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1. Introduction

The evolving complexity of modern data involves continuous developments in the statistical dis-
tributions, leading to the construction of generalized families that improve the behaviour of classical
models through various approaches. Several methods have been introduced to generalize probability
distributions by adding parameters. One of the earliest approaches was by Mudholkar and Srivatsava
[43], who introduced the exponentiated-G (Exp-G) family by raising the baseline cdf to a power. Sub-
sequently, Marshall and Olkin [42] developed a simpler method for introducing a parameter to the
baseline distribution.

Eugene et al.[27] introduced the beta-G family using the baseline cdf as the upper limit in the beta
distribution. Although this family lacks a closed form of cdf, it can be considered the most useful family
in the literature, as few other families have been introduced based on this. Cordeiro and de Castro [24]
extended this idea by replacing the random variable in the Kumaraswamy distribution[38] with the
baseline cdf, leading to the Kumaraswamy-G family. Another approach was proposed by Alzaatreh et
al.[14], who introduced a new family using the baseline pdf as the integrand and any function of the
baseline distribution as the upper limit. Several authors have studied generalized family distributions
by Hassan and Nassr including Inverse Weibull Generator family of distributions [31], Power Lindley-
G family [32], and the exponentiated generalized power function distribution [33], Type II general
inverse exponential family by Farrukh Jamal et al. [35], Log-logistic Tan-G family by Zaidi et al.[61],
Gull Alpha power family by Kilai et al. [36], New Sine-G family by Benchicha et al. [21], ratio
exponentiated general family by Bantan et al. [20], extended odd inverse Weibull generator family by
Abdellal et al. [1], unit inverse exponentiated Weibull distribution by Hasan and Alharbi.[30]. Tahir
and Nadarajah [57] and Ahmad et al. [6] provided an overview of the developments in the generalized
family of distributions.

Each classical probability distribution or family has unique characteristics, particularly when mod-
elling different data patterns. Combining two families can integrate their features, resulting in a more
flexible model. Following this idea, we construct a new two-parameter family of distributions by com-
bining the TL-G [9] and Mk-G families [7]. This approach is not new, and several researchers like
[11, 55] have used this method.

The Topp-Leone distribution is a continuous probability distribution developed by Topp and Leone
[58] to model J-shaped patterns. It was originally used for real-world datasets, such as equipment
failures. Later, the distribution gained wide recognition after Nadarajah and Kotz [45] further explored
its mathematical properties. However, since the distribution is defined for a bounded interval, it fails
to model the modern data. Several studies on Topp-Leone distribution include the Transmuted Topp-
Leone power function distribution introduced by Hassan et al. [50], Type-II Topp-Leone power Lomax
distribution by Al-Marzouki et al. [8], New power Topp-Leone distribution by Atchade et al. [18] and
El-Saeed et al.[26] introduced the power inverted Topp-Leone distribution. Furthermore, Abushal et
al. [2] and Nassr et al. [46] applied the acceptance sampling to the inverted Topp-Leone and power-
inverted Topp-Leone distributions, respectively.

The Topp Leone-G family, developed by Al-Shomrani et al.[9], overcomes the limitation of bound-
edness. They derived statistical properties and proposed an exponential extension named Topp-Leone
exponential distribution, and demonstrated its application to the failure rate of component data. The
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TL-G family’s distribution function and pdf are given by:

b
Fb)={1-11-GWP}: x>0 (1.1)

i) =2bg () [1~G@I{1-[1-G@P (12)

where, b > 0 is the parameter.

Some notable generalized families extending from the TL-G family are Reyad et al. [49] in-
troduced the Topp-Leone odd Lindley-G family and introduced its extensions to uniform, Lomax
and Pareto distributions. Sule et al.[53] introduced the Topp-Leone exponentiated-G family. Sule
et al.[52] introduced the Topp-Leone Kumaraswamy-G family. Oluyede et al. [47] introduced the
Topp-Leone-Gompertz-G family. Chipepea et al. [23] introduced the Topp-Leone Marshall-Olkin-G
family. Gabanakgosi and Oluyede [29] introduced the Topp-Leone-Gompertz-G Power series family,
and proposed some special cases, derived their properties and estimated the parameters using differ-
ent estimation methods. Atchade et al.[17] developed a four-parameter family called the Topp-Leone
Kumaraswamy Marshall-olkin-G family.

The Mk-G family was introduced by Al-Babtain et al. [7], and developed using the reduced Kies
distribution by Kumar and Dharmaja [37] as the baseline model. This represents a specific instance of
the Weibull-H family [56] when the scale parameter of the family equals one. The distribution function
and pdf of the family are as follows:

G(x) )a

F(x.a) = 1 — e (76 (1.3)
. _ G(x)a—l G(x)a—l _(I?(G)&))afl
Fx30) = g0~ o a8 e (1.4)

where, a > 0 is parameter and G(x) is any baseline distribution.

Several extensions of the Mk-G family have been proposed. Bandar et al. [19] proposed an expo-
nentiated reduced Kies-G family in which the authors considered the base distributions named reduced
Kies distribution to introduce the family. Afify et al. [4] contributed to this line of research by con-
sidering the special case of the Weibull-H family, which reduces to the Mk-G family and introduces
the Marshall-Olkin Weibull-G family. The KMk-G family was proposed by Swetha and Nagarjuna
[55], where the family supports heavy-tailed patterns, as shown in the simulation study. An extension
of the family named Kumaraswamy power Lomax distribution was recently proposed by Swetha et al
[54]. An inverted modified Kies-G (IMk-G) family was introduced by Diab et al. [25] using inverse
transformation to the Modified Kies distribution. Recently, Vandana and Nagarjuna [44] proposed a
new trigonometric extension of the Mk-G family named the Sine modified Kies-G family. Alghamdi
et al. [10] introduced the Half-logistic modified Kies exponential distribution, Aljohani et al. [12]
applied ranked set sampling to the modified Kies exponential distribution, and the extended reduced
Kies distribution was introduced by Almuqrin et al. [13].

In this study, a novel two-parameter family is proposed by integrating the properties of both the
TL-G and Mk-G families. It is the Topp-Leone Modified Kies-G family (TLMk-G). The TL-G family
is known for handling the tails of the model well, whereas the Mk-G family has flexibility in handling
the tails and models various hazard rate forms. Unlike most TL models, including the TL-exponential
distribution [9], which primarily produces right-skewed or unimodal patterns, the proposed model can

Computational Journal of Mathematical and Statistical Sciences Volume 4, Issue 2, 697-737



700

capture complex patterns, such as decreasing-increasing-decreasing patterns. Although such a pattern
was not observed in the considered datasets, this capability demonstrates the model’s potential to han-
dle a wider range of data patterns. Most existing TL-G and Mk-G extensions fail to adequately capture
certain complex data patterns observed in real data, such as a density function with a decreasing-
increasing-decreasing pattern. This limitation creates a gap in the modelling of survival, actuarial, and
reliability data. To address this gap, the proposed TLMk-G model combines the strengths of both fam-
ilies, resulting in a model that is significantly more flexible than the existing TL and Mk-based models.
It’s two shape parameters work together to control the skewness, kurtosis, and tail behaviour of the
model.
The key contributions of the paper include:

e Various statistical properties of the family such as ordinary moments, incomplete moments,
probability-weighted moments, generating functions, order-statistics, and entropy, are derived.

e Income and inequality measures, including Lorenz, Bonferroni and Zenga curves, and actuar-
ial measures such as Value at Risk, expected shortfall, Tail Value at Risk, tail variance and tail
variance premium are presented.

e A scale parameter ‘c’ is added to the new family to enhance its flexibility, based on the TLMkE
distribution.

e The TLMkE model can fit various data patterns, including left-skewed, right-skewed, decreasing,
decreasing-increasing-decreasing density patterns, and decreasing, bathtub, and increasing hazard
patterns.

e The TLMkE model demonstrates greater adaptability than the Topp-Leone exponential and
Modified-Kies exponential distributions, with ‘a’ and ‘b’ having reasonable control over the tails,
and ‘c’ influencing the scale.

e The variance, skewness, and kurtosis of the model are computed using ordinary moments. The
inequality measures of the model show typical shapes, and the actuarial measures demonstrate the
model’s ability to support heavy-tailed patterns, making it useful for income distribution, finance,
and risk assessment.

e The simulation was performed using Maximum Likelihood estimation, maximum product spac-
ing, Least square estimation, Anderson-Darling and Cramer-Von-Mises estimation methods, and
it shows the most efficient method for parameter estimation of TLMkE parameters.

e The applications of the TLMkE model show better performance in reliability and survival analysis
fields supported by adequacy and goodness of fit measures, Vuong’s test and leave-one-out log-
likelihood.

The remainder of this paper is organized as follows: Section 2 introduces the proposed TLMk-G
family, its distribution function and pdf and provides the statistical properties of the TLMk-G family;
in section 3, the parameter estimates of the TLMk-G family are derived using different estimation
methods; further, section 4 focuses on the TLMkE distribution covering its key properties and parameter
estimates; sections 5 and 6 deal with the simulation study and application of the proposed model.

2. Topp-Leone Modified Kies-G family

This section describes the basic properties of the TLMk-G family. By replacing G(x) in the TL-G
distribution function and pdf given by Equation (4.1) and Equation (1.2) with the distribution function
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and pdf of the Mk-G family in Equation (1.3) and Equation (1.4), the distribution and density functions
of the TLMk-G family are obtained as follows:

x) \¢ b
F(x0) = (1 ) ) x>0 @.1)
a—1 a o\ b—1
P ) = 2abg(x) [G()i)jl - 280 (1 e -2(£55) ) (2.2)
[1-G(x)]
where, ¥ = (a, b) > 0 is the parameter set and G(x) is the baseline distribution.
The quantile function of the TLMk-G family is
[(=4) 108 (1 - )]
=G T (2.3)
1+ [(—%)log(l - ul/b)]

here, u ~ U(0, 1).
The survival and hazard functions of TLMk-G family represented by F(x; ) and h(x; ) respectively
are given by the following equations.

a\b
Flx®)=1- (1 _ A% )

2abg(x) [G(x)]*! e 6w) (1 e z(ﬁg;;))“)b‘l
[ - G [1 (1- e ﬁ&;)“)b]

The distribution function of the TLMk-G family in Equation (2.1) can be written as

h(x;9) =

F(x;9) = Zws, 1 [G(x)]“+* (2.4)

Where, a)s’t = (l)( aj)( 1)z+]+k (21)/.
Similarly, the pdf of the TLMk G family (Equation (2.2))can be written as

f59) = 80 ) 6, G @5)

where, &, = Zab(”?)((—a+Zj+1))(—1)i+j+k21 k(,‘(“)/ and s = (i, j,k) , t = (a,b).
Hence, the linear representation of the distribution function and pdf of the proposed TLMk-G family
can be represented as the weighted sum of exponentiated-G family with the power parameter p where

p=a(j+1)+k.
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Moments and Moment generating function

Statistical moments were used to characterise the distribution. First, we obtain ordinary moments,
which describe the central tendency, variability, and shape of the distribution. Next, we compute
incomplete moments, which are further used to derive income inequalities and actuarial measures,
providing information on risk and tail behaviour. Finally, we derived probability-weighted moments,
which offer a good alternative for parameter estimation, particularly in the presence of extreme values.
Using the Linear representation of pdf in Equation (2.5), the " ordinary moment of TLMk-G family

is given by:
Hy = x'g(x) ) 6, (G dx= ) 6, f x'g(x) [G)]"™" dx
Jy oo 254,

= = Z(SME[Y’] (2.6)

where ‘Y’ is a random variable of the Exp-G family with the parameter p.

These moments characterise descriptive measures of the distribution, such as mean u}, variance (i) —
,u’12), skewness and kurtosis.

The incomplete moment (/) and probability-weighted moment (P,,) of the TLMk-G family are given
by the following equations.

q q
I = f X f(x;9)dx = Za f Xg([G(0)]dx (2.7)
0 B 0
P, = fxq[F(x; M f(x; PDdx = Zgbs,,fxqg(x)[G(x)]p_ldx

where, ¢, = (b(”l.l)_l)(—l)”j*k (2’;# and s = (i, j,k), t = (a, b, r). The mgf provides a powerful tool for
characterising the distribution by generating moments. The mgf of the TLMk-G family is

Mx(1) = f e"g(x) ) 6, (G dx= ) &, f " [G(0))"" dx
O Jy 0 2},

= Mx(@) = Zés,,Mp

and

where, M, is mgf of Exp-G family with the power parameter ‘p’.

Order statistics

Order statistics are essential for analysing the behaviour of ordered data. The cdf of " order statistic

1S
Fo(r: ) = ZZ(’Z)(” J_ ’)(—Df (F(x 9]
i=r j
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similarly, pdf of the " order statistic is

Doy 1 n—r(—_l)i _
f(r)(x’ﬁ)_B(r,n—r)Z( i )i+rf(x’00)

where, B(:,-) is the incomplete beta function and f(x; %), ¢y = a,b(i + r) is the pdf of the TLMk-G
family.

Entropy

Entropy measures the uncertainty, which is the randomness associated with a probability distribution.
The Renyi entropy [48] Iz and Tsallis entropy [59] Ir of the TLMk-G family are

1ia10g[295,, f (g(x)" [G(X)]“““(”””‘]dx

The Renyi entropy reduces to Shannon entropy when a — 1.

1 ,
= [1 D f (80" [G(x)]“““(“””‘] dx

where, 6, = (Zab)a(“(bi_1))(_a'i_z(a+l))(—1)i+j+k—(2i;?a)j and s = (i, j,k), t = (a, b, @).

IR:

Mean deviation

The mean deviation from the mean ‘¢’ can be obtained using the Equation (2.4). It is as follows
EIIX ] = f = s e = L [( G = (Gl |
d N
the mean deviation from the median ‘M’ is

E[IX - M| = f b= Ml e 9 = (= M) ) L [(GMD ! = (Gl
d N

ws,t
aj+k+1°

where, {;, =

Inequality measures

The Lorenz (L()[40], Bonferroni (By) [22] and Zenga (Z,) [62] curves are graphical and analytical
tools used to understand income inequality or wealth distribution within a population. The Lj shows
the amount of income earned by different segments of the population, with a straight line representing
perfect equality. The higher the deviation of the curve from the line, the more significant the inequality
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will be. Using the incomplete moments (k = 1) of the TLMk-G family defined in Equation (2.7), they

can be defined as follows:
q
>0 [ wsorGeor-tds
Ik K 0
Ly = EQ) = = (2.8)
Y Yo [ *ewicr-ids
- 0

The By is similar but assigns more importance to the lower portion of the income distribution, making
it more sensitive to poverty, the Bonferroni curve By is given by

Zd,,,qug(x)[G(x)]l"ldx
Ly

Flq) {(1 () ) } Z 5. f""qu(q)[G(q)]p_l 4o

On the other hand, the Zenga curve compares the average income of people below a certain point to
those above it, making it useful for detecting extreme differences between the rich and poor. Using Ly,
the Zenga curve can be expressed as

Yoo [ FeiGeor ‘dx]—(zas, [ MrseorGeor ‘dx)

zo=1- =0 _ ( s (2.10)

(l—Lo)u
Ost G(x)]P-id
u[Z , fo WG] x)

BO = (29)

where, u € (0, 1).

Actuarial measures

This section presents the actuarial measures used to evaluate risk and tail behaviour in financial and
insurance applications.

Value at Risk

The Value at Risk (VaR) by Artzner [15] is the quantile function of a model that functions as a standard
risk indicator, enabling researchers to understand risk exposure. The VaR of the TLMk-G family is
obtained by replacing ‘u’ with ‘g’ in Equation (2.3).

[3 tog (1)) }

1+ [‘71 log (1 - ql/b)]l/“

VaRric = G { (2.11)

Expected shortfall

The expected shortfall (ES) introduced by Artzner et al. [16] is the average loss when the losses exceed
the VaR threshold. It can be considered a more reliable measure than VaR, which ignores extreme
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losses beyond the threshold. The ES of TLMk-G family is

(-2)ee(1 -0

I I
ESrimic = = f VaR(x)dx = — f G oo [ dx
uJo q Jo 1+ [(—%)log (1- ql/h)]

Tail Value at risk

The tail value at risk (TVaR) measures the expected loss when they exceed a designated proba-
bility threshold, frequently exceeding the VaR. It concentrates on the tail of the distribution to better
understand the extreme losses. In modern usage, it is similar to ES. The TVaR of TLMk-G family is

q

1 1 4
TVaRrune = 7 | xfesondx= = g [ seorGeras
- VaR - VaR

Tail Variance

Tail Variance (TV), initially introduced by Landsman [39] is the variability of losses beyond the VaR.
A high TV indicates unpredictable extreme losses. The TV of the TLMk-G family is

1 q
TViime =EX*X > x) — (TVaR)? = T f x* f(x; 9)dx — (TVaR)*
—q Jy,

aR

VaR

1 q
= TVrime :mz%,zf 2 g(0)[G(x)1" 'dx — (TVaR)*

Tail varaince premium

The Tail variance premium (TVP) Edward Furman et al. [28] is the cost that insures extreme risks,
which includes both their level of severity and unpredictability. This is used for insurance pricing. The
TVP TLMk-G family is

TVPTLMkG = TvaRTLMkG + /lTVTLMkG

where, 0 < A < 1.
3. Estimation Methods

To assess the parameter estimation of the proposed model, we consider five commonly used estimation
methods: Maximum Likelihood estimation (MLE), Maximum Product Spacing (MPS), Least Squares
estimation (LS), Cramer-von Mises (CvM) and Anderson-Darling (AD). These methods represent dif-
ferent approaches to parameter estimation, including the likelihood-based approach, spacing-based
approach, least squares and goodness-of-fit based approaches which helps in evaluating various prop-
erties of the distribution.

Consider xi, x2,. .., X, representing a sample of observations from the TLMk-G family. Let x4, <
X2 <,...,< Xy denote the corresponding ordered sample drawn from the family. The estimates of
parameters ‘a’ and ‘b’ can be estimated using the following methods.
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Maximum Likelihood estimation

The parameter estimates & and b are obtained by maximising the likelihood function of TLMk-G
family which is given by

L ﬁ {ZabG(Xk) (GO o) (1 ) e_z(f&i;))“)b‘l}
k=1

[1-Gx)]!

Now, the log-likelihood function

logL =mlog2+mloga+mlogb+ Z log G(x;) + (a - I)Z log G(x;) — (a + I)Z log 1 — G(x)

k=1 k=1 k=1
G(x) \' IG&';; ’
S o Sl

The estimates & and b of the parameters a and b can be obtained by solving the following equations

810gL m G(xo) G(x)
Z log G(xe) - Z log(1 - G(x) — 22 (1 © G(Xk)) g(—l . G(xk))

m G(XA) G(xk)
z : Og
1-G 1-G
+ 2(b _ 1) (Xk) G(Xk) _ ()Ck)) — 0
l G(,\k) _ 1

Maximum Product Spacing

The Maximum Product spacing is based on the concept of information contained in the spacing of the
distribution function and considers parameter estimates that maximise this measure. The MPS function

is given by: ome)
m+1 m
M= []—[ Dk] 3.1)
k=1

where, Dy = F(xg);9) — F(xk-1);#). Upon applying the logarithm on both sides, we obtain the
following

logM = Z log {F(xy; #) = F(xg—1); )}

k=1
Using the distribution function of TLMkG family in Equation (2.1), the following equation is obtained

log M = log {(1 - e_z(%)a) - (1 - e_z(%)a)b}

Computational Journal of Mathematical and Statistical Sciences Volume 4, Issue 2, 697-737



707

The estimates of the parameters ‘a’ and ‘b’ are obtained as

dlogM _ 1 Sipﬂ—mH _, OlogM _ 1 ?ipm—mm o
oa m+1 — Dy ©0b m+1 — Dy

where,

OF (xw; ) —2(M)a - —2( Gl )" Gx) ' G(xx)
w = ———— =2b([1 - 1-G(xg) moop ) | MK )y Gl
k oa ( e k e k =G og =GO

OF (xqp); 0 _o St Y o G\
Py, = % = (1 —e Z(I‘G&k)) ) log(l —-e 2('-G<kxk>) )

Least Squares estimation

The least-squares estimation follows the principle of minimizing the overall squared errors between the
theoretical distribution function and empirical plotting positions. The LSE function for the TLMk-G
family is

2

k
m+1

LSZ}DP%MWﬁ}—
k=1

The LS estimates can be obtained by solving the following equations

OlogLS - k OlogLS a k
=2 P, |F H-—1=0 ; =2 P, |F ;) — =0

Cramer Von Mises estimation

The Cramer-Von Mises method depends on minimising the squared distance between the empirical
and theoretical distribution function’s, assigning equal weights to all parts of the distribution uniformly.
The CvM measure of TLMk-G family is

1 m
CE:E+Z

Fxu:9) = ——
k=1 m

2k—1r

The estimates are obtained by

m

0CE 2k -1 0CE -~ 2k -1
:zzpak [F(x(kﬂﬁ)_ T] =0 o sz:I:Pbk [F(x(k);ﬁ)— — =0

oa —

Anderson Darling estimation

The Anderson-Darling estimation modifies the CvM method by applying a weighted function that
increases sensitivity to fluctuations in the distribution tails. The AD function of TLMk-G family is
given by

m

1
AE = -m— -~ Z(Zk — 1) [log(F (xgy; 9)) + log(1 = F(Xn—i+1y; )] = 0

k=1
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The estimates of the proposed family can be obtained using the following equations

M_E fd _l zm:(zk _ 1) Pdk _ Pam_k+1 — 0
da miz |F(x:®)  Foases®|
M—E = _l i(2k _ 1) 7 Pbk _ Pbmfkﬂ ] _ 0
ob M= | F(x3; ) F(Xgnk+1); D) | '

4. Topp-Leone Modified Kies Exponential distribution

The distribution function and pdf of TLMkE distribution are derived by substituting the distribution
function and pdf of the exponential distribution into Equations (2.1) and (2.2). The resulting equations
are presented in Equations (4.1) and (4.2), respectively.

Foao) = (1-e2) x>0, (4.1)

Fr ) = 2abee T (1 = ey (1 - g2 ) 4.2)

where, ¥, = (a, b, c¢) > 0 are parameters.
The quantile function of the TLMkE distribution with u ~ U(0, 1) is

1 1 Ha
x = —log {[(——)log(l —u'™ 4 1} . 4.3)
c 2

Figure 1 shows the various density patterns supported by TLMkE distribution. It accommodated
left-skewed, right-skewed, decreasing and unknown shapes. Figure 1(a) demonstrates the influence
of parameter ‘c’ on the scale of the distribution. It clearly shows both platykurtic with long-tail and
leptokurtic with short-tail behaviour of the distribution for smaller and higher values of ‘c’ respectively.
Increasing the value of ‘c’ is also reducing the spread. This indicates that the parameter ‘c’ influences
only the scale of the distribution.

The Figure 1(b) shows the effect of the parameter ‘b’ on the left-tail of TLMkKE distribution. Increas-
ing the value of ‘D’ is resulting in a sharper peak and a reduction in the left tail. Figure 1(c), shows a
decreasing pattern for 0 < b < 1 and 0 < ¢ < 1 and increasing values of ‘a’. The Figure 1(d) shows
a decreasing-increasing-decreasing shape for fixed values of ‘@’ and ‘b’ and changing values of ‘c’. It
can be observed that higher values of parameter ‘a’ result in a left-skewed plot. Smaller values of ‘a’
and ‘c’ and higher values of ‘b’ resulted in a right-skewed plot.

The survival and hazard functions of the TLMkE distribution are given in the Equation (4.4) and Equa-
tion (4.5), respectively.

e CX a b
Fldh)=1-(1-e2" V), (44)
and -
Zabceacx—Z(e""’—l)" (1 _ e—cx)tl—l (1 _ e—2(e""—1)")
1 — (1 — 21y
The Figure 2 illustrates the various hazard rate patterns supported by the TLMkE distribution. In
Figure 2(a), a decreasing hazard pattern is observed when the parameters ‘b’ and ‘c’ take very small

h(x;9) =

4.5)
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Figure 1. Density plots of TLMKE distribution

values and increasing values of ‘a’. A bathtub pattern appears in Figure 2(b) for higher values of ‘a’
and b < 0.1. The Figure 2(c) displays an increasing hazard pattern for fixed values of ‘@’ and ‘¢’
with varying ‘b’ values. From these observations, it is clear that for » < 0.1 and higher values of ‘a’
a bathtub pattern is observed and when the values of the parameter ‘b’ are gradually increasing, the
hazard pattern shifts to an increasing shape, as seen in Figures 2(b) and 2(c).

Stochastic ordering of TLMKE distribution

Stochastic ordering was used to compare the distributions of two random variables based on the
key characteristics of the model. We examine the stochastic ordering of the TLMkE distribution by
analysing the monotonicity of its distribution function presented in Equation (4.1), with respect to
each parameter a, b and c.

Now let us consider the partial derivative of the cdf F(x;):

aF ,ﬁ CcX a X a\b—
¢ = —(ga D =2be 2 V" (e — 1)" log (¢ — 1)“)(1 — e A D ) 1
OF (x;9) (et 1y \P —eE 1)
¢ = Tl =(1—e A 1)) log(l—e XA 1))
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Figure 2. Hazard plots of TLMKE distribution
0F(X ﬁl) CX a CX a\b—1
03 = 8; =2abxe™ 2(e“*—1) (ecx _ l)a 1 (1 —e 2(e“*—1) )

The sign of each derivative determines the effect of the corresponding parameter on the cdf.

Parameter a: For x > 0, the sign of ¢; depends on log(e“* — 1). There are three possible cases:

(i) if e* — 1 > 1 then log(e** — 1) > 0 and ¢, so F increase in ‘a’.
(i) if 0 < e —1 < 1 then 0 < log(e“* — 1) < 0 and ¢, < 0 so F is decreasing in ‘a’.
(iii) if (¢“* = 1) = 1then¢p; =0

e ya\P ... . . . .
Parameter b: For x > 0, term (1 — 727D ) lies in (0, 1). Therefore, its logarithm is negative
and thus, ¢, < 0 for all x > 0. Therefore, F' decrease in ‘b’.
Parameter c: All the terms in ¢35 are positive for x > 0 and ¢, > 0. Hence, ¢3 > 0 and F increase
in ‘c’.

These monotonicity properties of the TLMkE model lead to the following first-order stochastic domi-
nance results.

Now, let us consider parameter sets: (a,b,c;) and (a, b, c;), (a,by,c) and (a, by, c) where a; < a,
by < by and ¢y < ¢,. Thus, we have the following dominance properties:

F(x;a,b,c1) < F(x;a,b,c)
F(x;a,by,c) < F(x;a,b,,c)
This means that the parameter sets (a, b, c;) and(a, by, ¢) stochastically dominate sets (a, b, c;) and

(a, by, c) respectively. For parameter ‘a’, the stochastic ordering depends on x: F(x; ;) increases with
‘a’ for x > log(2)/c and decreases for 0 < x < log(2)/c.

Moments of TLMKE distribution

The moments of the TLMkE distribution are derived by substituting the distribution function and pdf
of the exponential distribution into Equation (2.6). The Table 1 provides the first, second, third and
fourth moments along with the variance, skewness and kurtosis values computed from them. Based on
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Table 1. Moments of TLMKE distribution

Parameter values 74 “ J74 A Var sk kur
a
02 037372 0.7684 226697 8.07447 0.62873  9.17238  13.33412
2.5 045800 0.22663 0.11903 0.06561 0.01687  0.00992 2.74837
b=140.c=120 4.8 050825 0.26422 0.14007 0.07555 0.00590  0.22629 3.28537
? 7.7 0.53247 0.28608 0.15497 0.08458 0.00256  0.41324 3.69912
11 054534 029872 0.16431 0.09074 0.00132  0.52955 3.95306
14 055199 030554 0.16956 0.09434 0.00084  0.59344 4.09204
b
0.7 0.36807 0.16025 0.07736 0.04019 0.02477  0.00129 2.43403
4.3  0.56966 0.33291 0.19923 0.12189 0.00840  0.00004 2.96234
4=2.50. c=1.20 7.5 0.61201 0.38072 0.24060 0.15438 0.00616  0.01059 3.00659
? 9.2 0.62592 0.39733 0.25570 0.16677 0.00555  0.01910 3.02467
12 0.64291 0.41820 0.27518 0.18315 0.00487  0.03334 3.05091
18  0.66669 0.44852 0.30448 0.20857 0.00404  0.06059 3.09682
c
0.5 093444 1.56000 3.49557 9.43536 0.68683  1.75583 4.78110
3.8 0.12295 0.02701 0.00796 0.00283 0.01189  1.75582 4.78109
4=0.60. b=1.90 42 0.11124 0.02211  0.00590 0.00190 0.00973  1.75578 4.78106
’ 74 0.06314 0.00712 0.00108 0.00020 0.00314  1.75588 4.78108
9.8 0.04768 0.00406 0.00046 0.00006 0.00179  1.75576 4.78016
12 0.03893 0.00271 0.00025 0.00003 0.00119  1.75580 4.78959
a
2 0.17147 0.0303  0.00551 0.00103  0.0009 0.01743 2.98112
4 0.16778 0.02837 0.00484 0.00083  0.00022  0.00253 3.02497
b=5.9 =41 6 0.16676 0.02791 0.00469 0.00079  0.0001 0.01297 3.05793
’ 8 0.16629 0.02771 0.00463  0.00077  0.00006 0.0211 3.05300
10 0.16602 0.0276  0.00459 0.00077 0.00004  0.02745 3.10035
12 0.16585 0.02753 0.00457 0.00076  0.00002  0.03148 3.0683
b
1.2 0.27651 0.07802 0.02240 0.00653  0.00156  0.33207 3.44806
35 03079 0.09541 0.02974 0.00933  0.0006 0.06545 3.15306
4=5.60. ¢=2.20 52 031623 0.10045 0.03205 0.01027 0.00045 0.01944 3.07296
’ 84 03248 0.10582 0.03458 0.01134 0.00033  0.00022 3.05542
10 032758 0.1076  0.03544 0.01171  0.0003 0.00069 3.02638
13 033149 0.11014 0.03668 0.01224  0.00026  0.00697 3.03016
c
1 0.12391 0.17526 0.38596 1.05703 0.15991 25.77052 34.45981
3 0.04130 0.01947 0.01429 0.01305 0.01777 25.77059  34.45988
24=0.30. b=0.40 5 0.02478 0.00701 0.00309 0.00169 0.00640 25.77076  34.46007
? 7 0.01771 0.00358 0.00113 0.00044 0.00326 25.77171  34.4611
9 0.01377 0.00216 0.00053 0.00016 0.00197 25.77198 34.46139
11 0.01127 0.00145 0.00029 0.00007 0.00132 25.77218 34.46168
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Figure 3. 3-D plots of skewness and kurtosis for different parameter pairs

the results presented in the table, several patterns are observed in the behaviour of TLMkE distribution
with respect to parameters ‘a’,’b’ and ‘c’. They are:

e As parameter ‘a’ increases, the mean steadily increases, while variance, skewness and kurtosis
decrease, indicating a shift towards symmetric and light-tailed distributions. Although kurtosis
shows slight fluctuations it tends to decrease, indicating a reduced tail heaviness.

e With increasing ‘b’, the mean and higher moments increase slightly, whereas the variance and
kurtosis decrease. The skewness remains low, suggesting near-symmetric distributions at higher
‘D’ values.

¢ In contrast, increasing ‘c’ leads to a decline in moments and variance, with skewness and kurtosis
showing minimal variation.

e Smaller values of the parameters yield right-skewed, heavy-tailed shapes, while higher values,
especially of ‘b’ and ‘c’, show a more symmetric and light-tailed distribution.

e The findings indicate that the modified Kies parameter ‘a’ and Topp-Leone parameter‘d’ have a
more significant influence on the skewness and kurtosis of TLMkE distribution, whereas ‘c’ has a
comparatively minimal impact.

The Figure 3 presents 3D plots of skewness and kurtosis for various parameter combinations.

Inequality measures

The Ly, By and Z; curves of TLMkE distribution are obtained upon substitution of the distribu-
tion function and pdf of the baseline distribution in Equations (2.8), (2.9) and (2.10). The Figure 4
demonstrates how the Bonferroni, Lorenz and Zenga curves show that the inequality in the TLMkE
distribution varies with the parameters.

e The Bonferroni curve’s exhibited both concave and convex shapes, indicating the model’s sensi-
tivity to low-income segments. This makes the TLMkE model flexible for modelling populations
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with widespread poverty, which is a common scenario.

e The Lorenz curve exhibits a typical increasing and convex shape. The changing convex shape of
the curve with parameter changes shows the ability of the model to accommodate different levels
of inequality, including mild and severe inequality.

e The Zenga curve displays a U-shaped curve, which shows major inequality among the poor them-
selves and even more among the rich. This shows that the TLMKE is a better choice for modern
economic data.

This shows the flexibility of TLMkKE distribution for modelling data from different economies with
different levels of income inequality.

Bonferroni Curves Lorenz Curves Zenga Curves
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Figure 4. Bonferroni, Lorenz and Zenga curves of TLMKE distribution

Actuarial measures of TLMKE distribution

The VaR of the TLMKE distribution is obtained by substituting the exponential distribution in Equa-
tion (2.11), and using this equation, we can further obtain other measures. The Table 2 and Figure 5
collectively show these actuarial measures for TLMKE distribution across different parameter sets, high-
lighting how the parameters affect tail risk behaviour. The parameter sets are ordered by the ability of
the model to represent the risks ranging from mild to extreme. The impact of the parameters of TLMkE
distribution on the measures are that small values of the Mk-G parameter ‘a’, TL-G parameter ‘b’ and
exponential parameter ‘c’ that are affecting the risk measures in different ways, which is as follows

e It is observed that parameter values 0 < a < 1, b > 1 and 0 < ¢ < 1 show extreme risk and
a > 1,0 < b < 1, ¢c > 1 exhibit lighter tails reducing risk measures. This flexibility allows the
model to handle both extreme and low-risk scenarios.

e This parameter sensitivity demonstrates that the TLMkE distribution can model both light and
heavy-tailed scenarios by adjusting the parameter combinations. This makes the model valuable
for modelling different risk scenarios.

The trends in risk measures are as follows:

e VaR increases as the ‘q’ increases, indicating that higher quantiles correspond to greater risk.
e ES is always lower than VaR, because it represents the average loss beyond VaR. It also increases
with ‘q’ but at a slower rate than VaR.
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Set-i(a): VaR Set-ii(a): VaR Set-iii(a): VaR Set-iv(a): VaR Set-v(a): VaR
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Figure S. The plot of risk measures vs confidence level q

e TVaR exceeds both VaR and ES because it accounts for tail loss severity. Similar to VaR and ES,
it increases with‘q’, indicating higher extreme losses. Figure 5 Set-iv(a) shows a steeper TVaR
curve with heavier tails.

e TV is highly sensitive to parameter choices, as seen in both figure and the table.

e TVP increases with higher ‘A’, which means that greater risk resistance comes at a higher financial
cost.

e This consistent behaviour shows the model’s ability to handle practical data such as pricing insur-
ance premiums.
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Table 2. Actuarial measures of TLMKE distribution

Parameter values q VaR ES TVaR TV TVP
1=02 1=05 1=07 1=09
0.50  0.36703 0.27478 0.45889 0.00456 0.45981 0.46118 0.46209 0.46300
0.55  0.38187 0.28385 0.46828 0.00419 0.46911 0.47037 0.47121 0.47204
0.60  0.39690 0.29264 0.47814 0.00383 0.47891 0.48006 0.48082 0.48159
0.65  0.41237 0.30125 0.48865 0.00349 0.48935 0.49040 0.49109 0.49179
a=2.1,b=1.6 0.70  0.42859 0.30976 0.50002 0.00316 0.50066 0.50161 0.50224 0.50287
c=1.5 0.75  0.44597 0.31825 0.51260 0.00284 0.51317 0.51402 0.51459 0.51516
0.80  0.46516 0.32682 0.52690 0.00252 0.52741 0.52816 0.52867 0.52917
0.85  0.48730 0.33559 0.54390 0.00220 0.54434 0.54500 0.54544 0.54587
090  0.51475 0.34475 0.56564 0.00184 0.56601 0.56656 0.56693 0.56730
0.95  0.55456 0.35466 0.59828 0.00143 0.59856 0.59899 0.59928 0.59956
0.50  0.59000 0.34281 0.95548 0.08666 0.97281 0.99881 1.01614 1.03347
0.55  0.64126 0.36759 0.99326 0.08199 1.00966 1.03426 1.05065 1.06705
0.60  0.69529 0.39263 1.03392 0.07733 1.04939 1.07258 1.08805 1.10352
0.65  0.75304 0.41810 1.07822 0.07263 1.09275 1.11454 1.12907 1.14359
a=0.9,b=2.1 0.70  0.81583 0.44423 1.12727 0.06785 1.14084 1.16119 1.17476 1.18833
c=0.8 0.75  0.88560 0.47129 1.18272 0.06289 1.19529 1.21416 1.22674 1.23931
0.80  0.96548 0.49961 1.24726 0.05764 1.25879 1.27609 1.28762 1.29914
0.85 1.06105 0.52973 1.32582 0.05192 1.33620 1.35178 1.36216 1.37255
0.90 1.18434 0.56250 1.42896 0.04534 1.43802 1.45163 1.46070 1.46977
0.95 1.37133 0.59970 1.58862 0.03684 1.59599 1.60704 1.61441 1.62178
0.50  8.55567 6.39126 10.95364 3.36065 11.62577 12.63396 13.30609 13.97823
0.55  8.92392 6.60471 11.19968 3.12743 11.82517 12.76340 13.38888 14.01437
0.60  9.30138 6.81362 11.46069 2.90376 12.04144 12.91257 13.49332 14.07407
0.65  9.69463 7.01999 11.74130 2.68678 12.27866 13.08469 13.62205 14.15940
a=1.5,b=2.7 0.70  10.11210  7.22577 12.04803 2.47357 12.54275 13.28482 13.77953 14.27425
¢=0.07 0.75  10.56568  7.43307 12.39059 2.26079 12.84275 13.52099 13.97314 14.42530
0.80 11.07388  7.64439 12.78470 2.04402 13.19350 13.80671 14.21551 14.62431
0.85 11.66956  7.86309 13.25879 1.81646 13.62209 14.16702 14.53031 14.89361
0.90  12.42250  8.09448 13.87418 1.56510 14.18720 14.65673 14.96975 15.28277
0.95 1354113 8.34912 14.81569 1.25492 15.06668 15.44315 15.69413 15.94512
0.50  0.09965 0.01605 3.16349 16.25100 6.41369 11.28899 14.53919 17.78939
0.55  0.17300 0.02670 3.50019 16.92295 6.88478 11.96167 15.34626 18.73085
0.60  0.29518 0.04356 3.90910 17.53334 7.41576 12.67577 16.18243 19.68910
0.65  0.49720 0.07004 4.41214 18.01322 8.01478 13.41875 17.02139 20.62403
a=0.2,b=1.5 0.70  0.82869 0.11143 5.03925 18.26098 8.69145 14.16974 17.82194 21.47414
c=0.3 0.75 1.36635 0.17575 5.83185 18.13908 9.45967 14.90140 18.52921 22.15703
0.80 222313 0.27491 6.84924 17.48326 10.34589 15.59087 19.08752 22.58417
0.85  3.55942 0.42597 8.18467 16.12806 11.41028 16.24870 19.47431 22.69992
0.90  5.62609 0.65322 10.01872 13.92370 12.80346 16.98057 19.76531 22.55005
095  9.03726 0.99602 12.87101 10.62160 14.99533 18.18181 20.30613 22.43045
0.50  15.04948 591009  40.34902  522.13470  144.77600  301.41640  405.84330  510.27020
0.55 17.83804  6.86510  43.00834  509.35810  144.87990  297.68740  399.55900  501.43060
0.60 21.00144  7.90847 4596118  494.45020  144.85120  293.18630  392.07630  490.96640
0.65 24.61846  9.05152  49.27447  477.10690  144.69590  287.82790  383.24930  478.67070
a=0.5,b=1.9 0.70  28.80155  10.30905  53.04407  456.91290  144.42670  281.50050  372.88310  464.26570
¢=0.02 0.75 3372001 11.70113  57.41484 43327110 144.06910  274.05040  360.70460  447.35890
0.80  39.64816  13.25632  62.62251  405.25880  143.67430 26525190  346.30370  427.35540
0.85 47.08034 15.01819  69.09395  371.29750  143.35340  254.74270  329.00220  403.26170
0.90  57.07300 17.06102  77.74638  328.21900  143.39020  241.85590  307.49970  373.14350
0.95 7276878  19.54019  91.32756  267.39260  144.80610  225.02380  278.50240  331.98090
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Estimation methods of TLMKE distribution

Consider a sample of observations xi, x», ..., X, drawn from the TLMkE distribution with pdf f(x;%)
and distribution function F(x;%). The parameter estimates a, b and ¢ of TLMkE distribution can
obtained using different estimation techniques in this section.

Maximum Likelihood estimation of TLMKE distribution
The likelihood function of TLMKE distribution is

T = nf(x;ﬂl) = l_[ {ZabCeaCX_z(ng_l)u (1 B e—cx)a—l (1 ~ 6—2(6”—1)")17_1}
k=1

Now, the log-likelihood function of TLMkE distribution is

m

logt = mlog2+m10ga+mlogb+m10gc+aczxi_zz(ecxi — 1)+ (a- I)Z log (1 — e
k=1 k=1 =1

+ (b - I)Z log (1 - e‘z(ecx_l)")
k=1

By solving the following equations, we can obtain the estimates &, b and ¢ of parameters a, b and ¢
respectively:

1)

alog Tl _ m - —2(6”—1)“ _
b —Z+Zlog(1—e )—0
k=1

91
Og“ =2 Zx, ZaZx,ecx’(ecx’ D~ (a- 1)2

Maximum Product Spacing

x;e cx,(ecx,- _ 1)(1—1
- +2a(b- 1)2 S =0

Using the distribution function of TLMkG family in Equation (2.1), the following equation is obtained
CX; a b CXp_1 1)@ b
log 7, = log {(1 — e 2@ D ) —~ (1 — g HeD ) }

the estimates &, b and ¢ are obtained using following equations:

m+1 m+1
dlogt, 1 +(Rak_Rak]):O ;alogfz_ 1 E(Rbk Rb“):()

da  m+1 Dy ob m+ 1 D,
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dlogt, _ mzrl R, - R, _0o
oc m+1 Dy

OF (x5 1)
Ru= =G0

= aF()i;l;: ) _ (1 _ 6_2(ecx_1)a)b log(l B e—2(e”‘—1)")

. _ CcX_1\4 b-1 _ CcX_1\4 . _
R, = 2abxe®™ (1 — e~V 720 (o — 1y

where,

=2b (1 - e‘2(e”‘”a)b_l e 2D (e — 1) log (eF — 1)

Least Squares estimation

The Least square estimate function of TLMkE distribution is

T3 = Z [F()C(k); 9
k=1

The LS estimates can be obtained by solving following equations

0log 73 - k 0 log T3 u k
=2 R, |F ) —-——1=0 ; = F ; -———1=0
5 kZ::‘ k[ (xw)s ) m+1] Z b | F (X 91) 1
0logt; “ k
= C F ’ — =

Cramer-Von-Mises estimation

The CvM estimation function of TLMkE distribution is

1 < 2k -1
T4 = ﬁ-i_; F(x(k)’ﬁl)_T]

The estimates are obtained by

m

1 ot = 2k —1
Z ak[F(x(k), )——]20 ;JZZZRbk[F(x(k)’ )_T =0

=1 k=1
0ty - 2k -1
E = 2;Rck [F(X(k),ﬂl) - T:| =0

Anderson Darling estimation

The AD estimation function of TLMkE distribution is

1 m
75 = —m = — 3 2k = 1) [10g(F (xy: 1)) + log(1 = F(xogerys 01)]
k=1
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The estimates of the proposed family can be obtained using the following equations

0 1< [ R, R, |
ots _ 1 ZQk 1) k m—k+1 -0
m k=1

da | F(xg); ) B F(Xgn-k+1); 0) |

0 I © R R

2 - __ Z(zk -1 b]_( _ bm—k-v»l. ~0

ob m £ | F(x@; ) F(Xgn-ks1)s T) |

0 1 © [ R, R, ]

% = —= Z(zk ~ 1) S it ~ 0
c m £ | F(x@: 91 F(Xpn—rs1ys ) |

5. Simulation study of TLMKE dsitribution

In this simulation study section, we present the results of a simulation study conducted for the TLMkKE
distribution to evaluate the performance of the estimation methods. Based on N = 1000 simulations,
we assessed five estimation methods: MLE (1), MPS (1;), LS (73), CvM (74) and AD (75) across
different sample sizes. Samples were generated using the quantile function in Equation (4.3).

The Tables 3,4, 5, 6 and 7 display the mean, bias, and mean square error (MSE) for each method
across different sample sizes n = {20, 50,75, 100, 200, 350, 500}. Parameter sets were selected to rep-
resent a diverse range of underlying density shapes of the TLMkE model, including symmetric, skewed
and decreasing forms. The estimators were ranked based on their MSE values, with the lowest MSE
value given the best rank. These ranks are demonstrated in Table 8. The total ranks are presented within
the parentheses in the Table 8. The key observations from the simulation study of TLMkE distribution
are as follows:

e The MPS and AD methods demonstrated consistent performance by achieving top ranks across all
sample sizes and parameter combinations. This indicates their efficiency in estimating parameters
of the TLMkE model regardless of the underlying shape.

e Their consistent performance is likely due to the ability of MPS to handle complex models and
small sample sizes, whereas the AD is known for its sensitivity to tail behaviour.

e The performance of MLE was highly dependent on the sample size, and often performed poorly
for small sample sizes. However, its performance improves as the sample size increases, aligned
with the asymptotic theory that MLE estimators become efficient with large sample sizes.

e The improved performance is specifically observed for the underlying skewed density form.

e The LS method showed limited effectiveness. It is occasionally competitive with MLE for small
sample sizes, but is consistently outperformed by MPS, AD and MLE with increasing sample
size.

e Overall, the CvM method was the least effective. It consistently produced the highest MSE values
across the different sample sizes and parameter sets.

Furthermore, our simulation results confirm the consistency of the parameter estimators. For all meth-
ods, the mean of the estimates approaches the true parameter value whereas the metrics bias and MSE
exhibit a consistent decreasing trend with increasing sample size. Figure 6 shows the relationship be-
tween the MSE and sample size, providing a clear presentation of these performance trends across all
five parameter sets and estimation methods.
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Figure 6. The sample size vs MSE plots for different estimation techniques across parameter

sets
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Table 8. Overall Ranks

T T2 T3 Ty Ts
n ab ¢ YRanks ab ¢ ) Ranks a b ¢ ), Ranks a b ¢ ) Ranks a b ¢ ) Ranks
2035 5 1383 21 1 4432 o8 544 1343 123 6@
50 355 135 11 1 3434 11 543 129 222 62
75 35 5 1350 12 1 4332 88 444 128 213 69
Set-1 100 35 5 13512 2 5533 118 444 129 211 40
2002 3 5 o 122 s 454 1388 543 129 311 503
35021 1 412 3 6% 544 13 455 1459 332 8g¥
50021 1 4012 2 5 455 149 544 13¥W 333 9B
20 45 5 1450 22 2 62 333 98 544 139 111 3W
50 355 135 12 2 52533 118 444 129 211 40
75 35 5 13%3 21 1 4 433 108 544 13%3 122 5@
Set-I 100 2 5 5 n’Ww 13 3 7% 422 83 544 1389 311 50
20025 5 129 11 1 3533 118 444 1289 322 7@
35035 5 1350 11 1 3433 108 522 9% 244 1089
50025 5 129 11 1 3 533 1% 444 128 322 72
20 33 4 108 21 1 4523 1089 455 149 142 79
50 34 3 % 21 1 A4 534 12w 455 148 122 5@
75 23 3 g 11 1 3 554 1459 445 13" 322 72
Set-IT 100 12 2 5% 21 1 48 444 128 555 158 333 98
2001 2 2 5221 1 4 444 129 555 158 333 9B
35021 1 412 2 52555 158 444 129 333 9B
50012 1 421 2 520455 1459 544 13 333 9B
20 34 5 2% 21 1 4433 108 554 149 122 59
50 33 3 o 21 1 4 444 128 555 158 122 58
75 33 3 o 11 1 3534 128 445 1380 222 62
Set-IV 100 3 3 3 o 11 1 3 444 128 555 158 222 62
20021 1 4012 2 5555 15 444 128 333 9B
35022 2 6% 11 1 3 444 128 555 158 333 9@
50022 2 62 11 1 3 444 128 555 158 333 o
20 45 5 1450 21 1 4333 98 544 139 122 52
50 34 4 1% 11 1 3 433 108 555 1589 222 6%
75 31 1 5090 12 2 sUSh 444 129 555 158 233 8B
Set-V 100 2 3 3 g¥ 11 1 3 444 129 555 158 322 7@
20022 2 62 11 1 3 544 13" 455 149 333 9o
35021 1 4012 2 5555 158 444 129 333 9B
5002115 459 1215 45" 554 1459 445 13®W 333 9B
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6. Applications

This section deals with the application of the TLMkE model to three real-world datasets: blood cancer
data, turbocharger suits data and emissions data. The model is compared to four recent exponential-
based three-parameter models: Marshall-Olkin logistic exponential (MoLEXx) [41], Kumaraswamy Ex-
ponential (KuEx) [3], Power Modified Kies exponential (PMkKEx) [5], and Half-logistic Modified Kies
exponential (HLMKEX) [10]. The performance of the model was evaluated based on various goodness-
of-fit measures: Kolmogorov-Smirnov (k3), AD (k) and CvM (k;)and information measures: Akaike
information criterion (x4), Consistent Akaike information criterion(ks), Bayesian information criterion
(k) and Hannan-Quin information criterion (k7).

Blood-Cancer data

The first dataset represents the lifetime of patients diagnosed with Leukaemia, a type of cancer that
affects blood cells by increasing the number of white blood cells, which reduces the human body’s
ability to fight infections and weakens the immune system. The dataset was recorded at one of the
hospitals of the Ministry of Health facilities in Saudi Arabia and was recently used by Sakthivel et al.
[51]. The ordered lifetimes (in years) data is: 0.315, 0.496, 0.616, 1.145, 1.208, 1.263, 1.414, 2.025,
2.036, 2.162, 2.211, 2.370, 2.532, 2.693, 2.805, 2.910, 2.912, 3.192, 3.263, 3.348, 3.427, 3.499, 3.534,
3.767,3.751, 3.858, 3.986, 4.049, 4.244, 4.323, 4.381, 4.392, 4.397, 4.647, 4.753, 4.929, 4.973, 5.074,
5.381 and the Table 9 and Figure 7 give the summary of the data. The blood Cancer data shows a slight
left skew, with most values clustered toward higher life expectancies, as seen in the violin plot and
histogram in Figure 7. The TTT-plot shows increasing hazard pattern. The distribution has a flatter
peak in the histogram matches the low kurtosis in the Table 9, indicating a wider and less peaked
distribution.

Table 9. Summary of blood Cancer data

Mean 0O Median 03 Var. Sk Kur. Min. Max.
3.135 2.187 3.348  4.284 1.893952 -0.400217 -0.786664 0.315 5.381

0.20
|
|
08

T(i/n)
0.4

0.0

Figure 7. Violin plot, Histogram and TTT-plot of blood Cancer data

Figure 8 shows the estimated distribution function, pdf and PP plots of the proposed and competing
models for blood cancer data. The estimated hazard plot of the TLMkE model in Figure 8 shows an
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increasing pattern which aligns with the TTT-plot shown in Figure 7. The smooth distribution function
curve and well-fitted pdf reflect the distribution of the data, while the PP-plot further supports the
suitability of the proposed model by showing that the empirical points closely follow the theoretical
line, indicating a good fit to the model.

The Table 10 presents the goodness-of-fit measures and various information measures for the con-
sidered models. These results support the visual representations shown in Figure 7. The TLMkE model
consistently exhibited the lowest values for «;,k, and «3, as well as for the k4, k¢, ks and k7 values. This
demonstrates the superior performance of the TLMkE model over its competing models. The reason
for this superiority can be attributed to the built-in flexibility of the TLMkE in handling skewness and
kurtosis. The TLMkE model with TL-G parameter ‘a’ and Mk-G parameter ‘b’ provides more con-
trol over both skewness and kurtosis than the competing models. In addition, the higher p-value of
the model confirms its better fit to the data compared with other models. The Table 11 represents the
maximum likelihood estimates and standard errors of TLMkE and its competing models for the blood
cancer data.
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Figure 8. Estimated cdf, pdf and PP-plots of blood Cancer data
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Table 10. Goodness-of-fit and adequacy measures of blood Cancer data

Distribution K1 K> K3 p-value K4 Ks Ke K7

TLMKE 0.0135 0.1108 0.0575 0.9986 133.5502 134.236 138.5409 135.3409
PMKEx 0.0451 0.3222 0.0818 0.9373 136.6102 137.2959 141.6009 138.4008
HLMKEx 0.0870 0.5863 0.0959 0.8327 140.9743 141.6600 145.9649 142.7649
MoLEx 0.1500 0.9685 0.1062 0.7313 145.6786 146.3643 150.6693 147.4692
KuEx 0.1759 1.1198 0.1337 0.4493 146.6735 147.3592 151.6642 148.4641

Table 11. MLE estimates and standard errors of blood Cancer data

Distribution a b ¢ E, E, E;

TLMKE 5.9067 0.2428 0.1347 4.0080 0.1990 0.0068
PMKEx 1.0036 0.0586 1.9260 1.0371 0.1451 1.919
HLMKEx 1.9903 0.1381 10.7248 0.8722 0.0585 1.7969
MoLEx 1.7454 0.4391 6.0796 0.4881 0.2056 6.5856
KuEx 2.8709 7.3161 0.1941 0.5778 6.9489 0.1073

Emissions data

The second dataset provides the proportion of global CO, emissions the year 2020 across the 211
countries. CO, emissions, primarily generated by the burning of fossil fuels, industrial processes and
deforestation, are a major contributors to global warming and climate change. This dataset was recently
used by Hussam et al. [34]. The data values are : 0.18, 1.88, 0.58, 3.53, 20.32, 5.39, 7.41, 0.11, 0.68,
2.09, 0.71, 0.26, 0.26, 0.21, 3.80, 0.73, 3.780, 0.99, 0.31, 2.16, 1.76, 5.01, 11.47, 6.53, 0.94, 3.37,
1.93, 6.08, 7.69, 0.67, 5, 0.04, 15.37, 0.56, 4.85, 14, 6.75, 4.66, 9.06, 1.68, 2.62, 2.56, 0.36, 15.52,
1.36, 0.57, 1.75, 0.08, 6.04, 1.75, 3.32, 8.6, 2.5, 2.56, 6.26, 0.92, 0.03, 7.62, 17.97, 0.59, 1.99, 1.53,
1.06, 0.4, 5.63, 5.24, 8.42, 6.94, 0.43, 4.89, 7.09, 3.47, 13.06, 0.64, 8.15, 1.02, 0.13, 3.99, 12.12, 0.43,
5.07. The Table 12 and Figure 9 together reveal the right-skewed nature of the emissions data, while
the kurtosis value suggests a moderately peaked shape with a lighter tail. The histogram and violin
plot show the skewed pattern of the data, and the TTT plot presents a likely bathtub hazard trend.

Table 12. Summary of emissions data

Mean Q; Median Q; Var. Sk Kur. Min. Max.
4166 0.680 2.56  6.080 20.1696 1.5626 2.1989 0.03 20.32

The estimated pdf plot of the emissions data in Figure 10 displays a clear decreasing trend cap-
turing both the high peak and long tail, indicating that the model is well-suited for decreasing data.
Furthermore, the estimated hazard function plot indicated a bathtub-shaped trend, which aligns with
the pattern suggested by the TTT-plot in Figure 9. The estimated distribution function plot follows an
expected increasing pattern, which is a basic feature of a distribution function, and the PP-plot also
supports the model’s good fit to the emissions data by closely following the diagonal line.

The Table 13 presents a comparison of the different models applied to the emissions data. The
results highlight that the TLMkE exhibited the best performance. Based on the various adequacy
measures presented in the table, it can be concluded that the proposed TLMkE model demonstrates
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Figure 9. Violin plot, Histogram and TTT-plot of emissions data

superior performance for the emissions dataset. This better performance is due to the TLMkE ability of
the model to effectively capture the right skewness and heavy-tail. This flexibility allows the TLMkE
model to accurately represent the data’s high peak and long-tail due to few countries with very high
emissions. A higher p-value adds support for its better fit. Overall, the results suggest that TLMkE
model is appropriate for modelling the emissions dataset. The Table 14 shows the MLE estimates and
standard errors of the TLMkE model for emissions data.

Table 13. Goodness-of-fit and adequacy measures of emissions data

Distribution K1 K> K3 p-value K4 Ks K¢ K7

TLMKE 0.0349 0.2248 0.0547 0.9685 393.8612 394.1729 401.0446 396.7433
MoLEx 0.0481 0.2823 0.0645 0.8894 395.1435 395.4552 402.3269 398.0256
PMKEx 0.0570 0.3448 0.0675 0.8547 396.2146 396.5263 403.3979 399.0966
HLMKEx 0.0385 0.2544 0.0655 0.8777 394.3738 394.6855 401.5571 397.2559
KuEx 0.0578 0.3297 0.0682 0.8459 395.8591 396.1707 403.0424 398.7411

Table 14. MLE estimates and standard errors of emissions data

Distribution a b ¢ E, E; E;
TLMKE 0.3448 3.1198 0.1617 0.0993 1.3265 0.0605
MoLEx 0.8163 0.2684 0.9842 0.1292 0.0952 0.481
PMKEXx 2.3666 0.4773 0.2670 3.1824 0.2509 0.3623
HLMkKEx 0.1322 0.6094 1.3839 0.1705 0.7302 2.0043
KuEx 0.7940 1.7458 0.1091 0.1027 1.4142 0.0967

Turbocharger suits data

The third dataset provides the 40 failure times (10° hours) for turbocharger units of one engine. A
turbocharger is a device that pushes more air into an engine cylinder, helping it burn fuel and produce
power. This dataset was recently used by Swetha and Nagarjuna [55]. The data is: 1.6, 2.0, 2.6, 3.0,
3.5,39,45,46,4.8,5.0,5.1,5.3,54,5.6,5.8, 6.0, 6.0, 6.1, 6.3, 6.5,6.5,6.7,7.0, 7.1, 7.3, 7.3, 7.3,
7.77,7.7,7.8,79, 8.0, 8.1, 8.3, 8.4, 8.4, 8.5, 8.7, 8.8, 9.0.
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Figure 10. Estimated cdf, pdf and PP-plots of emissions data

20

The Table 16 and Figure 11 present descriptive measures of the turbocharger suits data. The ob-
served negative skewness shows asymmetry in the data, with a longer tail on the left side. Further,
the negative kurtosis suggests a platykurtic distribution. These characteristics are reflected well in the
estimated pdf plot shown in Figure 12.

Table 15. Goodness-of-fit and adequacy measures of turbocharger suits data

Distribution K1 K> K3 p-value K4 Ks K K7

TLMKE 0.0351 0.2773 0.0993 0.8252 166.321 1669876 171.3876 168.1529
PMKEx 0.0541 0.4156 0.1003 0.8162 168.4941 169.1608 173.5608 170.3261
MoLEx 0.1494 1.024 0.1172 0.6416 178.0103 178.677 183.0769 179.8422
KuEx 0.1523 1.0483 0.1215 0.5967 177.0059 177.6726 182.0726 178.8379
HLMKEx 0.1067 0.7618 0.1329 0.4803 179.8848 180.5515 184.9514 181.7167

The estimated PDF plot of the TLMkE distribution in Figure 12 illustrates a visual representation
of the turbocharger suits data. It exhibits an inverted J-shaped plot with more concentration towards
the left, accurately capturing the data’s negative skewness of the data. The estimated hazard function
plot for the TLMkE model shows an increasing trend, which is expected for aging components. The
estimated distribution function plot shows the usual increasing pattern, and the PP-plot displays the
model’s good fit to the turbocharger suits data.

The Table 15 presents the best performance of TLMkE model over the competing models as shown
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Figure 11. Violin plot, Histogram and TTT-plot of Turbocharger suits data

Table 16. Summary of turbocharger suits data

Mean Q; Median Q3 Var. Sk Kur. Min. Max.
6.253 5.075 6.5 7.825 3.82409 -0.66255 -0.35898 1.6 9

by a high p-value and lower goodness-of-fit and information measures and Table 17 presents the MLE
estimates and standard errors of the models, respectively.

Table 17. MLE estimates and standard errors of turbocharger suits data

Distribution a b ¢ E, E, E;

TLMKE 4.4126 0.5211 0.0795 1.3157 0.2053 0.0034
PMKEXx 2.7928 0.0933 1.0325 1.0967 0.0727 0.3998
MoLEx 3.2202 0.1595 5.6257 0.7298 0.0591 8.7652
KuEx 5.6564 8.0716 0.1701 1.5287 9.1227 0.0860
HLMKEx 2.7280 0.0545 11.8217 0.9169 0.0183 1.9380

To evaluate how well the proposed model fits real-world data, we used two key measures: the Vuong
test [60] and Leave-One-Out Log-Likelihood (LOL). The Vuong test statistically compares two non-
nested models by examining their log-likelihood ratios, producing a Z-score that indicates whether one
model fits the data significantly better or if they’re equivalent. A positive Z-score (Z > 1.96 at 5%
level of significance) and a small p-value show that first model performs better. Meanwhile, the LOL
evaluates predictive accuracy by iteratively fitting the model to all but one data point and testing on the
excluded observation, indicating the reliability of the model in real-world applications. In general, the
Mean absolute error (MAE) represents the average magnitude of prediction errors, with lower values
indicating better model accuracy. Both LOL and MAE provide a detailed view of statistical reliability
and practical accuracy.

The Tables 18 and 19 demonstrate the TLMkE model’s strong statistical and predictive performance
across multiple datasets, establishing itself as a reliable choice for modelling complex distributions.

¢ In the life expectancy and Turbocharger suits datasets, it significantly dominates competing mod-
els including MoLEx, KuEx and HLMKEX in both Vuong tests and predictive accuracy metrics,
while the PMKEX is the closest competitor to the model. This is expected because the PMKEx
also shares the MKEx baseline, but the addition of the Topp-Leone model in TLMKE provides a
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Figure 12. Estimated cdf, pdf and PP-plots of turbocharger suits data

greater flexibility in capturing skewness and tail behaviour.

e Although the emissions data show less statistical performance in the Vuong test, TLMKE still
achieves the best predictive performance, maintaining the highest log-likelihood and lowest MAE
among all models.

e The TLMKE distribution achieves higher LOL values, demonstrating that the model makes more
accurate predictions than other models across the three datasets

e Lower MAE values indicate that the model’s predictions are closer to the observed values than
those of the competing models.

This suggests that although the model’s advantage may vary slightly depending on the data, it consis-
tently delivers good results.

Table 18. Vuong Statistic values for TLMKE vs comparing models

Model Blood Cancer data ~ Emissions data  Turbocharger suits data

Z p Z p Z p

TLMKE vs MoLEx 3.3028 0.001 0.9656 0.3342 3.2662 0.0011
TLMKE vs KuEx 29491 0.0032  1.1689 0.2425 2.7622 0.0057
TLMEKE vs PMKEx 1.2429  0.2139 13918 0.164 1.52 0.1285
TLMKE vs HLMKEx 3.9823 < 0.0001 0.7999 0.4238 2.5634 0.0104
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Table 19. Predictive Analysis of proposed and comparing models

Model Blood Cancer data Emissions data Turbocharger suits data

LOL MAE LOL MAE LOL MAE

TLMKE -80.1605 0.1901 -193.9306 0.1745 -63.7751 0.0491
MoLEx -86.0052 0.2579 -194.5718 0.2219 -69.8393 0.1927
KuEx -85.503  0.3411 -194.9295 0.1871 -70.3368 0.2425
PMKEXx -81.2471 0.1908 -195.1073 0.2324 -65.3051 0.1204
HLMKEx -86.9424 0.4913 -194.1869 0.2183 -67.4871 0.1552

7. Conclusion

This study introduced a new two-parameter generalized family of distributions, the Topp-Leone
Modified Kies-G family, which demonstrates considerable flexibility in modelling diverse data pat-
terns. Key statistical properties, which include moments, generating function, order statistics, entropy,
mean deviation, inequality and actuarial measures, were derived. The proposed family is extended
using an exponential distribution for which properties, including moments, stochastic ordering, in-
equality and actuarial measures, are investigated. A simulation study demonstrated the reliability of
certain estimation methods. Furthermore, the superior performance of the TLMkE model over MoLEX,
KuEx, PMKEx and HLMKEXx distributions was demonstrated using various goodness-of-fit measures,
information measures and Voungs statistic and the predictive performance of the model was shown
through Leave-one-out log likelihood. The practical applicability of the TLMKE model is demon-
strated through three real datasets: Life expectancy, turbocharger suits and emissions data. Overall, the
TLMKE model offers a flexible tool for modelling data for reliability and survival analysis.

8. Future scope of research

The proposed Topp-Leone Modified Kies-G family has several ways for future research. We plan
to extend the model using different baseline distributions, including the Lomax and Weibull distri-
butions. Furthermore, we aim to apply the model to other areas such as deriving and analysing the
stress-strength reliability property of the model and parameter estimation using Bayesian estimation
techniques, such as the Markov Chain Monte Carlo method and application to different censoring
schemes.
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