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A Robust Machine Learning Framework for 

Partial Discharge Diagnosis in Diverse  

Power Substations 
ABSTRACT 

Partial discharge (PD) detection is essential to avoid failures in 

electrical substations. This paper focuses on classifying PD types in 

both Air-Insulated (AIS) and Gas-Insulated (GIS) substations. Support 

Vector-Machine (SVM) and Random Forest (RF), two artificial 

intelligence (AI) methods, were created for this task. The paper 

provides the complete mathematical framework for two distinct 

machine learning (ML) classifiers specifically designed for subtraction 

analysis. The three primary PD-sources: corona, surface, and internal 

discharge were recognized by the models during training. The study 

validates the PD-features by analyzing and presenting distinct time-

domain waveforms and frequency-domain spectra for each discharge 

type under noisy-conditions, providing a strong physical basis for the 

AI-classification. The RF-classifier achieved perfect accuracy of 

99.6%. The SVM-classifier also showed high accuracy of 97.78%. The 

results demonstrate that AI can provide reliable early warning for 

substation maintenance. This helps improve the safety and reliability 

of power networks. The research offers a practical framework for 

applying these methods in Egypt's energy sector. 
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1. Introduction 
 

    The demand for advanced substation 

monitoring, diagnostic, and control 

technology has increased due to the 

complexity of contemporary power systems.  

The foundations of transmission and 

distribution networks, where performance, 

effectiveness, and safety are critical, are 

represented by gas-insulated substations 

(GIS) and air-insulated substations (AIS). 

Traditional monitoring-systems have 

frequently depended on manual interventions 

and threshold-based-alerts, which have 

limitations in terms of their capacity to 

anticipate breakdowns or improve 

performance in real time. To isolate and 

protect and high-voltage-substations, these 

designs use insulating gases, most frequently 

sulfur hexafluoride (SF₆), inside tight 

enclosures.  The AIS, on the other hand, use 

ambient air as the main insulating-medium 

and frequently need for a larger layout [1]. 

The three primary origins of partial discharge 

(PD) are surface discharges (SD), corona 

discharges (CD), and internal-discharges 

(ID), according to [2].  The CDs appear in 

areas where there is a strong electric-field 

among the conductor and the surrounding air 

or in pointed conductive-materials.  Since 

they are exterior, these discharges typically 

do not indicate the insulation-deterioration. 

Conversely, the SDs happen at the interface 

among an insulating-material with air and are 

frequently brought on by unfavorable 

environmental-factors; mechanical wear, or 

pre-existing deterioration of the insulating-

material.  Finally, internal-discharges occur in 

cavities that are incorporated into the 

insulating-substance. These cavities make it 

easier for areas with strong electric-fields to 

grow, which can gradually deteriorate the 

material until serious failures happen.  For 

efficient fault-identification and insulation 

system evaluation, it is essential to 

comprehend these various PD-sources [3]. 

   High-voltage substations are being modified 

more and more by artificial intelligence (AI), 

which improves predictive-maintenance, 

intelligent-fault-detection, and operational-

reliability.  Large amounts of monitoring data 

produced by substation sensors and 

supervisory systems can be analyzed with the 

use of contemporary AI techniques like 
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machine learning (ML) and deep learning 

(DL) [4, 5]. Since convolutional neural-

networks (CNNs) attained state-of-the-art 

performance in image-classification tasks in 

2012, DL, which has its roots in artificial 

neural-network (ANN) research , has seen 

incredible advancements [4]. These 

developments have opened the door for the 

use of DL models in fields well outside 

computer-vision, such as substation-

automation and power-system-diagnostics. 

2. Literature Review 
 

    A breakdown condition known as PD is 

linked to electrical-insulation that has weak 

areas or defects.  Electrical discharges occur 

in defective-places; partially spanning the 

space among conductors, even while the 

majority of the insulation, for instance, in a 

generator can sustain the electric forces 

experienced [6].  This only occurs when the 

electric field strength is greater than the 

insulating material's breakdown strength, 

which is typically the result of localized 

deterioration. High-frequency, transient 

currents that last only a few nanoseconds to 

microseconds are produced when the arc 

leaps through the void.  Light, heat, sound, 

high-frequency waves, and chemical 

processes that might result in the production 

of ozone and other gases are all produced by 

PD [7].  The PD will deteriorate insulation 

over time.  The insulation will develop 

conductive-channels, which will cause PD to 

worsen.  The obvious effect of the injury is 

treeing, or the development of conductive-

pathways that resemble trees with numerous 

branches [6]. 

    PD is frequently regarded as a key 

symptom of electrical-equipment non-

conformities and is invariably linked to 

insulation problems [8].  To identify issues 

and evaluate the operational state of electrical 

system assets, PD-analysis is suggested in a 

number of studies [2, 3, 5, 7, 9, 10]. Although 

PD measures present a viable method for 

assessing insulation-system-deterioration, the 

literature generally recognizes a number of 

restrictions on their use, particularly when 

conducting measurements online [4, 9, 11].  

Corona, Radio waves, TV transmissions, 

WiFi, and other ambient elements can 

interfere with sensors that are used to measure 

PD. A major obstacle in this area of study is 

the existence of several PD sources, which 

further complicates fault-detection.  

Distinguishing among various PD types and 

separating them from other noise sources 

becomes a crucial difficulty in this field of 

study. The ensuing pulse's waveform 

properties can be affected by the discharge's 

source as well as the insulating-material in 

which it occurs.  As a result, many studies 

have put forth methods for identifying and 

differentiating discharge sources through the 

analysis of pulse-extracted features [9, 11].   

Utilizing traits associated with the PRPD-

pattern (Phase-Resolved PD) is one way 

employed for this aim. The PRPD-pattern is 

helpful for categorizing discharge types since 

it typically stays the same for every kind of 

discharge [2, 12, 13].  However, PRPD-

patterns become more complicated and 

challenging to understand when there are 

several discharge sources or significant noise, 

which is common in substation 

measurements.  Another strategy is to classify 

pulse sources according to similar-

characteristics. Features pertaining to pulse-

form, frequency, and duration are typically 

employed.  PRPD-patterns can be separated 

by classifying pulses according to their 

similarity [14, 15].  The development of tools 

for automatic-monitoring of the existence of 

PD can be facilitated by the combination of 

supervised models for categorizing PRPD-

patterns and unsupervised models for 

differentiating discharge sources [16, 17]. 

New potential and challenges for GIS fault-

diagnosis are presented by the development 

of the powerless Internet-of-Things (IoT)  

[18, 19].  The capacity to accurately identify 

fault-diagnosis techniques for GIS faults, as 

well as the exploration of real-time rapid 

processing of GIS fault signals, has emerged 

as a pressing issue that requires immediate 

attention. Statistics show that insulation flaws 

are the primary cause of GIS accidents [20], 

and the majority of these flaws show up as 

PD, which will hasten the aging of 

equipment. Presently, the primary methods 

for identifying insulation flaws are the 

measurement of light-scale, sound, heat, and 

electromagnetic-waves as well as the 

breakdown of chemical compounds brought 

on by PD [21]. Pulse current, ultrasonic, ultra 
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high-frequency (UHF), optical-detection, and 

gas-decomposition product detection are 

some of the detection techniques [22-24].  

The UHF approach is the most popular of 

these techniques due to its great detection 

sensitivity and potent anti-interference 

capability [25]. Conventional ML techniques 

do exceptionally well in the classification of 

PD-patterns.  However, their feature 

extraction techniques over-rely on expert 

knowledge, and extensive human labor will 

result in unintentional mistakes.  It is 

challenging to ensure that features retrieved 

by various algorithms remain the best in other 

methods because they are neither 

transportable nor shared [26]. The DL 

techniques that rely on automatic feature 

extraction are incorporated with GIS PD-

pattern recognition to effectively address this 

issue. Currently, one-dimensional 

convolution, LeNet5, AlexNet, and long 

short-term memory (LSTM) models are 

among these DL models [12, 27, 28]. 

Overheating and abnormal discharges in GIS 

produce breakdown products, such as SO2, 

SOF2, SO2F2, and H2S.  Adsorption 

mechanisms and sensor selectivity are 

examined in first-principles and experimental 

investigations. The data can be used with PD 

sensing to estimate fault severity and infer 

fault type [7, 29]. 

The following are the primary contributions 

of this paper: 

 Providing a foundational 

characterization of the three primary 

PD-types (Corona, Surface, Internal) 

relevant to AIS and GIS 

environments, which is essential for 

accurate AI classification. 

 Application of AI Models: This study 

successfully applied two ML models, 

Support Vector Machine (SVM) and 

Random Forest (RF), to PD-types in 

substations. 

 Customized Model Implementation: 

The study showed how each model 

was specifically appropriate for 

various substation conditions.  While 

RF demonstrated high efficiency with 

clear signal data, SVM performed 

well in noisy-environments. 

 High Classification Accuracy: The 

implemented models achieved 

outstanding performance. The SVM-

classifier reached an accuracy of 

97.78%, and the RF-classifier 

achieved a perfect accuracy of 99% in 

classifying corona, surface, and 

internal discharges. 

 Comprehensive Performance 

Validation: The study provided a full 

evaluation using standard-metrics 

(Precision, Recall, F1-Score), 

confirming the reliability and 

robustness of both AI classifiers for 

PD analysis. 

3. Electrical Energy Generation  

A. ENERGY IN GENERATION EGYPT 

Due to large capacity additions, Egypt has 

established a notable surplus in power 

generation.  With an increasing tendency 

toward GIS in strategic and urban projects, 

the decision between AIS and GIS is based on 

a crucial trade-off between initial cost, 

spatial-needs, and operational-reliability. 

In 2022/2023, Egypt's installed generating 

capacity totaled 59,442 MW [30].  Thermal 

sources, such as natural gas and petroleum 

products, accounted for 87.93% (190.15 

TWh) of the total energy output, which came 

to 216.25 TWh. Hydropower (15.4 TWh), 

wind (1,632.3 MW capacity), and solar 

(1,674 MW capacity, including the 1,465 

MW Benban Solar Park) were the renewable-

energy-sources that accounted for 12.1% of 

the total [30, 31].   

 
 

Figure 1: Electricity generation in Egypt 

(2022/2023) 

As of June 2023, this represents a 14.2% 

annual increase in energy-generation and 
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consumption [32, 33].  With an output of 

220.1 TWh in 2023, Egypt was the second-

largest generator of electricity in the Arab 

world [31, 32]. 

 
Figure 2: Installed Electricity Capacity in Egypt 

(2022/2023) 

B. SUBSTATION TECHNOLOGY IN EGYPT 

As of June 2023, the transmission-network 

has a volume of 199,517 MVA and a circuit 

length of 57500 km [30].  Although there is 

no publicly available official count of AIS 

and GIS units, industry trends and project 

data show a distinct technology segmentation: 

AIS are still widely used because of their 

lower initial capital expense.  They are 

usually used in projects with a tight-budget, 

for distribution-level voltages, and in rural 

and semi-urban locations with lots of space 

[34, 35]. GIS is being used more and more in 

strategic, contemporary initiatives.  Their 

main benefit is a drastically smaller footprint 

(up to 70% smaller than AIS), which makes 

them perfect for places with tough-

environmental-conditions (like dusty, coastal 

areas) and dense metropolitan areas (like 

Cairo, Alexandria) [28, 35].  Because of their 

sealed construction, which shields 

components from weather and pollutants, 

they are more reliable and require less 

maintenance; nonetheless, they use SF₆ gas, 

which has a significant potential to cause 

global warming [7, 36]. A clear comparison 

of the two technologies is given in TABLE 1 

[36-39]: 

 
TABLE 2: AIR AND GAS-INSULATED SUBSTATIONS 

Criterion AIS GIS 
Insulation Medium Air   ₆ 
Space Requirement Large Compressed 

Maintenance Frequent Low 
Cost Lower Higher 

Reliability Moderate High 
Environmental 

Impact 
Minimal High due to   ₆ 

 

Egypt's electricity-industry has shown strong 

growth and a deliberate extension of its grid-

infrastructure.  GIS and AIS technologies are 

anticipated to continue to coexist.  In 

traditional applications, AIS is preferred due 

to its cost-effectiveness, while GIS is 

becoming more and more popular in 

metropolitan-areas, vital infrastructure, and 

connectivity projects due to its dependability 

and spatial-efficiency.  Future developments 

will probably see a slow transition to SF₆-free 

GIS-technology as they become more 

economically feasible and in line with 

international environmental-sustainability 

objectives [35, 36]. 

 

4. Types of Partial Discharges 

Taken into Account by AIS and 

GIS 

There are three main types of PD that are 

pertinent to HV substations: corona, surface, 

and internal discharges. The manifestation of 

PD varies based on the insulation-medium 

and the location of the defect.  For accurate 

insulation diagnostics in both AIS and GIS, 

these categories are essential. 
4.1 Corona Discharge 

Corona is a localized discharge occurring 

around sharp-edges or protrusions where the 

electric-field-intensity exceeds the inception 

threshold of the surrounding medium 

(typically air or SF₆). It is characterized by 

low-energy, fast-rise pulses with short-decay 

constants. The discharge magnitude is 

relatively small, but its continuous occurrence 

accelerates aging and leads to 

electromagnetic-interference [2]. 

  ( )     (  
     )    (     )          (1) 

4.2 Surface Discharge 

Surface PD happens along dielectric-

boundaries, particularly when there is 

moisture or pollution present.  As the charge 

disperses along the dielectric-contact, the 

discharges have a larger duration and an 
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intermediate magnitude in comparison to 

corona [2, 11]. 

  ( )     (  
     )    (     )          (2) 

4.3 Internal Discharge 

Internal PD develops in solid insulation's gas-

filled holes or cavities.  These discharges are 

a crucial symptom of insulation deterioration 

since they are high-energy-occurrences with a 

considerable charge size and a comparatively 

long-duration [2]. 

  ( )     (  
     )    (     )          (3) 

To approximate the fast-rise-time and slower 

decay typically observed in PD-events [13], a 

double-exponential-formulation is used: 

 ( )    (           )    (    )  

      

 

(4) 

where,     is the discharge-amplitude, 

proportional to discharge-magnitude (pC), 

   represents the slow-decay-constant and 

   represents the fast-rise-constant (       ) 
TABLE 2: COMPARATIVE CHARACTERISTICS OF 

MAJOR PD TYPES IN AIS AND GIS 
 

PD 

Type 

 

Pulse 

Amplitude 

Decay 

Constant 

( ) 

 

Dominant 

Frequency 

 
Corona  

Low 

 (<1 pC to 

few pC) 

Sub-µs 

(0.5–1 µs) 

High 

 (tens of MHz) 

 

Surface  
Medium 

(few pC to 

tens of pC) 

Few µs 

 (1–3 µs) 

Medium 

(MHz range) 

 

Internal  
High (tens 

to hundreds 

of pC) 

Several µs 

(3–10 µs) 

Lower 

(hundreds of 

kHz–few 

MHz) 

 

The pulse charge and decay constant values in 

TABLE 2 are derived from studies on PD in 

AIS and GIS insulation-systems as well as 

typical ranges published in IEEE Std 400.3 

and IEC 60270 [37, 39].  Although they are 

representative parameters for simulation and 

classification, the listed ranges are not 

absolute. 

The theoretical basis for feature extraction 

and AI-based classification of PD signals in 

this study utilizing ML and DL models 

(SVM, RF, CNN, LSTM) is provided by the 

distinctive characteristics of amplitude, decay 

constant ( ), and frequency spectrum. 

 

5. AI Classifier Mathematical 

Modeling for PD Analysis in AIS 

and GIS 
AI methods have become effective tools for 

PD-classification and detection in both AIS 

and GIS.  In addition to offering a foundation 

for classification-accuracy, the mathematical-

formulation of ML/DL models offers 

theoretical insights into how well they operate 

in various operational scenarios and noise 

levels. SVM and Random Forests (RF) are 

the representative AI classifiers whose 

mathematical underpinnings are presented in 

this section along with their applicability to 

PD analysis in AIS and GIS.   

5.1 Support Vector Machine (SVM) 
Since SVMs can create the best separating 

hyperplanes in high-dimensional-feature 

spaces, they are frequently employed in 

electrical engineering for classification 

problems.  They are especially well-suited for 

differentiating PD sources in AIS and GIS 

systems due to their resilience to noise [40]. 

For training data (        ), where       
   

and     *     +  : 

   
     

 
 

 
 ‖ ‖   ∑  

 

   

 

 

(5) 

Subject to: 

   (      )         
     

 

(6) 

The decision function is: 

    ( )   

    (∑  

 

   

    (       )   ) 

 

 

(7) 

 In AIS, background noise is high; SVM 

handles high-dimensional-features well. 

 In GIS, clear UHF PD signals make linear 

kernels efficient. 

SVM is a supervised learning model used for 

classification of PD-sources (e.g., corona, 

surface, internal discharge). It finds the 

hyperplane that maximizes the margin among 

different classes. 
5.2 Random Forest (RF) 

Several decision trees are used in Random-

Forests, an ensemble learning-technique, to 

lower-variance and prevent-overfitting.  They 

are useful in PD-classification tasks because 

of their ability to handle noisy-measurements 

and nonlinear data-distributions [15]. 
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Each tree splits nodes using Gini Index: 

       ∑  
 

 

   

 

 

(8) 

Final prediction is obtained by majority 

voting: 

 ̂       *  ( )   ( )      ( )+   (9) 

 AIS: Distinguishes PD from corona-noise 

efficiently. 

 GIS: Can incorporate gas decomposition 

features (e.g., SO2, SF6 byproducts). 

RF is an ensemble classifier using multiple 

decision trees. It reduces overfitting by 

averaging-predictions and useful for noisy 

PD-datasets. 

 
 

Figure 3: SVM-based classification workflow for 

PD signals (Corona, Surface, and Internal) 

 
Figure 4: RF-based classification workflow for 

PD signals (Corona, Surface, and Internal) 

TABLE 3: TABLE OF VARIABLES 
Symbol  Definition 

   Input feature vector 

   Class label (-1,+1) 

  Weight vector (SVM) 

  Bias term (SVM) 

   Slack variable (SVM) 

  Regularization parameter (SVM) 

   Lagrange multipliers (SVM) 

 (       ) Kernel function 

   Probability of class k (RF) 

   Hidden state at time   (RF) 

 ̂ Predicted output 

6. Results and Discussions 

The time-domain waveforms of internal, 

surface, and corona PDs with background 

noise are shown in Figure 5.  Every discharge 

type shows a distinct temporal signature in 

spite of the additional noise. Due to localized 

field enhancement at sharp points or 

protrusions, the CD is characterized by a 

brief, impulsive, low-amplitude pulse that 

usually happens at random-intervals.  Charge 

collection and transport along dielectric-

surfaces are reflected in the SD's somewhat 
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larger amplitude and longer pulse duration. 

The propagation of discharges within gas-

spaces inside solid-insulation is responsible 

for the ID's greatest amplitude and most 

oscillating waveform. 

 
Figure 5: Time-domain representation of PD-signals 

(Corona, Surface, and Internal) under noisy conditions 

The corresponding frequency-domain-spectra 

of the three PD categories are shown in 

Figure 6.  The CD's impulsive and noise-like 

characteristics are demonstrated by its 

wideband spectral distribution.  The ID has 

substantial low-frequency components (<50 

MHz) with discrete peaks, representing 

resonant phenomena inside the insulation-

cavities, whereas the SD spectrum is 

dominated by mid-frequency components 

(tens of MHz).  These variations in the 

frequency and time domains offer a distinct 

physical foundation for differentiating 

between PD types. 

 
Figure 6: Frequency-domain spectra of PD signals 

(Corona, Surface, and Internal) 

The different spectral and temporal features 

of internal, surface, and corona PDs 

demonstrate their capacity for discrimination.  

However, manual feature detection becomes 

difficult in real-world situations with 

complicated noise environments and high-

data volumes. Advanced ML-techniques 

including SVM, RF, CNN, and LSTM 

networks are used to address this. The 

statistical, spectral, and temporal 

characteristics of PD signals may be 

automatically captured by these techniques, 

allowing for accurate PD type categorization 

in both AIS and GIS. 

 
Figure 7: Confusion matrix of the SVM classifier for 

PD types (Corona, Surface, and Internal) 

At an overall accuracy of 97.78%, the SVM 

model was able to distinguish between the 

three PD classes (Figure 7).  While there were 

some slight misclassifications among Surface 

and Internal PDs, corona discharges were 

diagnosed with full accuracy (100%).  Since 

their spectral and temporal features are closer 

to those of Corona, this is to be expected.  

The outcomes demonstrate how well the 

SVM can distinguish between different PD 

patterns, particularly in noisy environments. 

TABLE 4 summarizes the precision, recall, and 

F1-score that were determined for each PD-

class to give a more thorough assessment of 

the SVM-classifier. 

TABLE 4: PERFORMANCE METRICS OF THE SVM-

CLASSIFIER FOR PD-RECOGNITION IN AIS AND 

GIS 

 

Class 

 

Precision 

 

 

Recall 

 

F1-score 

 

Corona  
0.97 1.00 0.99 

 

Surface  
1.00 0.97 0.98 

 

Internal  
1.00 0.97 0.98 
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Average 0.99 0.98 0.98 

The results in TABLE 4 complement the 

confusion-matrix shown in Figure 7. The CDs 

achieved the highest recall (100%), 

confirming the model’s ability to capture their 

distinct temporal and spectral characteristics. 

SDs and IDs exhibited slightly lower-recall 

values (97%), which align with the minor-

misclassifications observed in the confusion-

matrix. Nevertheless, their precision remained 

perfect (100%), indicating that once 

predicted, they were classified with high 

confidence. The overall F1-scores above 0.98 

demonstrate the SVM-classifier robustness 

and emphasize the reliability of the visual 

evidence presented in Figure 7. 

 
Figure 8: Confusion matrix of the RF classifier for PD 

types (Corona, Surface, and Internal) 

At an overall accuracy of 99.6%, the RF-

model successfully classified all three PD-

classes (Corona, Surface, and Internal) 

without any misclassifications. Compared to 

the SVM results, which showed slight-

confusion among SDs and IDs, the RF-

classifier demonstrated a perfect separation of 

all classes. This performance is reflected in 

the precision, recall, and F1-score values, all 

of which reached unity (1.00). 

TABLE 5: PERFORMANCE METRICS OF THE RF-

CLASSIFIER FOR PD-RECOGNITION IN AIS AND 

GIS 

 

Class 

 

Precision 

 

 

Recall 

 

F1-score 

 

Corona  
1.00 1.00 1.00 

 

Surface  
1.00 1.00 1.00 

 

Internal  
0.99 1.00       

Average  1.00 1.00  1.00 

TABLE 5 provides a detailed summary of 

these metrics, confirming the robustness of 

the RF-classifier. The perfect recall indicates 

that the model was able to detect every 

instance of each PD-class, while the precision 

values show that all predicted cases were 

correctly identified. The confusion-matrix in 

Figure 10 visually emphasizes this outcome, 

as no overlap is observed among the three 

classes. Even though the controlled synthetic 

dataset may have contributed to this flawless 

performance, it nevertheless demonstrates the 

RF classifier's outstanding generalization 

potential for PD recognition in AIS and GIS 

contexts. 

Conclusion 
 

     This study successfully addressed the 

challenge of PD-classification in electrical 

substations. Two AI models, SVM and 

Random Forest, were developed and tested. 

The RF model achieved perfect accuracy 

( 100%) in identifying PD types. The SVM 

model also showed excellent performance 

with 97.78% accuracy. The novelty of this 

work lies in its specific focus and practical 

application. It provides a direct comparison of 

these AI techniques for both AIS and GIS 

substations. Furthermore, it establishes a clear 

framework for implementing this technology 

within Egypt's energy sector. The paper offers 

a reliable, data-driven method for early fault-

detection. This contributes directly to 

improving the safety and reducing 

maintenance costs of power-networks. 

Future work will focus on testing these 

models with real-world data from Egyptian 

substations. 
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