 

with actual class i and predicted class j. 

 

 True Positives (TP): 

TP = M[i][i] 

→ Correctly predicted samples of class i. 

 False Negatives (FN): 

FN = sum(M[i][j]) for all j ≠ i 

→ Samples of class i predicted as another class. 

 

 

SplitRatio 80/10/10 70/10/20 60/20/20 

Precision 0.9955 0.9907 0.9902 

Recal 0.9954 0.9907 0.9901 

F1-score 0.9954 0.9907 0.9901 

Accuracy 0.9954 0.9907 0.9901 

Loss 0.0259 0.0260 0.0136 

Support 219 430 527 
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 False Positives (FP): 

FP = sum(M[j][i]) for all j ≠ i 

→ Samples of other classes incorrectly predicted as class i. 

 True Negatives (TN): 

TN = Total - TP - FP - FN 

→ All correctly rejected samples not belonging to class i. 

 

Application: These equations are applied per class in multi-class classification problems to evaluate   

model performance in more detail. 

 
Table 6. False positives and negatives results 
 

 

 

 

 

 

5. CONCLUSION   

 

This study presented the development and assessment of a lightweight Convolutional Neural Network 

(CNN), called DentalNet-Lite, for the automated multiclass classification of dental caries using RGB 

intraoral images. The model, designed for simplicity and efficiency, was evaluated against five well-known 

pretrained architectures: MobileNetV2, DenseNet121, ResNet50V2, Xception, and InceptionResNetV2. 

The results of the research suggested that DentalNet-Lite outperformed all pretrained models in test 

accuracy, precision, recall, and F1-score, while possessing considerably fewer parameters and reduced 

architectural complexity. These results highlight the effectiveness of task-specific custom architectures in 

medical image analysis, particularly in scenarios where computational resources are limited. The research 

corroborates that lightweight models can serve as practical and dependable substitutes for deep, resource-

demanding networks, particularly in real-time clinical applications, mobile diagnostics. The effectiveness 

of DentalNet-Lite demonstrates the potential of customized AI systems in improving intelligent dental 

diagnostics and enabling early intervention options. 
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