Effect of certain natural products compared with the chemical insecticide, imidacloprid (Admire) against immature stage (nymph) of whitefly *Bemisia tabaci* (genn.) infesting tomato plants

M.A.E. El-Bessomy
Etay El-Baroud Agric. Res. Station, Agric. Res. Center, Egypt.

ABSTRACT

Efficiency of three natural products Jojoba oil (Enco-1) 96 % EC, KZ oil 95 % EC and sulpher as a dust comparing with the insecticide, imidacloprid (Admire 20 % SC) against immature stage of white fly, *Bemisia tabaci* (Genn.) were investigated during summer scason 2001. at Etay El-Baroud Agricultural Research Station. Concerning theinitial mortality after 48 h of the spray, significant differences occurred between imidacloprid and the three natural products at two rates, except for Jojoba oil at the rate of 2 L. / 100 L. water. Imida caused maximum reduction of 92 %, while KZ oil caused only 52.5 %. After 7 days of spraying, no significant differences occurred between imida and all treatments. The obtained data revealed that, it can be use The Jojoba oil and KZ oil can be used at the rate of 1 L. / 100 L. water and sulpher at the rate of 5 kg / feddan instead of the higher rates. These natural products are effective, cheap and safe for both human and environment.

INTRODUCTION

The whitefly is one of the most harmful pests of vegetable crops, especially tomato plants. It cause direct damage by sucking juices of plants and transmits viral diseases (Zeid and Herakly, 1972 and Bird and Maramorsch, 1978). Chemical control is still considered one of the most important methods for controlling white fly (Hamid, 1999). Many problems arose from using chemical insecticides such as environmental pollution, hazardous effects on man, animals and natural enemies of pests. Therefore, many efforts were directed to use natural products, such as natural oils, to control sucking pests; (Larew, 1988, Butler et al. 1989, Daoud 1993 and Rizk et al. 1999).

The aim of the present work is to investigate the pesticidal efficiency of some local formulated natural oils; Jojoba oil (Enco-1) 96 % EC, KZ oil 95 % EC (mineral oil) and Sulpher as a dust against immature stage (nymph) of whitefly on tomato plants compared with the recommended chemical insecticide, imidaeloprid (Admire 20 % SC) during summer season 2001.

MATERIALS AND METHODS

Tested compounds and rates:

a) The natural products:

- 1- Jojoba oil (Enco 1) 96 %, Provided by Egyptian Natural Oil Company and applied at the rate of 2 and 1 L. 100 liters of water.
- 2- KZ oil 95 % EC (mineral oil), Provided by Kafr El-Zayat Company for Pesticides, applied at the rate of 2 and 1 L. 100 liters of water.
- 3- Sulpher: Used as dust at the rate of 5 kg and 10 kg / feddan, Provided by Kafr El-Zayat Company for Pesticides,

b) The recommended chemical insecticide:

Imidacloprid (Admire 20 % SC): Arecommended insecticide against whitefly. Provided by Bayer Company.

Experimental procedures: The tested materials were used against immature stage (nymph) of whitefly on tomato plants during summer season 2001 at Etay El-Baroud Agricultural Research Station. An area of 0.6 feddan was divided into 32 plots (each about 21 m²) in a randomized block design. Knapsack sprayer with one nozzle was used. The experiment started at 15/8/2001 with 7 dayes intervals between each ssuccessive sprays. The efficiency against immature stage (nymph) of whitefly was determined by randomly taking 25 leaves/plot and examined by using a binocular microscope in the laboratory. Reduction percentage was calculated according to Henderson and Tilton equation (1955). Analysis of variance at 0.05 level was done by Duncan's multiple test (1955).

RESULTS AND DISCUSSION

The pesticidal efficiency of three sprays of Jojoba oil applied at the rate of either 2 L or 1 L / 100 L water, two rates of KZ oil 95 % EC (mineral oil) 2 L and 1 L / 100 L water, also two rates of Sulpher as dust 10 kg and 5 kg / feddan comparing with the chemical insecticide, imidacloprid

(Admire 20 % SC) against immature stage of whitefly infesting tomato plants during summer season 2001 is summarized in Tables (1 & 2).

The data in Table (1) indicated that the differences in initial kill after 48 h of spraying was significant between the chemical insecticide Imidaclopride and the natural products at the two rates except for the rate (2 L / 100 L water) of Jojoba oil which was not significant. Also, no significant difference occurred between the two rates of KZ oil at an effeciant rate of 60.1 % and 52.5 % at rate 2 L and 1 L / 100 L water, respectively. Similar results were obtained with the sulpher and the reduction percentage was 63.0 % and 55.8 % at the 10 kg and 5 kg / feddan, respectively. The results also indicated that, the Jojoba oil at rate 2 L / 100 L water was intermediate between the chemical insecticide imidacloprid which had the highest effect and KZ oil which had the lowest one.

Data in Table (2) revealed that the residual effect after 7 days of spraying was a positive relationship between the reduction percentage and time, i.e., the mortality percentages of KZ oil were 60.1 % and 52.5 % increased to 81.9 % and 78.8 % at rate 2 L. and 1 L / 100 L. water after 7 days as a residual effect, respectively. The same trends was obtained for Sulpher with its two tested rates.

Concerning to the residual effect, the results showed that there were no significant differences between the natural products and the tested insecticide, imidacloprid. The efficiency of Jojoba oil was 82.8 % and 77.0 % at rate 2 L. and 1 L / 100 L. water, respectively. Efficiency of KZ oil was 81.9 % and 78.8 % at rate 2 L. and 1 L / 100 L. water, respectively; while the efficiency of Sulpher was 85.0 % and 78.0 % at rate 10 kg and 5 kg/feddan, respectively. The field observations showed that plants treated with Sulpher were more healthy than the others.

As a general conclusion, Jojoba oil and KZ oil sprayed at rate 1 L / 100 L. water and Sulpher dusting at rate 5 kg/feddan could be used instead of imidacloprid against the nymph of stage of whitefly (*B. tabaci*). These natural products are active, cheap and safe for human and environment. Therefore, they are useful in IPM programmes.

Table (1): The initial kill of two rates of certain natural products compared with the chemical insecticide "Admire" against immature stage (nymph) of white fly, Bemisia tabaci on tomato plants during summer season 2001.

Id liters of water Pre Post treatment % pre treatment Pre treatment Pre treatment Pre treatment % pre treatment Pre treatment % pre treatment pre treatment pre treatment Reduction 10 21. 2292 2222 90.3 609 88 85.6 129 16 87.6 21. 2392 544 77.3 658 199 69.8 172 42 75.6 5 2L. 2356 1309 48.8 338 159 53.0 51 11 78.4 10 Kg/F	Tested	Rate / 100		AB1dS # J		in	Initial kill after 48 h.	48 F		Jan chira		
125 ml 2121 171 91.9 362 33 90.9 45 3 93.3 2 L. 2292 2222 544 90.3 609 88 109 85.6 129 16 87.6 87.6 129 16 87.6 87.6 129 16 87.6 87.6 129 16 87.6 87.6 129 16 87.6 87.6 129 172 42 75.6 129 172 42 75.6 129 11 78.4 88.1 129 159 28 187 28 11 78.4 89 29 67.4 129 67.4 79.1 1263 14 79.1 1263 16 26 337 47.8 109 31 71.6	compound	liters of water	Pre treatment	Post treatment	% Reduction	Pre treatment	Post	% Reduction	Pre	Post	% Reduction	Mea
21. 2292 222 90.3 609 88 85.6 129 16 87.6 11. 2392 544 77.3 658 199 69.8 172 42 75.6 2L. 2556 1309 48.8 338 159 53.0 51 11 78.4 1L. 2371 1391 41.3 464 238 48.7 89 29 67.4 10 Kg/F 2467 1072 56.5 535 249 53.5 67 14 79.1 5 Kg/F 2434 1263 48.1 626 327 47.8 109 31 71.6	Admire 20 % Sc	125 mf	2121	171	91.9	362	33	90.9	\$	Lu-	93.3	92 0*
1L. 2392 544 77.3 658 199 69.8 172 42 75.6 2L. 2556 1309 48.8 338 159 53.0 51 11 78.4 1L. 2371 1391 41.3 464 238 48.7 89 29 67.4 10 Kg/F 2467 1072 56.5 535 249 53.5 67 14 79.1 5 Kg/F 2434 1263 48.1 626 327 47.8 109 31 71.6	Jojoba oil	21.	2292	222	90.3	6 6	00 00	85.6	129	16	89 5	90 7J
2 L. 256 1309 48.8 338 159 53.0 51 11 78.4 1 L. 2371 1391 41.3 464 238 48.7 89 29 67.4 10 Kg/F 2467 1072 56.5 53.5 249 53.5 67 14 79.1 5 Kg/F 2434 1263 48.1 626 327 47.8 109 31 71.6	(Enc0-10 96 % Ec	11	2392	544	77.3	658	79	69.8	172	42	75.6	74 2
I.I. 2371 1391 41.3 464 238 487 89 29 67.4 10 Kg/F 2467 1072 56.5 535 249 53.5 67 14 79 1 5 Kg/F 2434 1263 48.1 626 327 47.8 109 31 71.6	KZ oil 95	2L	2556	1309	4. 00 00	338 86	159	53.0	51	=	78.4	<u>2</u>
10 Kg/F 2467 1072 56.5 535 249 53.5 67 14 5 Kg/F 2434 1263 48.1 626 327 47.8 109 31	%EC	7.11	2371	1391	41.3	\$	238	48 7	89	29	67.4	. 52 St
5 Kg/F 2434 1263 48.1 626 327 47.8 109 31	Sulpher	10 Kg/F	2467	1072	56.5	535	249	53.5	67	4	70 -	3
	(dust)	5 Kg/F	2434	1263	48.1	626	327	47.8	39	31	71 6	: A :
Control . 2535 2543 . 2633 2639 . 2591 2549 .	Control	•	;	1641		2633	2639	•	2591	2549		

Table (2): The residual effect of two rates of certain natural products compared with the chemical insecticide "Admire" against unmature stage (nymph) of white fly, *Bemisia tabaci* on tomato plants during summer season 2001.

49

These results are in agreement with Broza et al. (1998) who mentioned that, crude cottonseed oil (5 - 7 %) aqueous sprays, efectively suppressed sweet potato whitefly on cotton. Butler and Henneberry (1991) found that one or two applications of i = 7. % oil teotropseed oil or soybean oil) in water killed adult and immature stages of B tapaci up to 7 days following application on watermelon, squashes and cucumbers. El-Khawaika et al. (1996) added that, natural oil gave excellent control against various stages of the whitefly on tomato piants. Korkor et al. (1996) reported that, the high rate of cotton seed oil 5 % exhibited the highest overall mean after 3 sprays in immature stages of whitefly. Hamid (1999) showed the addition cotton seed oil to Baythroid induced significant increase of percent reduction of numbers of cotton bollworms. Recently, Rizk et al. (1999) indicated success of mineral oils against sucking pests

REFERENCES

- Bird, J. and K. Maramorosch (1978). Viruses and virus diseases associated with whiteflies. Virus Res., 22: 55-110.
- Broza, M.J.; G.D.Jr. Butler and T.J. Henneberry (1988). Cotton seed oil for control of *Bemisia tabaci* in cotton. Proc. Beltwide Cotton Prod. Res. Conf., pp. 301.
- Butler, G.D.Jr.; D.L. Coudriet and T.J. Henneberry (1989). Sweet potato whitefly host plant preference and repellent effect on plant derived oils on cotton, squash, lettuce and cantaloupe. Southwestern Entomologist., 14 (1): 9-16.
- Butler, G.D.Jr. and T.J. Henneberry (1990). Pest control on vegetables and cotton with household cooking oils and liquid detergents. Southwestern Entomologist., 15 (2): 123-131.
- Butler, G.D.Jr. and T.J. Henneberry (1991). Effect of oil sprays on sweet potato whitefly and phytotoxicity on watermelons, squash and cucumber. Southwestern Entomologist., 16 (1): 63-72.
- Daoud, M.A.R. (1993). Reduction in population density of the whitefly, *Bemisia tahaci* after natural oil spray in tomato fields. Al-Azhar J. Agric. Res., 17 21-28.

- Duncan, D.B.(1955): Multiple range and multiple F.Tests. Biomerics. 11: 1-42.
- El-Khawalka, M.H.M.; I.G. Mohamed; H.I.H. Omar and M.A.E. El-Bessomy (1996). Effect of different rates of the oil spray, natural, on the population density of various stages of the whitefly, *Bemisia tabaci* (Genn.) and virus symptoms on tomato plants. Alex. Sci. Exch., 17 (3): 277-281.
- Hamid, A.M. (1999). Effect of mineral and plant oils on the efficacy of Baythroid against whitefly and bollworms on cotton. 2nd Int. Conf. of Pest Control, Mansoura, Egypt, Sept., pp. 89.
- Henderson, C.F. and E.W. Tilton (1955). Tests with acaricides against the brown wheat mite. J. Econ. Entomol., 48: 157-161.
- Korkor, A.A.; M.Z. Awad; A.M. Hamid and A.R. Farag (1996). Meet the menace of whitefly on cotton by using some natural materials. J. Agric. Sci., Mansoura Univ., 21 (2): 779-786.
- Larew, H.G. (1988). Effects of four horticultural oils on whitefly oviposition. Insecticide and Acaricide Tests, 13:347.
- Rizk, M.A.; A.G. El-Sisi; N.A. Badr and S.M. Abdel- Halim (1999). Controlling of cotton sucking pests using safe materials. 2nd Int. Conf. of Pest Control, Mansoura, Egypt, Sept., pp. 212-221.
- Zeid, M. and F. Herakly (1972). Studies on *Aphis gossypii* (Glov.) infesting cucurbits in Egypt. Agric. Res. Rev., 50:95-103.

Received 12 / 12 / 2002 Accepted 13 / 2 / 2003

تأثير بعض الموند الطبيعية مقارنة بالمبيد الكيماوى "إيميداكلوبريد" على خفض تعداد حوريات الأبابة البيضاء على نباتات الطماطم

أجسرى هذا البحث في معطة البحوث الزراعية بايتاى البارود (محافظة البحيرة) في الموسم الصيفي ٢٠٠١ ادراسة الكفاءة الإبادية على خفض حوريات الذبابة البيضاء على نباتات الطماطم لثلاث مواد طبيعية وهي زيت الهوهوبا ٩٦ % في صورة مستحلب، كزد أويل ٩٥ % مستحلب بمعدليس ٢ لستر، ١ لمتر لكل منهما، والكبريت في صورة مسحوق تعفير بمعنلين ١٠ كجم و ٥ كجسم لكل فدان. وقورنت الكفاءة الإبادية لهذه المواد بالمبيد الكيماوي الموسى به "إيميداكلوبريد" (المبر ٢٠ % ٥٠) وتم حساب الإبادة الفورية بعد ٨٨ ساعة من الرش، والأثر الباقي بعد سبعة أيام وأخذ منوسط ثلاث رشات متتالية .. وكانت النتائج كالاتي :

- اسم النسبة للإبادة الفورية: اظهرت النتائج وجود فروق معنوية بين المعاملات وكانت أعلى كفاءة للمبيد الكيماوى لدمير الذي أعطى كفاءة ٩٢ % وأقل كفاءة لكزد أويل بمعدل ١ لتر/ ١٠٠ لتر ماء (٥٢,٥ %).

من هذه النتائج فإنه يمكن إستخدام هذه المواد الطبيعية بالمعدل المنخفض حيث بمكن إستخدام السزبوت بمعسدل ١ لمتر / ١٠٠ لتر ماء والكبريت التعفير بمعدل ٥ كجم /فدان في برامج المكافحة السنكاملة لمكافحسة الذبابة البيضاء حيث تتميز هذه المواد بالكفاءة وإنخفاض اسعارها وعدم خطورتها على البيئة من التلوث حيث يمكن الحصول على ثمار طماطم خالية من المبيدات حفاظا على صحة المستهاك خاصة وأنها تؤكل طازجة.