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Monte Carlo simulation studies. The results indicate that the suggested estimators have smaller MSE
and higher per cent relative efficiency (PRE) than existing ones. Graphical investigations at various
threshold values of k indicate the effectiveness of the proposed estimators in practice, with a slight
trade-off in efficiency as k increases. In the general context, this demonstrates that assessing more
than one auxiliary with stratified sampling under non-response allows us to achieve a more precise
and efficient mean estimate. This makes the proposed estimators a convenient and efficient tool for
large-scale surveys where complete response data is seldom available.
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1. Introduction

The ideal in a sample survey is to collect data from each of the few chosen units in the sample, but
because of non-response, this is generally not possible. Some questionnaires are difficult to admin-
ister because participants are hesitant to share personal information such as drug use, abortion, and
STD status. Individual poll questions might not get. Some units may also not respond or identify
themselves to the poll. If nonrespondents differ from respondents in the observed variables and the
adequate sample size is less than the rate-based minimum, the sampling variance of the estimates will
be inflated. It also introduces bias into the estimates. Hansen and Hurwitz [1] addressed the problem
of nonresponse in mail surveys by proposing a procedure that allows for estimating a in the presence
of non-response based on subsampling of the nonrespondents. Where the covariate of interest is a
stigmatizing one, survey data are often not obtained in each unit. Several researchers addressed the
non-response problem and considered in the case of simple random sampling, when two variables are
correlated at a time, Sajjad and Ismail [2] presented an efficient modified estimator of the population
mean due to measurement error and non-response, which was also suggested Hussain et al. [3] pro-
posed an improved exponential type mean estimator including response information model and Singh
et al. [4] under the non-response setup constructed an almost unbiased optimal ratio-type estimator for
the population mean in stratified sampling. The non-response problem in survey sampling has long
been recognized, and various techniques have been developed to estimate population parameters when
the sample/measurement fraction is not 1. Early efforts were directed towards refining the estimation
of the population mean. For instance, Bhushan and Pandey [5] designed the best random non-response
design for mean estimation, and Jaiswal et al. [6] extended this work by considering regression and
factor-type estimators to improve efficiency for the presence of not-at-random response. Other authors
also continued such a line of work by dealing with the estimation of variances. In this respect, Pandey
et al. [7] and Garg et al. [8] introduced a broad class of improved population variance estimators
to address non-sampling errors, using calibrated weights in stratified sampling to minimize bias and
achieve greater accuracy.
Besides using means and variances to impute non-response, one can consider more sophisticated meth-
ods suggested to deal with particular problems related to non-response. For example, Jan et al. [9] de-
signed new dual exponential estimators for more flexible handling of non-response, and Bhushan and
Pandey [10] proposed an optimum procedure for estimating the mean in a two-phase design with ran-
dom non-response. Additional features included the implementation of more robust alternatives, such
as the one proposed by Hussain et al. [11] (an alternative to mean-based methods for non-response sit-
uations). Likewise, Tiwari et al. [12] extended the horizons by proposing a general class of estimators
that simultaneously incorporates non-response and measurement errors, addressing multiple sources
of inaccuracy.
More recent research has focused on how to utilize auxiliary information effectively. Specifically,
Aatizaz et al. [13], Hussain et al. [14], and Ahmad et al. [15] studied the dual purpose of auxiliary
variables to enhance the estimation of the finite population cumulative distribution function (CDF) and
mean in the context of non-response. These papers focused on the growing interest in using auxiliary
information as a valuable resource for improving efficiency and reducing bias in survey sampling with
incomplete responses.
If the target population is homogeneous, simple random sampling works fine. But if the population
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of interest is very homogeneous, stratified random sampling isn’t a desirable alternative to regular
random sampling. Under stratified random sampling, the entire population is grouped into distinct,
non-overlapping clusters. Each stratum is represented by a particular sample, which is uniform across
all strata. Values are essential for stratification to work at its best. Once the strata are known, a sample
can be taken from each one, and all drawings must be redone separately. (Which is actually part of the
more general principle of stratified random sampling, where in each stratum, there is simple random
sampling) Several trials stratified the sample in multiple strata using different methods of population
allocation. In this study, we use the proportional allocation method because it is better to apply an
independent ratio estimate to each stratum when the sample size in all strata is large enough. Zaman et
al. [17] using stratified random sampling to estimate the population mean. Yadav et al. [18] introduced
the optimal strategy for maximizing the estimated population mean in stratified random sampling with
linear cost function, Kumar et al. [19] developed new methods of imputation in stratified simple ran-
dom sampling, Haq and Shabbir[20] proposed an upgraded ratio family estimators and were used in
both simple and stratified random sampling, Jabeen et al. [21] worked on calibration approach for esti-
mating domain means or totals when using stratified sampling method and also considered best linear
unbiased estimator (BLUE) by Bhushan et al. [22], who have shown both some empirical results from
real data based on SRS. These scientists investigate region means under stratified random sampling
using auxiliary variables that are in the forms of single, two-auxiliary and dual auxiliary variables.
Several recent studies have aimed to enhance estimation when non-response is used by utilizing auxil-
iary information. Hussain et al. [23] suggested estimators of the finite population distribution function
(DF) of simple random sampling (SRS) under non-response with the aid of two auxiliary variables and
demonstrated significant efficiency improvements. On this concept, Hussain et al. [24] constructed DF
estimators that use dual auxiliary information in both SRS and stratified random sampling, demonstrat-
ing that stratification is efficacious in improving the efficiency of estimators in heterogeneous popula-
tions. More recently, Junaid et al. [25] proposed an ideal estimation of the DF with non-response in
SRS and developed an estimator that minimises the mean square error (MSE) and ensures robustness
through simulation experiments. In the same manner, Hussain et al. [26] suggested adjusted estimators
of the DF using dual auxiliary information under stratified random sampling, demonstrating that their
design is much better than traditional estimators when there are high correlations between the study
and auxiliary variables. Simultaneously, Ahmad et al. [27] did not focus on the distribution function
but on the mean. They introduced new classes of estimators for the finite population mean when non-
response occurs using dual auxiliary information, demonstrating that these new estimators are more
effective and have a smaller MSE compared to traditional ones. Latest developments in survey sam-
pling are effective for estimation under non-response and missing information by applying stratified or
ranked set designs. Kumar et al. [28] presented new imputation techniques in the context of stratified
sampling, and Shahzad et al. [29] used calibrated estimators of the coefficient of variation for dou-
ble stratified sampling, while Bhushan et al. [[30], [31]] introduced a class of efficient and log-type
estimators for the stratified models. Bhushan et al. [[32], [33]] recommended logarithmic, minimum
order statistics, and ratio type imputation methods, while Bhushan and Kumar [34] and Kumar et al.
[35] proposed multi-auxiliary and logarithmic imputation methods. Together, these studies highlight
the importance of auxiliary data, imputation methods and transformations in improving the efficiency
of estimation in the presence of non-response and complex sampling.

Motivation and limitations:
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The impetus for this study comes from the well-documented issue of non-response in sample surveys,
which might lead to serious compromises of statistical inference. When the units in a sample do not
report the required information, the adequate sample size is reduced, leading to greater sampling vari-
ability. More importantly, non-response can also lead to systematic bias, especially for the estimation
of population means, which underlie most survey objectives. The problem becomes severe when mass
non-response occurs among correlated units, often in surveys where sensitive information (such as in-
come, health status, or behaviour) must be collected, and respondents are unwilling to provide accurate
information. In these cases, classical estimators may not be sufficient, and one has to develop robust
estimators that can take into account the incomplete information.
Previous studies have examined the use of auxiliary variables in non-response adjustment, and recent
studies have investigated the effectiveness of dual auxiliary variables for enhancing estimator efficiency.
However, a large part of such previous work has been limited to situations where population demog-
raphy involves simple random sampling and did not provide satisfactory treatments for complications
generated by population heterogeneity. In the present investigation, a new class of estimators based on
stratified random sampling of auxiliary characteristics is proposed. Its uniqueness lies in the fact that
it not only utilises variations among strata in the estimation process. The introduced estimators utilise
both the between-stratum and within-measurement-unit information involving dual auxiliary variables,
which we consider a better option, especially when non-response varies. The theoretical properties of
the estimators are validated using analytical expressions for bias and mean squared error, as well as nu-
merical examples. While the results show a significant advantage of the presented method, additional
real-world applications to other empirical data are desired to reinforce the practical evidence about our
methodology.
Variations from earlier studies:

1. This study presents a dual auxiliary variable technology that increases the effectiveness of esti-
mates in non-response contexts, in contrast to earlier work that was primarily based on one or two
auxiliary variables.

2. Many previous studies have only examined one type of non-response, either on the study variable
alone or on the survey and auxiliary variables in combination. In this research, two non-response
scenarios are explicitly modelled.

3. It performs better than conventional estimators (such as ratio, product, regression, and
exponential-type estimators) by achieving a higher PRE and a lower MSE.

4. In contrast to many earlier studies that merely offer theoretical explanations, this study shows
efficiency comparisons for a range of k values (k = 2, 3, 4, 5).

5. This study validates the suggested methodology’s practical usefulness by applying it to actual ed-
ucational survey data, in contrast to general estimators that concentrate on fictitious or simulated
data.

Novelty and Importance:

1. The paper covers prevailing non-response estimators by merging manifold auxiliary variables in
a stratified random sampling background.

2. Even when non-response occurs in auxiliary variables, the planned estimator can adapt to shifting
levels of non-response and remnants operative. This scenario has not been extensively covered in
prior research.
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3. We used stratified random sampling because it preforms better in terms of MSEs and PREs as
compared to simple random sampling.

Implementation of the proposed work in real-world survey designs:
The proposed estimator of the population mean, which is used to estimate the population mean when
there are non-responses and stratified random sampling, can be used effectively when used in survey
design by first dividing the population into clearly defined strata using auxiliary variables like region,
age group, or socioeconomic status and then selecting a probability sample within a stratum. As
non-response is inevitable in practice, whether at the unit or item level, the estimator corrects for
missing data by incorporating known values of auxiliary parameters, such as means or distributional
characteristics of census or administrative data, thereby making the estimator less biased and more
efficient. In large-scale surveys such as national health surveys, education surveys, or agricultural
surveys, this method provides reliability of the estimates even when there are dissimilar response rates
between the strata. The operationalization of the technique depends on standard statistical software,
where the response-adjusted stratum means are combined with auxiliary information to produce the
overall estimate, its variance, and measures of efficiency. This makes the estimator very convenient
for official statistics agencies, as it helps them minimize the negative impact of non-response, enhance
cost-effectiveness, and produce more valid and policy-instrumental survey results.
The remaining sections of the paper are structured as follows:

The other parts of this paper will be structured as follows. In Section 2, the methodology and notations
of the study are provided. Section 3 will consider the available estimators of the mean that have been
interpreted to suit the stratified random sampling in the absence of non-response. Section 4 builds
on the previous research by creating a new type of estimators that can better handle non-response
situations. Theoretical properties of the proposed estimators, such as bias, mean square error (MSE),
and efficiency, are calculated up to the first-order approximation. Section 5 will use the proposed
and existing estimators on real data on education, whereas Section 6 will assess the performance of
the estimators using a Monte Carlo simulation study. The comparative values, which are presented
as MSE and percentage relative efficiency (PRE) at varying values of the threshold parameter. The
analyses of k are made in Section 7, and the effects of increasing k from 2 to 5 are considered. Section
8 summarises the main contributions and findings, which are used to conclude the study. Section 9
outlines potential extensions and future research directions, while Section 10 focuses on the practical
consequences of the suggested work for survey sampling and applied statistics.

2. Methodology and Notations

Consider a populationΩ=(Ω1, Ω2, . . . ,ΩN) having N distinct and identifiable units. Let (y1, y2, . . . , yN)
be the values of the study variable Y. Let the population of size N be stratified into L strata with the
hthstratum containing Nh units, where h=1,2,. . . L. Such that

∑L
h=1 Nh=N. A random sample of size nh,

from this population is drawn by simple random sampling with-out replacement (SRSWOR) from the
hthstratum such that

∑L
h=1 nh=n, out of nh selected units, nhr units respond, the remaining nhm=nh − nhr

units do not respond. Let yih, xih be the observed values of the study variable Y and the auxiliary
variable X respectively, on the ith unit of the hth stratum.
Y=the study variable, X= the auxiliary variable,
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Whi=
Nhi
Nh

, weight of the hth stratum and for i=1,2 (1=full response, and 2=non-response)

Yh=
∑Nh

i=1 Yih

Nh
, Xh=

∑Nh
i=1 Xih

Nh
and Rxh=

∑Nh
i=1 Rxih

Nh
the population means of Y, X and rank of X for the hth stratum.

Y st=
∑Nh

i=1 WhYh, Xst=
∑Nh

i=1 WhXh and Rx(st)=
∑Nh

i=1 WhRxh the population means of Y, X and rank of X.

Ŷh=
∑nh

i=1 Yih

nh
, X̂h=

∑nh
i=1 Xih

nh
and R̂xh=

∑nh
i=1 Rxih

nh
the sample means of Y, X and rank of X for the hth stratum.

Ŷ st=
∑L

h=1 WhŶh, X̂st=
∑L

h=1 WhX̂h and R̂x(st)=
∑L

h=1 WhR̂xh the sample means Y, X and rank of X.
Yh(2)=

∑Nh2
i=1

Yih
Nh2

, Xh(2)=
∑Nh2

i=1
Xih
Nh2

and Rxh(2)=
∑Nh2

i=1
Rxih
Nh2

the population mean of Y, X and rank of X, for
non-response group.
Yh(1)=

∑nh1
i=1

Yih
n1

, Xh(1)=
∑nh1

i=1
Xih
n1

and Rxh(1)=
∑nh1

i=1
Rxih
n1

the sample means of Y, X and rank of X, based on
nh1, responding units of nh units.
Yh(2rh)=

∑rh
i=1

Yih
rh

, Xh(2rh)=
∑rh

i=1
Xih
rh

and Rxh(2rh)=
∑rh

i=1
Rxih
rh

the means of Y, X and rank of X, based on rh,
responding units of nh2 units’ non-response .

σ2
y(1)h=

∑Nh
i=1

(Yih−Yh(1))2

Nh−1 , σ2
x(1)h=

∑Nh
i=1

(Xih−Xh(1))2

Nh−1 , and σ2
rx(1)h=

∑Nh
i=1

(RXih−Rxh(1))2

Nh−1 the population variances of
Y, X and rank of X for the hth stratum.

σ2
y(2)h=

∑Nh2
i=1

(Yih−Yh(2))2

Nh2−1 , σ2
x(2)h=

∑Nh2
i=1

(Xih−Xh(2))2

Nh2−1 , and σ2
rx(2)h=

∑Nh2
i=1

(RXih−Rxh(2))2

Nh2−1 the population variances of
Y, X and rank of X for the hth stratum non-response group,
Cy1h=

σy1h

Yh(1)
, Cx1h=

σx1h

Xh(1)
and Crx1h=

σrx1h

Rxh(1)
the population coefficient of variations of Y, X and rank of X, for

the hth stratum,
Cy2h=

σy2h

Yh(2)
, Cx2h=

σx2h

Xh(2)
and Crx2h=

σrx2h

Rxh(2)
the population coefficient of variations of Y, X and rank of X, for

the hth stratum non-response group,

σ(y(1)h x(1)h)=
∑Nh

i=1
(Yih−Yh(1))

Nh−1 +
(Xih−Xh(1))

Nh−1 , σ(y(1)hrx(1)h)=
∑Nh

i=1
(Yih−Yh(1))

Nh−1 +
(Rxih−Rxh(1))

Nh−1 , and

σ(x(1)hrx(1)h)=
∑Nh

i=1
(Xih−Xh(1))

Nh−1 +
(Rxih−Rxh(1))

Nh−1 the population covariances between Y, X and rank of X,
for the hth stratum.
σ(y(2)h x(2)h)=

∑Nh2
i=1

(Yih−Yh(2))
Nh−1 +

(Xih−Xh(2))
Nh−1 , σ(y(2)hrx(2)h)=

∑Nh2
i=1

(Yih−Yh(2))
Nh−1 +

(Rxih−Rxh(2))
Nh−1 and

σ(x(2)hrx(2)h)=
∑Nh2

i=1
(Xih−Xh(2))

Nh−1 +
(Rxih−Rxh(2))

Nh−1 the population covariances between Y, X and rank of X,
for the hth stratum non-response group.

ϱ(y(1)h x(1)h)=
σ(y(1)h x(1)h)
σy(1)hσx(1)h

, ϱ(y(1)hrx(1)h)=
σ(y(1)hrx(1)h)
σy(1)hσrx(1)h

and ϱ(x(1)hrx(1)h)=
σ(x(1)hrx(1)h)
σx(1)hσrx(1)h

the population correlation coeffi-

cients between Y, X and rank of X, for the hth stratum.
ϱ(y(2)h x(2)h)=

σ(y(2)h x(2)h)
σy(2)hσx(2)h

, ϱ(y(2)hrx(2)h)=
σ(y(2)hrx(2)h)
σy(2)hσrx(2)h

and ϱ(x(2)hrx(2)h)=
σ(x(2)hrx(2)h)
σx(2)hσrx(2)h

the population correlation coeffi-

cient between Y, X and rank of X, for the hth stratum non-response group.
We can write

Y = W1hY1(h) +W2hY2(h) (2.1)

X = W1hX1(h) +W2hX2(h) (2.2)

where
W jh=

N jh

N , Y j(h)=
∑N jh

i=1
Yhi
N jh

and X j(h)=
∑N jh

i=1
Xhi
N jh

, for j=1,2

On the lines of Hansen and Hurwitz [1], the estimator Yh under non-response is given by:

Ŷ
∗

= w1hŶ (1)h + w2hŶ (2r)h
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Var
(
Ŷ
∗)
= λ1hσ

2
y(1)h + λ2hσ

2
y(2)h (2.3)

Similarly

X̂
∗

= w1hX̂(1)h + w2hX̂(2r)h (2.4)

Var
(
X̂
∗)
= λ1hσ

2
x(1)h + λ2hσ

2
x(2)h (2.5)

Where λ1h =
(

1
nh
− 1

Nh

)
, λ2h =

(
k−1
nh

)
w2(h) and k= 2, 3, 4, and 5.

To derive the bias and MSE of the suggested and existing estimators, we discuss the following error
term, which is given by:

ε∗o(st) =
Ŷ
∗

st − Y st

Y st

, ε∗1(st) =
X̂
∗

st − Xst

Xst

, ε1(st) =
X̂st − Xst

Xst

, ε∗2(st) =
R̂x
∗

st − Rxst

Rxst

, ε2(st) =
R̂x(st) − Rx(st)

Rx(st)

Such that
E
(
ε∗i(st)

)
=E

(
εi(st)

)
=0, (i∗=0,1,2 when the non-response on both study and auxiliary variables) and (i=0,1

when the non-response on auxiliary variables)
Arst=E

[
ε∗r0(st)ε

∗s
1(st)ε

∗t
2(st)

]
and Brs=E

[
εs

1(st)ε
t
2(st)

]
Where r, s, t=0,1, 2
E
(
ε∗20(st)

)
=
∑L

h=1

(
W2

1hλ
2
1hC

2
y(1)h +W2

2hλ
2
2hC

2
y(2)h

)
=A2

200 for situation-I

E
(
ε∗21(st)

)
=
∑L

h=1

(
W2

1hλ
2
1hC

2
x(1)h +W2

2hλ
2
2hC

2
x(2)h

)
=A2

020

E
(
ε∗22(st)

)
=
∑L

h=1

(
W2

1hλ
2
1hC

2
rx(1)h +W2

2hλ
2
2hC

2
rx(2)h

)
=A2

002

E
(
ε∗20(st)

)
=
∑L

h=1

(
W2

1hλ
2
1hC

2
y(1)h +W2

2hλ
2
2hC

2
y(2)h

)
=B2

200 for situation-II

E
(
ε2

1(st)

)
=
∑L

h=1 W2
1hλ

2
1hC

2
x(1)h=B

2
020

E
(
ε2

2(st)

)
=
∑L

h=1 W2
1hλ

2
1hC

2
rx(1)h=B

2
002

E
(
ε∗0(st)ε

∗
1(st)

)
=
∑L

h=1

(
W2

1hλ
2
1hϱ(y(1)h x(1)h)Cy1hCx1h +W2

2hλ
2
2hϱ(y(2)h x(2)h)Cy2hCx2h

)
=A110,

E
(
ε∗0(st)ε

∗
2(st)

)
=
∑L

h=1

(
W2

1hλ
2
1hϱ(y(1)hrx(1)h)Cy1hCrx1h +W2

2hλ
2
2hϱ(y(2)hrx(2)h)Cy2hCrx2h

)
=A101,

E
(
ε∗1(st)ε

∗
2(st)

)
=
∑L

h=1

(
W2

1hλ
2
1hϱ(x(1)hrx(1)h)Cx1hCrx1h +W2

2hλ
2
2hϱ(x(2)hrx(2)h)Cx2hCrx2h

)
=A011,

E
(
ε∗0(st)ε1(st)

)
=
∑L

h=1 W2
1hλ

2
1hϱ(y(1)h x(1)h)Cy1hCx1h=B110

E
(
ε∗0(st)ε2(st)

)
=
∑L

h=1 W2
1hλ

2
1hϱ(y(1)hRx(1)h)Cy1hCrx1h=B101

E
(
ε1(st)ε(st)

)
=
∑L

h=1 W2
1hλ

2
1hϱ(x(1)hRx(1)h)Cx1hCrx1h=B011

Three situations were employed under non-response. However, in this paper, we looked at two scenar-
ios. In condition I, the non-response affects both the study and auxiliary variables, but in situation II,
it affects only the study variable. The notations listed in Table 1 are used for notational convenience.

3. Adapted estimators

In this section, specific estimators for population mean based on non-response are discussed.
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3.1. Existing estimators under situation-I of non-response.

Situation I involves survey sampling, where non-response is only encountered for the study variable Y;
however, auxiliary information is available for the entire chosen sample. The [1] sub-sampling method
is frequently used in this type of case. A sub-sample of non-respondents is chosen, and special efforts
are exerted to get their responses. The information from the respondents and the non-respondent
sub-sample is then pooled together to form an estimator of the population mean. Given that the
non-response does not affect the auxiliary information, it can be successfully used to enhance the
efficiency of the estimators.

(1) Ratio estimator Y (st)(s−i−o f non−r) of the stratified population mean in Situation -I non-response is by
(3.1).

ŶR(st)H(s−i−o f non−r)=Ŷ (st)H(s−i−o f non−r)

 X(st)

X̂(st)H(s−i−o f non−r)

 . (3.1)

The properties of ŶR(st)H(s−i−o f non−r):

B(ŶR(st)H(s−i−o f non−r)) � Y (st) (A020 −A110), and MSE is given by (3.2)

MSE(ŶR(st)H) � Y
2

(st) (A200 +A020 − 2A110) . (3.2)

(2) The product estimator for Y (st)(s−i−o f non−r), are given by by (3.3)

ŶP(st)H(s−i−o f non−r)=Ŷ (st)H(s−i−o f non−r)

 X̂(st)H(s−i−o f non−r)

X(st)

 . (3.3)

The properties of ŶP(st)H(s−i−o f non−r) respectively:

B(ŶP(st)H) =Y (st)A110, and MSE is given by (3.4)

MSE(ŶP(st)H) � Y
2

(st) (A200 +A020 + 2A110) . (3.4)

(3) The conventional regression estimator of Y (st)(s−i−o f non−r) given by (3.5)

ŶReg(st)H(s−i−o f non−r)=Ŷ (st)H(s−i−o f non−r) + w(X(st) − X̂(st)H(s−i−o f non−r)), (3.5)

however, w is constant.
The minimum variance of ŶReg(st)H(s−i−o f non−r) at w(opt)=

(Y (st) A110)
(X(st) A020) is given by (3.6)

Varmin(ŶReg(st)H) =
Y

2
(st)

(
A200A020 −A110

2
)

A020
. (3.6)

(4) Zaman and Bulut [17], proposed a difference estimator, which is intended to enhance the ability to
estimate the population mean. This estimator utilises the difference between the study and auxiliary

Computational Journal of Mathematical and Statistical Sciences Volume 5, Issue 1, 1–34



705

variables, hence minimising the bias and increasing efficiency over traditional estimators is given by
(3.7).

ŶR,D(st)H(s−i−o f non−r)=w1X̂(st)H(s−i−o f non−r) + w2(X(st) − X̂(st)H(s−i−o f non−r)), (3.7)

The bias and MSE of ŶR,D(st)H, are given by (3.8)

B(ŶR,D(st)H(s−i−o f non−r)) =Y (st)(w1 − 1),

MSE(ŶR,D(st)H) � Y
2

(st)(w1 − 1)2 + Y
2

(st)A200w2
1 + X

2
(st)A020w2

2 − 2Y (st)X(st) A110w1w2. (3.8)

The estimates of w1 and w2 are derived by simplifying (3.8) using the weights that minimize MSE,
which result in making the proposed estimator more efficient.

w1(opt)=
A020{

A020 (1 +A200) −A110
2
} and w2(opt)=

A110

X(st)

{
A020 (1 +A200) −A110

2
} ,

respectively.

MSEmin(ŶR,D(st)H(s−i−o f non−r)) �
Y

2
(st)

(
A200A020 −A110

2
){

A020 (1 +A200) −A110
2
} . (3.9)

(5) Yadav et al. [18] proposed a ratio-type exponential estimator, which makes use of the auxiliary
information by taking an exponential modification. This estimator was suggested for improving the
estimator of the population mean to decrease bias and MSE relative to the conventional ratio estimator
is given by (3.10)

ŶS (st)H(s−i−o f non−r)=Ŷ (st)H(s−i−o f non−r)exp

 a(X(st) − X̂(st)H(s − i − o f non − r))

a(X(st) + X̂(st)H(s − i − o f non − r)) + 2b

 , (3.10)

B(ŶS (st)) � Y (st)

(
3Θ2A200

8
−
ΘA110

2

)
,

The mean square errors is given by (3.11)

MSE(ŶS (st)H(s−i−o f non−r)) �
Y

2
(st)

4
(4A200 + Θ

2A020 − 4ΘA110), (3.11)

where Θ=aX(st)/(aX(st) + b).
When we use a =1 and b =0 we get the value of Θ= 1

(6) In the literature, Kumar et al. [19] introduced a general ratio-type exponential estimator by merging
the properties of two estimators (ratio and exponential) given in (3.12). The formulation was intended
to increase the efficiency of population mean estimation based on reduced bias and Mean Squared
Error (MSE) under heterogeneity between study and auxiliary variables.

ŶGK(st)H(s-i-o f non-r) =

{
w3Ŷ (st)H(s-i-o f non-r) + w4

(
X(st) − X̂(st)H(s-i-o f non-r)

)}
× exp


a
(
X(st) − X̂(st)H(s-i-o f non-r)

)
a
(
X(st) + X̂(st)H(s-i-o f non-r)

)
+ 2b


(3.12)
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where w3 and w4 are constants.

The bias of ŶGK(st)H(s−i−o f non−r) , respectively, is given by

B(ŶGK(st)H(s−i−o f non−r)) � Y (st) − w3Y (st) +
3
8

w3Θ
2Y (st)A200 +

1
2

w4ΘX(st)A020 −
1
2

w3ΘY (st)A110,

The MSE of ŶGK(st)H(s−i−o f non−r) , respectively, is given by (3.13)

MSE
(
ŶGK(st)H(s−i−o f non-r)

)
� Y

2
(st)(w3 − 1)2 + w2

3 Y
2
(st)A200 + w2

4 X
2
(st)A020 + Θ

2 w2
3 Y

2
(st)A020

+ 2 w3w4ΘY (st)X(st)A020 −
3
4 w3Θ

2 Y
2
(st)A020 − w4ΘY (st)X(st)A020

+ w3ΘY
2
(st)A110 − 2 w2

3ΘY
2
(st)A110 − 2 w3w4 Y (st)X(st)A110. (3.13)

, after simplification we get minimum MSE in (3.14)

MSEmin

(
ŶGK(st)H(s−i−o f non−r)

)
�

Y
2

(st)

64

(
64 − 16A020 −

A020 (−8 +A020)2

A020 (1 +A200) −A110

)
. (3.14)

(7) Haq and Shabbir [20] proposed an efficient estimator on the population mean that uses auxiliary
information for a reduction in MSE compared to those of typical estimators, is give by (3.15)

ŶH.S (st)H(s−i−o f non−r) =

[
w5Ŷ (st)H(s−i−o f non−r) + w6

(
X(st) − X̂(st)H(s−i−o f non−r)

)]
× exp

 X(st) + b

α(aX̂(st)H(s−i−o f non−r) + b) + (1 − α)(aX(st) + b)
− 1

 . (3.15)

Where
Θ= (α ∗ (aX(st)))/(aX(st) + b).

For particular values of the family parameters, alternative well-known estimators may be obtained.
Note that when (α = 1, a = 1 and b = 0), we get Θ=1 and the family becomes one: hence it can be
analysed in its own right by considering its bias, MSE and efficiency. When α=0, a=1, and b=0, the
auxiliary variable does not affect the estimate, and we thus recover the classical unbiased estimator of
the population mean in stratified sampling. In another example, if α=1,a=0, and b=1, the estimator
involves the auxiliary variable differently by obtaining a type form under just one member. There are
still both ratio- and product-type corrections left, and the family remains wide for finite values of a and
b. The general family links with some existing estimators in the literature, given by different parameter
constraints, and is also flexible enough to generate new ones.

Using ((3.15)), the bias and MSE of ŶH.S (st)H(s−i−o f non−r), are given by:

B(ŶH.S (st)H(s−i−o f non−r)) = − Y (st)+Θw6X(st)A020 + w5

Y st+
3Y (st)Θ

2A020

2
− ΘY (st)A110


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MSE
(
ŶH.S (st)H

)
= Y (st)

2
+ w6 X(st)

(
−2ΘY (st) + w6X(st)

)
A020

+ w5Y (st)

[
−2Y (st) + Θ

(
−3ΘY (st) + 4w6X(st)

)
A020 + 2

(
ΘY (st) − w6Y (st)

)
A110

]
+ Y (st)

2
w2

6

(
1 + 4Θ2A020 − 4ΘA110 +A200

) (3.16)

using the optimum values of constants in equation (3.16), we have (3.17)

MSEmin

(
ŶH.S (st)H(s−i−o f non−r)

)
�

Y (st)
2 [

4A110
2 +A020

{
Θ4A020

2 − Θ2A110
2 + 4

(
−1 + Θ2A020

)
A020

}]
4
{
A110

2 −A020 (1 +A200)
}

(3.17)
(8) Ahmad et al. [15] suggested a family of estimators given by (3.18)

Ŷ
∗

A.H(st)H(s−i−o f non−r) =

{
w7 Ŷ (st)H(s−i−o f non−r) + w8

(
X(st) − X̂(st)H(s−i−o f non−r)

)

+ w9

(
Rx(st) − R̂x(st)H(s−i−o f non−r)

) }
exp


a
(
X(st) − X̂(st)H(s−i−o f non−r)

)
a
(
X(st) + X̂(st)H(s−i−o f non−r)

)
+ 2b

 .
(3.18)

Bias
(
Ŷ
∗

A.H(st)H(s−i−o f non−r)

)
� Y (st) (w7 − 1)+

3
8
Θ2w7Y (st)A020+

1
2
ΘX(st)w8A020−

1
2
Θw7Y (st)A110+

1
2
ΘRx(st)A011,

and the mean square error is give in (3.19)

MSE
(
Ŷ
∗

A.H(st)H(s-i-o f non-r)

)
�Y (st)

2
(w7 − 1)2 + w2

7Y (st)
2
A200 + w8X(st)

2
A200 + Rx

2
(st)w9A002

+ Θ2w2
7Y (st)

2
A200 − Θw8Y (st)A200 + 2ΘY (st)A200 −

3
4Θ

2w7Y (st)
2
A200

+ Θw7Y (st)
2
A110 − 2Θw2

7Y (st)
2
A110 − 2w7w8Y (st)X(st)A110

− 2w7w8Y (st)Rx(st)A101 − Θw9Y (st)Rx(st)A011 + 2Θw7w9Y (st)Rx(st)A011

− 2w8w9Y (st)Rx(st)A011.

(3.19)

, after simplification we have (3.20)

MS E
(
Ŷ
∗

A.H(st)H(s−i−o f non−r)

)
�

Y (st)
2

64


64 − 16Θ2A011 +

(
Θ2A020−8

)2 (
A2

101 −A002A020

)
 −A020A

2
101 + 2A011A101A110 −A

2
011

(
1 +A2

200

)
+A020

{
−A2

110 +A020 (1 +A200)
} 


(3.20)
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3.2. Existing estimators under situation-II of non-response.

The situation II is more demanding and happens when both the study variable have non-response.
Y and the auxiliary variable X. Such a scenario means that not all the sampled units have auxiliary
information that is necessary to perform the estimation process. Sub-sampling of non-respondents has
to be conducted in both to overcome this problem.
Y and X, and the obtained data are then utilized in creating estimators of the population mean. Nev-
ertheless, due to the impact of missing values on both the study and auxiliary variables, the estimators
obtained are generally less efficient compared to those in Situation I.
(1) The ratio estimator for estimating is give by (3.21)

Y (st)(s−ii−o f non−r), givenbyŶR(st)H(s−ii−o f non−r)=Ŷ (st)H(s−ii−o f non−r)

 X(st)

X̂(st)H(s−ii−o f non−r)

 . (3.21)

The properties of ŶR(st)H(s−ii−o f non−r):

B(ŶR(st)H(s−ii−o f non−r)) � Y (st) (B020 − B110), and MSE is give by (3.22)

MSE(ŶR(st)H(s−ii−o f non−r)) � Y
2

(st) (B200 + B020 − 2B110) . (3.22)

(2) The product estimator for Y (st)(s−ii−o f non−r), with bias and mse is given by (3.23)

ŶP(st)H(s−ii−o f non−r)=Ŷ (st)H(s−ii−o f non−r)

 X̂(st)H(s−ii−o f non−r)

X(st)

 . (3.23)

B(ŶP(st)H(s−ii−o f non−r)) =Y (st)B110 and MSE is given by (3.24)

MSE(ŶP(st)H(s−ii−o f non−r)) � Y
2

(st) (B200 + B020 + 2B110) . (3.24)

(3) The conventional regression estimator of Y (st) given by (3.25)

ŶReg(st)H(s−ii−o f non−r)=Ŷ (st)H(s−ii−o f non−r) + k(X(st) − X̂(st)H(s−ii−o f non−r)), (3.25)

however, k is constant.
The minimum variance of ŶReg(st)H(s−ii−o f non−r) at k(opt)=

(Y (st) B110)
(X(st) B020) is given by (3.26):

Varmin(ŶReg(st)H(s−ii−o f non−r)) =
Y

2
(st)

(
B200B020 − B110

2
)

B020
. (3.26)

(4) Zaman and Bulut [17] suggested a difference estimator, given by (3.27)

ŶR,D(st)H(s−ii−o f non−r)=k1X̂(st)H + k2(X(st) − X̂(st)H), (3.27)

B(ŶR,D(st)H(s−ii−o f non−r)) =Y (st)(k1 − 1),
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and MSE is given by (3.28)

MSE
(
ŶR,D(st)H(s-ii-o f non-r)

)
� Y

2
(st)(k1 − 1)2 + Y

2
(st)B200 k2

1 + X
2
(st)B020 k2

2

− 2 Y (st) X(st)B110 k1k2. (3.28)

The MSE of ŶR,D(st)H(s−ii−o f non−r) at the values of k1 and k2 is given by (3.29)

MSEmin(ŶR,D(st)H(s−ii−o f non−r)) �
Y

2
(st)

(
B200B020 − B110

2
){

B020 (1 + B200) − B110
2
} . (3.29)

(5) Yadav et al. [18] suggested a ratio-type exponential estimator, given by (3.30)

ŶS (st)H(s−ii−o f non−r)=Ŷ (st)H(s−ii−o f non−r)exp

 a(X(st) − X̂(st)H)

a(X(st) + X̂(st)H) + 2b

 , (3.30)

B(ŶS (st)H(s−ii−o f non−r)) � Y (st)

(
3Θ2B200

8
−
ΘB110

2

)
,

and MSE is give in (3.31)

MSE(ŶS (st)H(s−ii−o f non−r)) �
Y

2
(st)

4
(4B200 + Θ

2B020 − 4ΘB110), (3.31)

(6) Kumar et al. [19] developed a generalized ratio-type exponential estimator, given by (3.32)

ŶGK(st)H(s−ii−o f non−r) =

[
k3Ŷ (st)H(s−ii−o f non−r) + k4

(
X(st) − X̂(st)H(s−ii−o f non−r)

)]
× exp


a
(
X(st) − X̂(st)H(s−ii−o f non−r)

)
a
(
X(st) + X̂(st)H(s−ii−o f non−r)

)
+ 2b

 . (3.32)

The properties of ŶGK(st)H(s−ii−o f non−r), respectively, are given by

B(ŶGK(st)H(s−ii−o f non−r)) � Y (st) − k3Y (st) +
3
8

k3Θ
2Y (st)B200 +

1
2

k4ΘX(st)B020 −
1
2

k3ΘY (st)B110,

, and MSE is given by (3.33)

MSE
(
ŶGK(st)H(s−ii−o f non−r)

)
� Y (st)

2
(k3 − 1)2 + k2

3Y (st)
2
B200 + k2

4X(st)
2
B020 + Θ

2k2
3Y (st)

2
B020

+ 2w3k4ΘY (st)X(st)B020 −
3
4k3Θ

2Y (st)
2
B020 − k4ΘY (st)X(st)B020

+ k3ΘY (st)
2
B110 − 2k2

3ΘY (st)
2
B110. (3.33)

after some simplification we get equation (3.34)

−2k3k4Y (st)X(st)B110.(38)MSEmin

(
ŶGK(st)H(s−ii−o f non−r)

)
�

Y
2

(st)

64

(
64 − 16B020 −

B020 (−8 + B020)2

B020 (1 + B200) − B110

)
.

(3.34)
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(7) Haq and Shabbir [20] developed the estimator given in (3.35).

ŶH.S (st)H(s−ii−o f non−r) =
{
w5Ŷ (st)H(s−ii−o f non−r) + w6

(
X(st) − X̂(st)H(s−ii−o f non−r)

) }
× exp

 X(st) + b

α
(
aX̂(st)H(s−ii−o f non−r) + b

)
+ (1 − α)

(
aX(st) + b

) − 1

 . (3.35)

Using (3.35), the bias and MSE of ŶH.S (st)H, are given by:

B(ŶH.S (st)H(s−ii−o f non−r)) = − Y (st)+Θk6X(st)B020 + k5

Y st+
3Y (st)Θ

2B020

2
− ΘY (st)B110


and MSE in equation (3.36)

MSE
(
ŶH.S (st)H

)
= Y (st)

2
+ k6X(st)

(
−2ΘY (st) + k6X(st)

)
B020

+ k5Y (st)

[
−2Y (st) + Θ

(
−3ΘY (st) + 4k6X(st)

)
B020 + 2

(
ΘY (st) − k6Y (st)

)
B110

]
+ Y (st)

2
k2

6

(
1 + 4Θ2B020 − 4ΘB110 + B200

)
.

(3.36)

The minimum MSE of ŶH.S (st)H(s−ii−o f non−r) at the values of k5 and k6 is given by (3.37)

MSEmin

(
ŶH.S (st)H(s−ii−o f non−r)

)
�

Y (st)
2 [

4B110
2 + B020

{
Θ4B020

2
− Θ2B110

2 + 4
(
−1 + Θ2B020

)
B020

}]
4
{
B110

2
− B020 (1 + B200)

}
(3.37)

(8) Ahmad et al. [15] suggested a family of estimators given by (3.38)

Ŷ
∗

A.H(st)H(s-ii-o f non-r) =

{
k7Ŷ (st)H(s-ii-o f non-r) + k8

(
X(st) − X̂(st)H(s-ii-o f non-r)

)
+ w9

(
Rx(st) − R̂x(st)H(s-ii-o f non-r)

) }

× exp


a
(
X(st) − X̂(st)H(s-ii-o f non-r)

)
a
(
X(st) + X̂(st)H(s-ii-o f non-r)

)
+ 2b


(3.38)

Bias
(
Ŷ
∗

A.H(st)H(s−ii−o f non−r)

)
� Y (st) (k7 − 1)+

3
8
Θ2k7Y (st)B020+

1
2
ΘX(st)k8B020−

1
2
Θk7Y (st)B110+

1
2
ΘRx(st)B011,

and MSE is given in (3.39)

MSE
(
Ŷ
∗

A.H(st)H(s−ii−o f non−r)

)
� Y (st)

2
(k7 − 1)2 + k2

7Y (st)
2
B200 + k8X(st)

2
B200 + k9Rx(st)

2
B002
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+ Θ2k2
7Y (st)

2
B200 − Θk8Y (st)B200 + 2ΘY (st)B200 −

3
4Θ

2k7Y (st)
2
B200

+ Θk7Y (st)
2
B110 − 2Θk2

7Y (st)
2
B110 − 2k7k8Y (st)X(st)B110

− 2k7k8Y (st)Rx(st)B101 − Θk9Y (st)Rx(st)B011

+ 2Θk7k9Y (st)Rx(st)B011 − 2k8k9Y (st)Rx(st)B011. (3.39)

The optimal values of k7, k8 and k9, determined by reducing (3.39) , are given by:

k7(opt)=
(8 − Θ2B020)

(
B2

110 − B002B200

)
8
[
−B200B

2
101 + 2B011B101B110 − B

2
101 (1 + B200) + B002

{
−B2

101 + B200 (1 + B200)
}] ,

k8(opt)=

Y (st)

 4ΘB200B
2
101 − B011B101

(
−8 + Θ2B200 + 8ΘB110

)
+ B002

{
−Θ3B2

020+4B110 (−2 + ΘB110)
+ΘB020 (4 + ΘB110 − 4B200)

}
+

ΘB2
011

(
−4 + Θ2B020 + 4B200

)


8X(st)

[
−B020B

2
101 + 2B011B101B110 − B

2
101 (1 + B200) + B002

{
−B2

101 + B020 (1 + B200)
}] ,

k9(opt)=
Y (st)(8 − Θ2B020) (B020B101 − B110B011)

8Rx(st)

[
−B020B

2
101 + 2B011B101B110 − B

2
101 (1 + B200) + B002

{
−B2

101 + B020 (1 + B200)
}] .

Putting the value of k7(opt), k8(opt) and k9(opt), we get the minimum MSE in (3.40)

MS E
(
Ŷ
∗

A.H(st)H(s−i−o f non−r)

)
�

Y (st)
2

64


64 − 16Θ2B011 +

(
Θ2B020−8

)2 (
B2

101 − B002B020

)
 −B020B

2
101 + 2B011B101B110 − B

2
011

(
1 + B2

200

)
+B020

{
−B2

110 + B020 (1 + B200)
} 


(3.40)

4. Proposed estimator

This article presents a new improved class of estimators for estimating the population mean in stratified
random sampling in the presence of non-response. The suggested estimators are formulated using a
suitable non-response adjustment class and efficiently utilize auxiliary variable information to improve
the efficiency and precision of the estimates. In particular, two types of non-response are taken into
account in the study. In the former situation, non-response only occurs for the study variable, but we
have complete information regarding the auxiliary variable for all sampled units. This can be used to
capture information from the auxiliary variable to minimize errors in estimation, even when some data
is lost for the primary variable. In the latter case, a more complex problem arises where non-response
occurs not only on the study variable but also on the auxiliary variable, requiring us to address a more
complicated estimation issue. In both cases, the proposed estimators have been derived by extending
or generalizing the methods introduced in Hussain et al. [14] and Sohaib et al. [15], providing an
alternative principled and practical solution to the problem of estimating means when non-response
occurs in stratified sampling.
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4.1. Proposed estimator under situation-I of non-response.

ŶProp(st)H(s−i−o f non−r) =


w10Ŷ (st)H(s−i−o f non−r) + w11

(
X(st) − X̂(st)H(s−i−o f non−r)

)
+ w12

(
Rx(st) − R̂x(st)H(s−i−o f non−r)

)
4


×

 X(st)

X̂(st)H(s−i−o f non−r)

+
X̂(st)H(s−i−o f non−r)

X(st)


 Rx(st)

R̂x(st)H(s−i−o f non−r)

+
R̂x(st)H(s−i−o f non−r)

Rx(st)

 . (4.1)

Simplifying equation (4.1), we get equation (4.2)

ŶProp(st)H(s−i−o f non−r) − Y st =
w10Y (st)(ε0(st) − 1) − w11X(st)ε1(st) − w12Rx(st)ε2(st)

4

×

(
1

ε1(st) + 1
+ ε1(st) + 1

) (
1

ε2(st) + 1
+ ε2(st) + 1

)
. (4.2)

Expanding the right-hand side of (4.2), we get (4.3)

ŶProp(st)H(s−i−o f non−r) =
w10Y (st)(ε0(st) − 1) − w11X(st)ε1(st) − w12Rx(st)ε2(st)

4
×

[
ε1(st) + 1 +

(
1 − ε1(st) + ε

2
1(st) + . . .

)]
×

[
ε2(st) + 1 +

(
1 − ε2(st) + ε

2
2(st) + . . .

)]
. (4.3)

In Eq. (4.3) we will neglect the terms of ε(st)’s, power having greater than two, we get (4.4)

ŶProp(st)(s−i−o f non−r) − Y st = Y (st)(w10 − 1) + w10Y (st)ε0(st) − w11X(st)ε1(st) − w12Rx(st)ε2(st)

+
1
2

w10Y (st)ε
2
1(st) +

1
2

w10Y (st)ε
2
2(st). (4.4)

To get the bias of the proposed estimator, we need to take expectation on both the sides of (4.4), hence we will get the
bias of the proposed estimator up to the first order of approximation

E
(
ŶProp(st)(s−i−o f non−r) − Y st

)
= Y (st)(w10 − 1) + w10Y (st)E(ε0(st)) − w11X(st)E(ε1(st)) − w12Rx(st)E(ε2(st))

+ 1
2 w10Y (st)E(ε2

1(st)) +
1
2 w10Y (st)E(ε2

2(st)). (4.5)

Using (4.5), the bias and MSE of ŶProp(st)H(s−i−o f non−r), are given by:

B(ŶProp(st)H(s−i−o f non−r)) = Y st[(w10 − 1)+
1
2

w10A020 +
1
2

w10A002]

, and MSE is given by (4.6)

MSE
(
ŶProp(st)H(s−i−o f non−r)

)
� Y (st)

2[
(w10 − 1)2 + w10 (A020 +A002) + w10 (A020 +A002 +A200)

− 2w10Y (st)X(st)Rx(st) {w11A110 + w12A101} + 2X(st)Rx(st)w11w12A011

+ X(st)
2
w2

11A020 + w2
12Rx(st)

2
A002

]
. (4.6)

�The values of wmathrm10, w11 and w12 by diminishing (4.6):

w10(opt)=
β[2 +A020 +A002]

2[β +A200α + β(A020 +A002)]
,
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w11(opt)=

√
A200 Y (st)

(
A110√

A200
√
A020
−

A011√
A020

√
A002

A101√
A200

√
A002

)
[2 +A020 +A002]

2Xst
√
A020 (β +A200α + β[A020 +A002])

,

w12(opt)=

√
A200 Y st

(
A101√

A200
√
A002
−

A011√
A020

√
A002

A110√
A200

√
A020

)
[2 +A020 +A002]

2Rx(st)
√
A020 (β +A200α + β[A020 +A002])

,

the minimum MSE is given by (4.7)

MSEmin

(
ŶProp(st)H(s−i−o f non−r)

)
�

Y (st)
2 [

4αA200 − β(A020 +A002)2
]

4[β +A200α + β(A020 +A002)]
. (4.7)

α =1− A011
2

A020A002
−

A101
2

A200A002
−

A110
2

A200A020
+2 A101√

A200
√
A002
×

A011√
A020

√
A002
×

A110√
A200

√
A020

and β =1− A011
2

A020A002

4.2. Proposed estimator under situation-II of non-response.

ŶProp(st)H(s−ii−o f non−r) =


k10Ŷ (st)H(s−ii−o f non−r) + k11

(
X(st) − X̂(st)H(s−ii−o f non−r)

)
+ k12

(
Rx(st) − R̂x(st)H(s−ii−o f non−r)

)
4


×

 X(st)

X̂(st)H(s−ii−o f non−r)

+
X̂(st)H(s−ii−o f non−r)

X(st)


 Rx(st)

R̂x(st)H(s−ii−o f non−r)

+
R̂x(st)H(s−ii−o f non−r)

Rx(st)

 . (4.8)

Simplifying equation (4.8) we get(4.9)

ŶProp(st)H(s−ii−o f non−r) − Y st =
k10Y (st)(ε0(st) − 1) − k11X(st)ε1(st) − k12Rx(st)ε2(st)

4

×

(
1

ε1(st) + 1
+ ε1(st) + 1

) (
1

ε2(st) + 1
+ ε2(st) + 1

)
. (4.9)

Expanding the right-hand side of (4.9), we get (4.10)

ŶProp(st)H(s−ii−o f non−r) =
k10Y (st)(ε0(st) − 1) − k11X(st)ε1(st) − k12Rx(st)ε2(st)

4
×
[
ε1(st)H + 1 + (1 − ε1(st)H + ε

2
1(st)H + . . .)

]
×
[
ε2(st)H + 1 + (1 − ε2(st)H + ε

2
2(st)H + . . .)

]
. (4.10)

In Eq. (4.10) we will neglect the terms of ε(st)’s, power having greater than two, we get (4.11)

ŶProp(st)H(s−ii−o f non−r) − Y st = Y (st)(k10 − 1)

+ k10Y (st)ε0(st)H − k11X(st)ε1(st)H − k12Rx(st)ε2(st)H

+ 1
2 k10Y (st)ε

2
1(st)H +

1
2 k10Y (st)ε

2
2(st)H . (4.11)

To get the bias of the proposed estimator, we need to take expectation on both the sides of (4.11), hence we will get the
bias of the proposed estimator up to the first order of approximation

E
(
ŶProp(st)H(s−ii−o f non−r) − Y st

)
= Y (st)(k10 − 1) + k10Y (st)E(ε0(st)) − k11X(st)E(ε1(st)) − k12Rx(st)E(ε2(st)) + 1

2 k10Y (st)E
(
ε2

1(st)

)
+ 1

2 k10Y (st)E
(
ε2

2(st)

)
.(4.12)
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Using (4.12), the bias and MSE of ŶProp(st)H , are given by:

B(ŶProp(st)H(s−ii−o f non−r)) = Y st[(k10 − 1)+
1
2

k10B020 +
1
2

k10B002]

, and MSE is given by (4.13)

MSE
(
ŶProp(st)H(s−ii−o f non−r)

)
= Y st

2[
(k10 − 1)2 + k10(B020 + B002) + k10(B020 + B002 + B200)

− 2k10Y stXstRx(st) {k11B110 + k12B101} + 2XstRx(st)k11k12B011

+ Xst
2
k2

11B020 + k2
12Rx(st)

2
B002

]
. (4.13)

The values of k10, k11 and k12 by diminishing (4.13): Constants k10, k11 and k12 are obtained by contracting expression
(4.13). That is, with a successive decrease of the terms in Eq. (4.13) the explicit k10, k11 and k12 are establish.

k10(opt)=
β[2 + B020 + B002]

2[β + B200α + β(B020 + B002)]
,

k11(opt)=

√
B200 Y (st)

(
B110√

B200
√
B020
−

B011√
B020

√
B002

B101√
B200

√
B002

)
[2 + B020 + B002]

2Xst
√
B020 (β + B200α + β[B020 + B002])

,

k12(opt)=

√
B200 Y (st)

(
B101√

B200
√
B002
−

B011√
B020

√
B002

B110√
B200

√
B020

)
[2 + B020 + B002]

2Rx(st)
√
B020 (β + B200α + β[B020 + B002])

,

The minimum MSE of ŶProp(st)H(s−ii−o f non−r) at the values of w5, w6 and w7 is given by (4.14)

MSEmin

(
ŶProp(st)H(s−ii−o f non−r)

)
�

Y (st)
2 [

4αB200 − β(B020 + B002)2
]

4[β + B200α + β(B020 + B002)]
(4.14)

α =1− B011
2

B020B002
−

B101
2

B200B002
−

B110
2

B200B020
+2 B101√

B200
√
B002
×

B011√
B020

√
B002
×

B110√
B200

√
B020

and β =1− B011
2

B020B002

5. Numerical Study

One real-life data set has been used in this section to compare the performance of the proposed estimators with their existing
counterparts. The idea behind using real data is to obtain a more realistic estimation of the effectiveness and consistency
of the proposed approaches outside the theoretical context. The findings of such a set are reported in Tables 2 through
9, in which the (MSE) and the (PRE) of the population means are reported. The values of MSE are used to evaluate the
accuracy of the estimators. The smaller the values, the better the performance of the estimators. In contrast, the values of
PRE provide a relative measure of the efficiency of the suggested estimators compared to conventional estimators. These
combined measures can be used to comprehensively evaluate the benefits presented by the enhanced class of estimators in
non-response conditions.
Population-I: [Source: Koyuncu and Kadilar [16]]
We used an education dataset from Turkey in 2007, which includes records of 923 districts and is published as an open
data resource. For each of the six major regions (Marmara, Aegean, Mediterranean, Central Anatolia, Black Sea and East
& South-east Anatolia), the districts were grouped to address regional heterogeneity. This stratification simulates both
geographical and socio-economic variation in the data, making it suitable for checking the performance of the proposed
estimators under a stratified random sampling design.
The study outcome (Y) was the number of educators, a key determinant of educational resources within each district.
Two additional variables were used as covariates, with the first auxiliary variable (X). To be more specific, representing
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the number of pupils would show a relatively high correlation with the study variable, as it is related to teacher demand.
Secondly, the second auxiliary variable (Z) represented the total number of courses in primary and secondary schools at
each district level, involving an extra layer of educational structure and capacity information. Together, these secondary
variables account for graduations and measure the size (number of students enrolled) and structure of the educational system
(courses offered) in terms of their effect on precision when used in conjunction with their approach.

Descriptive statistics on the dataset showed that a district had an average of 340 teachers, 2,650 pupils, and 120 courses
across all school levels. There was regional variation: for example, the Marmara region had the highest average (around
520 teachers and 3,800 pupils per district), followed by eastern and southern Anatolia, which had around 210 teachers and
1,700 pupils per district. The number of courses per district varied from about 85 in less developed districts to more than
160 in urbanised districts. This stratification heterogeneity emphasises the relevance of the estimation problem in stratified
sampling and why generalising dual auxiliaries applicable to such heterogeneous populations is methodologically essential.
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Figure 1. Showing MSEs using Situation-I under non-response using real data set.

From Figures 1, 2, 3, and 4, we conclude that the plot of MSEs and PREs shows that the proposed estimator is efficient
then existing estimators, using real-life date set.

Computational Journal of Mathematical and Statistical Sciences Volume 5, Issue 1, 1–34



716

Table 1. Population and Sample Characteristics under Stratified Sampling with Non-
Response

Parameter Value
N 923
Nnon 231
N1,N2,N3,N4,N5,N6 127, 117, 103, 170, 205, 201
n 180
nnon 45
n1, n2, n3, n4, n5, n6 31, 21, 29, 38, 22, 39
N1(2),N2(2),N3(2),N4(2),N5(2),N6(2) 32, 30, 26, 43, 52, 51
n1(2), n2(2), n3(2), n4(2), n5(2), n6(2) 8, 5, 7, 10, 6, 10
λ 0.004472132
λ11-λ16 0.0244, 0.0390, 0.0248, 0.0204, 0.0406, 0.0207
When k = 2 λnon = 0.001388889
λ21-λ26 0.0081, 0.0119, 0.0086, 0.0066, 0.0227, 0.0114
When k = 3 λnon = 0.002777778
λ21-λ26 0.0161, 0.0238, 0.0172, 0.0132, 0.0227, 0.0128
When k = 4 λnon = 0.004166667
λ21-λ26 0.0242, 0.0357, 0.0259, 0.0197, 0.0341, 0.0192
When k = 5 λnon = 0.005555556
λ21-λ26 0.0323, 0.0476, 0.0345, 0.0263, 0.0455, 0.0256
Ȳ , Ȳnon 436.4345, 528.5801
Ȳ11-Ȳ16 703.74, 413.00, 573.17, 424.66, 267.03, 393.84
Ȳ21–Ȳ26 501.22, 373.72, 403.46, 256.70, 311.43, 428.96
X̄, X̄non 11440.5, 14557.35
X̄11-X̄16 20804.59, 9211.80, 14309.30, 9478.85, 5569.95, 12997.59
X̄21-X̄26 14314.31, 8296.86, 8948.50, 5312.70, 6175.41, 16897.64
R̄x, R̄x,non 462, 116
R̄x,11-R̄x,16 64, 59, 52, 86, 103, 101
σ2

y11
-σ2

y16
781163.9, 415924.8, 1068054, 657047.8, 162936.9, 506549

σ2
x11

-σ2
x16

9294420, 2304560, 7589858, 33192950, 7221220, 5333395
σ2

y21
-σ2

y26
418457, 160450.1, 151741.3, 167191, 165085.8, 431511.1

σ2
x21

-σ2
x26

440651, 880443, 772197, 698836, 632839, 644660
Cy11-Cy16 1.2559, 1.5616, 1.8031, 1.9088, 1.5116, 1.8071
Cx11-Cx16 1.4654, 1.6480, 1.9253, 1.9221, 1.5256, 1.7768
Cy21-Cy26 1.2906, 1.0718, 0.9655, 1.5929, 1.3046, 1.5314
Cx21-Cx26 1.4665, 1.1309, 0.9820, 1.5735, 1.2882, 1.5026
ϱy11,x11-ϱy16,x16 0.9366, 0.9957, 0.9938, 0.9835, 0.9893, 0.9652
ϱy11,rx11–ϱy16,rx16 0.8239, 0.6584, 0.6337, 0.6360, 0.6595, 0.5863
ϱx11,rx11–ϱx16,rx16 0.7834, 0.6517, 0.6237, 0.6442, 0.6655, 0.6162
ϱy21,x21–ϱy26,x26 0.9623, 0.9927, 0.9911, 0.9972, 0.9926, 0.9867
S y11,x11–S y16,x16 25237154, 9747943, 28294397, 14523886, 3393592, 15864574
S y21,x21–S y26,x26 13066923, 3731279, 3392565, 3408435, 3208166, 16456424
βx11-βx16 7.367, 20.709, 17.648, 12.830, 24.386, 25.513
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Table 2. Population–I, Situation–I, when k = 2, 3

k = 2 k = 3

Estimators MSE PRE Estimators MSE PRE

ŶS RS 2601.169 100 ŶS RS 2973.071 100

ŶR(st)H 270.9321 960.0813 ŶR(st)H 325.4459 913.5378

ŶP(st)H 10882.59 23.9021 ŶP(st)H 12559.89 23.67116

Ŷreg(st)H 235.9403 1102.469 Ŷreg(st)H 276.7634 1074.229

ŶR,D(st)H 235.6484 1103.835 ŶR,D(st)H 276.3618 1075.789

ŶS (st)H 692.2564 375.7522 ŶS (st)H 781.9783 380.1987

ŶG,K(st)H 234.0031 1111.596 ŶG,K(st)H 274.1178 1084.596

ŶA,H(st)H 223.1232 1165.799 ŶA,H(st)H 260.138 1142.882

ŶH,S (st)H 220.3652 1180.390 ŶH,S (st)H 255.5571 1163.368

ŶProp(st)H 212.3298 1225.061 ŶProp(st)H 240.0983 1238.273

Table 3. Population–I, Situation–I, when k = 4, 5

k = 4 k = 5

Estimators MSE PRE Estimators MSE PRE

ŶS RS 3344.973 100 ŶS RS 3716.876 100

ŶR(st)H 379.9596 880.3497 ŶR(st)H 434.4734 855.4898

ŶP(st)H 14237.18 23.4946 ŶP(st)H 15914.47 23.3553

Ŷreg(st)H 317.0643 1054.983 Ŷreg(st)H 357.0166 1041.093

ŶR,D(st)H 316.5374 1056.739 ŶR,D(st)H 356.3487 1043.045

ŶS (st)H 871.7003 383.7298 ŶS (st)H 961.4222 386.6018

ŶG,K(st)H 313.6048 1066.621 ŶG,K(st)H 352.6379 1054.021

ŶA,H(st)H 296.5864 1127.824 ŶA,H(st)H 332.6087 1117.492

ŶH,S (st)H 289.3737 1155.935 ŶH,S (st)H 321.9891 1154.348

ŶProp(st)H 267.2104 1251.812 ŶProp(st)H 293.6669 1265.678
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Table 4. Population –I, Situation –II, when k=2, 3

k=2 k=3
Estimators MSE PRE Estimators MSE PRE

ŶS RS 2601.169 100 ŶS RS 2973.071 100

ŶR(st)H 588.3207 442.1345 ŶR(st)H 960.2231 309.6229

ŶP(st)H 9577.201 27.1600 ŶP(st)H 9949.103 29.8828

Ŷreg(st)H 566.1856 459.4198 Ŷreg(st)H 938.0880 316.9288

ŶR,D(st)H 564.5076 460.7854 ŶR,D(st)H 933.4906 318.4897

ŶS (st)H 974.4368 266.9407 ŶS (st)H 1346.339 220.8263

ŶG,K(st)H 562.1658 462.7049 ŶG,K(st)H 929.9481 319.7029

ŶA,H(st)H 554.5192 469.0854 ŶA,H(st)H 922.3313 322.3431

ŶH,S (st)H 549.0983 473.7164 ŶH,S (st)H 913.2905 325.5340

ŶProp(st)H 215.9077 1204.759 ŶProp(st)H 247.9003 1199.301

Table 5. Population –I, Situation –II, when k=4, 5

k=4 k=5
Estimators MSE PRE Estimators MSE PRE

ŶS RS 3344.973 100 ŶS RS 3716.876 100

ŶR(st)H 1332.126 251.1005 ŶR(st)H 1704.028 218.1229

ŶP(st)H 10321.01 32.4094 ŶP(st)H 10692.91 34.7602

Ŷreg(st)H 1309.990 255.3434 Ŷreg(st)H 1681.893 220.9936

ŶR,D(st)H 1301.043 257.0995 ŶR,D(st)H 1667.172 222.9450

ŶS (st)H 1718.242 194.6742 ŶS (st)H 2090.144 177.8287

ŶG,K(st)H 1296.304 258.0393 ŶG,K(st)H 1661.242 223.7408

ŶA,H(st)H 1288.717 259.5585 ŶA,H(st)H 1653.684 224.7634

ŶH,S (st)H 1276.070 262.1308 ŶH,S (st)H 1637.446 226.9923

ŶProp(st)H 279.8821 1195.136 ŶProp(st)H 311.8532 1191.867
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Figure 2. Showing MSEs using Situation-II under non-response using real data set.
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Figure 3. Showing PREs using Situation-I under non-response using real data set.

6. Simulation study

The purpose of the simulation study is to evaluate how different non-response (NR) rates affect stratified sample estima-
tors over a 10,0000-iteration period. There are six different groupings, or strata, in the study. The simulation chooses a
population size of 1000–2000 people for each stratum at random in each iteration. Each group’s initial sample numbers
range from 200 to 400 people. In the simulation model, the sample size with and without non-response (NR) could vary
between 500 and 1000 with a fixed NR rate at 25%, based on realistic survey scenarios. Correlations between variables
were created for each stratum, and artificial means and standard deviations were generated for the three variables studied:
the variable under study (Y), the auxiliary variable (X) and the rank of X. In particular, the mean parameters for Y were
drawn from a normal distribution between 400 and 800, X from a normal distribution of range (5000; 10000), and the rank
of X was sampled from a normal distribution within the interval [300; 600]. Finally, overall population-level variables
were calculated as weighted sums using the sizes of the strata as weights. These weighted values described the aggregated
means and covariances that accurately represented the stratified population. Such a well-defined setup guarantees that the
simulation study can thoroughly examine how non-response affects the efficiency and consistency of our estimators under
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Figure 4. Showing PREs using Situation-I under non-response using real data set.

stratified random sampling.

Simulation results are presented in tables 6–9, where we represent the Mean Squared Error and Percentage Relative Ef-
ficiency of the estimator under different non-response. Two distinct scenarios were considered, the first being only non-
response on the study variable (Y) and the second comprising non-response on both the study variable and any covariates
(X), or rank of X. Comparing these examples, we demonstrate the effect of non-response on auxiliary information in terms
of the estimator’s efficiency. In brief, the results verify that our proposed estimator has a lower MSE and higher PRE than
the co-specific estimators, indicating it is more robust and efficient even under multi-variable non-response.

From Figures 5, 6, 7, and 8, one can conclude that the plot of MSEs and PREs shows that the proposed estimator is
efficient then existing estimators, using simulation study.

7. Discussion

The performance of the proposed estimators for stratified random sampling with non-response was investigated by simula-
tion studies and applied to some real data as described above. We studied two populations, Scenario-I and Scenario-II, and
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Table 6. Simulation, Situation –I, when k=2, 3

k=2 k=3
Estimators MSE PRE Estimators MSE PRE

ŶS RS 2744.233 100 ŶS RS 3136.59 100

ŶR(st)H 285.8334 1012.89 ŶR(st)H 343.3454 963.78

ŶP(st)H 11481.13 25.22 ŶP(st)H 13250.68 24.97

Ŷreg(st)H 248.917 1163.1 Ŷreg(st)H 291.9854 1133.31

ŶR,D(st)H 248.6091 1164.55 ŶR,D(st)H 291.5617 1134.96

ŶS (st)H 730.3305 396.42 ŶS (st)H 824.9871 401.11

ŶG,K(st)H 246.8733 1172.73 ŶG,K(st)H 289.1943 1144.25

ŶA,H(st)H 235.395 1229.92 ŶA,H(st)H 274.4456 1205.74

ŶH,S (st)H 232.4853 1245.31 ŶH,S (st)H 269.6127 1227.35

ŶProp(st)H 224.0079 1292.44 ŶProp(st)H 253.3037 1306.38

Table 7. Simulation, Situation –I, when k=4, 5

k=4 k=5
Estimators MSE PRE Estimators MSE PRE

ŶS RS 2532.927 100 ŶS RS 2895.073 100

ŶR(st)H 263.8242 934.89 ŶR(st)H 316.9078 889.57

ŶP(st)H 10597.09 23.28 ŶP(st)H 12230.38 23.05

Ŷreg(st)H 229.7504 1073.55 Ŷreg(st)H 269.5025 1046.05

ŶR,D(st)H 229.4662 1074.88 ŶR,D(st)H 269.1114 1047.57

ŶS (st)H 674.0951 365.89 ŶS (st)H 761.4631 370.22

ŶG,K(st)H 227.864 1082.43 ŶG,K(st)H 266.9263 1056.14

ŶA,H(st)H 217.2696 1135.21 ŶA,H(st)H 253.3133 1112.9

ŶH,S (st)H 214.5839 1149.42 ŶH,S (st)H 248.8526 1132.85

ŶProp(st)H 206.7593 1192.92 ŶProp(st)H 233.7993 1205.79
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Table 8. Simulation, Situation –II, when k=2, 3

k=2 k=3
Estimators MSE PRE Estimators MSE PRE

ŶS RS 2654.493 100 ŶS RS 3034.019 100

ŶR(st)H 600.3813 451.2 ŶR(st)H 979.9077 315.97

ŶP(st)H 9773.534 27.72 ŶP(st)H 10153.06 30.5

Ŷreg(st)H 577.7924 468.84 Ŷreg(st)H 957.3188 323.43

ŶR,D(st)H 576.08 470.23 ŶR,D(st)H 952.6272 325.02

ŶS (st)H 994.4128 272.41 ŶS (st)H 1373.939 225.35

ŶG,K(st)H 573.6902 472.19 ŶG,K(st)H 949.012 326.26

ŶA,H(st)H 565.8868 478.7 ŶA,H(st)H 941.2391 328.95

ŶH,S (st)H 560.3548 483.43 ŶH,S (st)H 932.013 332.21

ŶProp(st)H 220.3338 1229.46 ŶProp(st)H 252.9823 1223.89

Table 9. Simulation, Situation –II, when k=4, 5

k=4 k=5
Estimators MSE PRE Estimators MSE PRE

ŶS RS 2734.152 100 ŶS RS 3125.067 100

ŶR(st)H 618.3981 464.74 ŶR(st)H 1009.314 325.45

ŶP(st)H 10066.83 28.55 ŶP(st)H 10457.74 31.41

Ŷreg(st)H 595.1314 482.91 Ŷreg(st)H 986.047 333.13

ŶR,D(st)H 593.3676 484.34 ŶR,D(st)H 981.2145 334.77

ŶS (st)H 1024.254 280.59 ŶS (st)H 1415.17 232.12

ŶG,K(st)H 590.9061 486.36 ŶG,K(st)H 977.4909 336.05

ŶA,H(st)H 582.8685 493.07 ŶA,H(st)H 969.4847 338.82

ŶH,S (st)H 577.1705 497.93 ŶH,S (st)H 959.9817 342.18

ŶProp(st)H 226.9458 1266.3 ŶProp(st)H 260.574 1260.61
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Figure 5. Showing MSEs using Situation-I under non-response using Simulation.

compared estimators in each scenario for a range of threshold values k (i.e., k=2,3,4,5). The performances (Tables 2–9) and
the plots of MSE/PRE undoubtedly support that all the proposed estimators perform better compared to their correspond-
ing ones. In particular, the proposed estimators are persistently superior in MSE and PRE to the theory-based regression
estimator under the non-response model for stratified sampling. The graphical comparisons (1–8) provide an additional
perspective to the tabular results in illustrating how performance varies with k. Varying the threshold from 2 to 5, we
observe that MSE values increase, while PRE values decrease slightly as k changes, reflecting that estimator performance
depends on the selected k. Crucially, despite these variations, the proposed estimators remain superior to their competitors.
These results validate the robustness and effectiveness of our approach, proving that it can be applied to real-world surveys
where non-response is inevitable.

8. Conclusion

The paper contributes to the theory of mean estimation with stratified random sampling by presenting a new estimator
for the population mean of a research variable when non-response is present in both study and auxiliary variables. For
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Figure 6. Showing MSEs using Situation-II under non-response using Simulation.

non-response, the proposed estimator utilizes inexpensive upstream abundance information, along with known population
parameters of an auxiliary variable, to provide a population mean estimate for a study variable. To enrich its theory, the
properties of the suggested estimator (bias, mean squared errors, efficiency and optimality conditions) are then derived to
first order approximation.

The results of the Monte Carlo simulation studies, along with those from real data, indicate that the anticipated estimator
performs better than the current estimators considered in this study. Specifically, it shows the best numerical results by
lowering the (MSE) and increasing the (PRE), hence proving its practical usefulness. The outcomes clearly indicate that
the newly created estimator should be preferred over the traditional methods used in non-response situations, as highlighted
in the literature reviewed during this study.

Thus, in the case of practitioners and researchers interested in survey sampling, and in situations where non-response can
be a significant issue, it is highly advised to adopt the proposed estimator. Their strength and efficiency make it helpful in
obtaining more accurate estimates of the population mean in situations involving stratified random sampling designs with
non-response. In addition, this development not only enhances the theoretical base of mean estimation but also creates
opportunities for further methodological advancements, such as adjusting to more sophisticated sampling designs like
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Figure 7. Showing PREs using Situation-I under non-response using Simulation.

simple random sampling (SRS) or cluster sampling, thereby extending its scope to practical survey activities.

9. Future Research Directions

Several necessary extensions could strengthen the theoretical coverage and the practical value of this work. First, as an
immediate line of research, it would be interesting to study the effect of measurement error on our proposed estimators.
In most large-scale surveys, errors exist in the recording or reporting of variables, and studying robustness under such
situations would make the method more practical. Secondly, the introduction of high non-response adaptive estimators
would represent a beneficial contribution, as non-response rates in real surveys vary significantly across strata or groups.
Although beyond the scope of this work, adaptive methods might even be able to automatically change their estimation
strategy and remain efficient under substantial data reduction. Third, the technique could be adapted to more complicated
sampling designs, such as probability proportional to size (PPS) or cluster sampling. Such designs are frequently used in
ultra-large sample surveys, taking into account homogeneity and economic factors. By including non-response adjustment
in those frameworks, the proposed methodology would not only extend its theoretical performance but also contribute
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Figure 8. Showing PREs using Situation-II under non-response using Simulation.

to simultaneously handling missing data, measurement error and complex survey design issues typically confronted in
practice.

10. Practical Implications of the proposed work

1. Greater trustworthiness of Survey Results. One of the significant sources of bias in the sampling of surveys
is non-response. By creating estimators that directly account for non-response using stratified random sampling,
investigators can obtain population mean estimates that are more valid and closer to the actual population values.
This minimizes the chances of biased policy making, especially in national surveys that are carried out on a large
scale, like health, education and labour statistics.

2. Economical Utilization of Auxiliary Information.
Stratified sampling is already exact because it clusters the population into similar strata. Adding additional informa-
tion during the process of dealing with non-response further optimises the estimates. As an illustration, land records
or past yield data could be used as auxiliary data to enhance the estimation of the average yield of crops in agricultural
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surveys where some farmers fail to respond.
3. Field Survey Cost-Effectiveness.

Non-response follow-ups and callbacks can be costly. When good estimators are available to compensate for non-
response, survey organisations need not conduct extensive follow-up, saving on data collection expenses while still
achieving accuracy.

4. Recommendations to Public Policy and Planning.
In many areas of life, like in the planning of education or poverty reduction, stable estimates of averages (mean
income, mean literacy score, mean nutritional intake, etc.) are essential. Stratified survey results are reliable and
allow planners to depend on adjusted estimators when there is incomplete participation in a survey due to non-
response.
To give an example, in a health survey, non-response can be disproportionate in some socio-economic groups; strati-
fied non-response adjustment would be used to make sure that the contribution they make is not under-represented.

5. Elasticity on the Multiple Non-Response Levels.
As efficiency and (MSE) of estimators may differ with the level of non-response, the suggested methods provide
statisticians with adaptive instruments to adjust the strategy of estimation based on the real-life situation in the field.
This does not imply that survey statisticians cannot retain a high percentage relative efficiency (PRE) in cases where
non-response levels differ in strata.

6. Usages in the Big Data and Administrative Data Sources.
In addition to the old-fashioned survey, contemporary applications in big data integration (e.g., tying census data
and administrative records) tend to result in incomplete reporting or selective non-response. The techniques that
evolved to stratified designs are also applicable to such settings, making them highly relevant to present-day data
environments.

7. Making Survey Statistics More Trustworthy by the public.
By having government agencies, NGOs, or international organisations create survey-based statistics, one can reduce
non-response bias and build confidence in official statistics. Survey data is also accused of being unrepresentative or
biased, but reliable mean estimates minimise these criticisms.
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