Laboratory and field evaluation of environmentally safe chemicals against the two-spotted spider mite *Tetranychus urticae* (Koch) and its predatory mite *Amblyseius gossipi* (El-Badry)

A.H. Hosny; A.Y. Keratum; M.M.F. El-Naggar and R.I. Magouz, Department of Pesticides, Faculty of Agriculture, Kafr El-Sheikh, Tanta University, Egypt.

ABSTRACT

Laboratory and field experiments were carried out to evaluate the toxic effect of five compounds; three hydrocarbon oils (KZ-oil, chemesol and supermasrona), one pyrethroid (cypermethrin) and one biocide (Biofly) against adult female of the two spotted spider mite, Tetranychus urticae (Koch) and adult female of predatory mite, Amblyseius gossipi (El-Badry). The effect of sublethal doses of these compounds on some biological and behavioural characteristics of this mite and its predator was also examined. The evaluation of these compounds against T. urticae on soybean plants in the field was also studied. Cypermethrin can not be recommended when safety and selectivity index are taken in consideration, but its toxic effect to prey mite and its low mammalian toxicity make us to keep it in mind under certain conditions. It was one of the most effective compounds on prey egg consumption by the predator A. gossipi. The mineral oils are of special purpose in mite control for their physical effect and relative high safety index on spider and predator mites. Supermasrona is a promising oil in integrated mite control programmes. Biofly did not exhibit certain trend for its ovicidal effect on different egg stages and its effect on prey egg deposition was decreased as time passing after treatment increased. Also, Biofly was one of the most safe compounds that allowed the predator to consume the contaminated prey eggs. In general, the time elapsed before introducing the contaminated prey eggs to adult predators is partially responsible for prey egg consumption and, consequently, the predator egg production. From the field trials, the mineral oils when used on soybean plants exhibited high mean reduction in motile and egg stages while cypermethrin was the least effective.

INTRODUCTION

The two-spotted spider mite, *Tetranychus urticae* is considered one of the major pests in Egypt attacking different agricultural crops such as field crops, vegetables, fruits and ornamental plants. The infestation by mite caused a great damage to these infested plants followed by a secondary infestation by various pathogens such as virus, bacteria and fungi.

The spider mite problem was not solved by reliance solely of the use of chemicals of an acaricidal effect since mites very rapidly developed resistance to many of these compounds (Huffaker et al., 1970). Alternative non chemical methods of control have been widely assessed, the most successful one had been the exploitation of predatory mites (Van De Vrie et al., 1972), which are commonly found in agricultural ecosystems and in unsprayed orchards.

The use of predators had proved to be the most effective control method for tetranychid mites and the most effective predators have been found in the family Phytoseiidae (Abou Awad and El-Banhawy, 1985). Amblyseius gossipi (El-Badry) has one of the fastest development rates and has high oviposition and predation rates. It was collected and described by El-Badry (1967).

The possibility of controlling phytophagous mites by a combination of biological and chemical methods had proved to be a less costly and more permanent method of control than pesticides alone (Croft, 1978 and Hislop and Prokopy, 1981).

Petroleum oils were used because they are cheaper and more safe to human and environment. El-Sisi and El-Hariry (1989) and El-Hariry et al.(1998) used many types of petroleum oil for controlling mites. Those local, safe and cheap materials gave good effects against some pests which attack economic crops in Egypt. Clearly, if chemical, microbial pesticides and biological methods are successfully integrated, then the impact of pesticides used to control key pests and diseases must be minimized while the beneficial arthropods must be introduced.

The present study was carried out to examine the toxic effect of three hydrocarbon oils, one biocide (Biofly) and one pyrethroid (cypermethrin) against adult female of the two-spotted spider mite *T. urticae* and its

predatory mite, A. gossipi; and the side effect of sublethal doses of tested compounds on some biological aspects of spider mite, T. urticae and its predatory mite, A. gossipi. Field evaluation of these compounds on spider mite, T. urticae on soybean plants was also studied.

MATERIALS AND METHODS

A. Laboratory studies

Prey cultures: Two-spotted spider mite, T. urticae (Koch) (Acarina: Tetranychidae) colonies were obtained from castor bean plants from Kafr El-Sheikh Governorate and reared under laboratory conditions according to Dittrich (1962).

Predator culture: The predator A. gossipi (El-Badry) was reared on pollen grains of castor oil (Ricinus communis) plants according to the technique used by Overmeer et al.(1982).

Chemical used: Five compounds were used: cypermethrin: [(RS)-α-cyano-3-phenyloxy-benzyl (IRS, 3RS; IRS, 3RS)-3-(2,2-dichlorovinyl)-2,2dimethyl cyclopropane carboxylate] as 25% EC, Biofly: [a trade name of the entomopathogenic fungus, Beauvaria bassiana (Balasamo) as a liquid containing 3x10⁷ conidia/ml], KZ-oil: [formulated mineral oil as 95% EC], chemesol: [formulated mineral oil as 95% EC] and supermasrona [formulated mineral oil as 94% EC].

Experimental techniques

- 1. Toxicity of tested compounds to adult female mites T. urticae and its predator, A. gossipi: The toxic effect of tested compounds to the adult female mites, T. urticae and its predator, A. gossipi were evaluated by the leaf disc dip technique according to Siegler (1947). Mortality counts were made 24 hours after treatment. Correction for the control mortality was made by using Abbott's formula (1925).
- 2. Effect of compound residues on T. urticae egg laying and its hatchability: The residual effect of each tested chemical at LC25 level on adult prey mites was evaluated according to Keratum et al.(1994).
- 3. Effect of different compounds on hatchability of T. urticae eggs at different ages: The effectiveness of the tested compounds on T. urticae eggs of different ages was examined using the method of Staal et al. (1975).

- 4. Effect of compound residues on egg consumption and egg laying and its hatchability by predatory mite, A. gossipi: The method which was adopted by Keratum et al.(1994) was used to evaluate the effect of tested compound residues on egg consumption and egg laying and its hatchability by the predatory mite. A gossipi
- B. Field experiment: An experiment was carried out in the farm of Faculty of Agriculture, Kafr El-Sheikh, Egypt to evaluate the efficiency of the tested compounds on spider mite, T. urticae infesting soybean plants variety "Crawford". Plots each of 1/200 feddan were used. Completely randomized block design was employed and four replicates were assigned for each treatment. All tested compounds were applied at half their recommended rates using knapsack sprayer with one nozzle. The rate of water used for diluting compounds was 200 liters/feddan. Samples of 10 soybean leaves were randomly collected from each plot before and after treatment at intervals of 2 days and one week later. The percentage reduction of infestation was calculated for each treatment according to Handerson and Tilton equation (1955):

% mortality =
$$\left[1 - \left(\frac{\text{population in the control before spraying}}{\text{population in the control after spraying}} \right) x$$
$$\left(\frac{\text{population in the treatment after spraying}}{\text{population in the treatment before spraying}} \right) x 100$$

Duncan's multiple range test at the 5% level was used for statistical analysis of significant differences among treatments.

Equations:

1. Abbott's formula (1925): was used to correct % mortality according to natural mortality:

Mortality (%) =
$$\frac{\text{Mortality \% of treatment - mortality \% of control}}{100 - \text{mortality \% of control}} \times 100$$

J. Pest Cont. & Environ. Sci. 11(1): 87-104 (2003)

2. Selectivity ratio of tested compound on predator mite A. gossipi was determined as follows according to Wilkinson (1976):

Selectivity ratio (S.R.) =
$$\frac{LC_{50} \text{ of the compound on predator}}{LC_{50} \text{ of the compound on prey}}$$

- 3. Selectivity index = $\frac{S.R. \text{ of the tested compound}}{S.R. \text{ of the most selective compound}}$ (compound of the highest S.R. value)
- 4. Toxicity index of tested compound was determined according to Sun (1950) as follows:

Toxicity index =
$$\frac{LC_{50} \text{ of the most effective compound}}{LC_{50} \text{ of the tested compound}} \times 100$$

5. Safety index of tested compound on predator mite was determined according to Aref (1997) as follows:

Safety index =
$$\frac{LC_{50} \text{ of tested compound on predator}}{LC_{50} \text{ of the least effective compound on predator}} \times 100$$

RESULTS AND DISCUSSION

A. Laboratory studies

Toxicity of some mineral oils, cypermethrin and Biofly to adult female mites, T. urticae (Koch) and its predator, A. gossipi (El-Badry)

Cypermethrin was used representing pyrethroids in this study. It was the most toxic material ($LC_{50} = 265$ ppm) comparing with the mineral oils (Table 1), while chemesol was the least toxic one. Hurkova (1984) found that cypermethrin at low concentration caused a knock down to *T. urticae* and the higher concentration (0.1%) had a repellent effect. Whereas Kovach

and Gorsuch (1986) indicated that this compound (3.9 g a.i/100 L) caused the highest mortality of *T. urticae*. Cypermethrin is known to be of moderate toxicity to spider mite, in general, but the low mammalian toxicity and its environmental safety promote the awareness to be included in integrated pest management programmes. The pyrethroids were found sometimes to be of limited interest because of their secondary effect, especially on predator mite. It was the most toxic in the present study (LC₅₀ = 20 ppm) to the adult predator, *A. gossipi*. These products will be in compatible to the biological control of phytophagous mites unless strains of these predators can be resistant to pyrethroids.

The three mineral oils used in this study (Table 1) were of the second category after cypermethrin in their toxicity to *T. urticae*. Supermasrona as the most toxic oil was about two fold as KZ-oil and about four fold as chemesol. In general, mineral oils are known to be physically effective on the different mite stages. Their effects depend on various factors. These hydrocarbon oils are used as insecticides, ovicides, herbicides and as carriers of oil-soluble pesticides emulsions. The hydrocarbon oils that are used for selective pest control on foliage of low chemical reactivity and known to be of the least toxic effect.

As reported by Deong et al.(1927), the highly refined spray of oil may be used as selective herbicide and may be responsible for suffocation of the insect or mite individual. The mineral oils were evaluated against the different stages of spider mite and were indicated to be successful (Nassef, 1998; Rizk et al., 1999 and Gamieh et al., 2000).

When the three oils were tested against A. gossipi, KZ-oil and chemesol were of moderate effect ($LC_{50} = 800$ ppm for each), while supermasrona was the least toxic. The toxicity parameters, safety index and selectivity index showed that supermasrona equal 100 for each. The last parameter is considered the most precise value that indicates how the compound behaves toward the two adult species of mites (prey and predator). In other words, the most safe compound against the predator and in the same time the most toxic to the prey mite is the most suitable compound that must be advised to involve in integrated pest management.

LC₅₀ was determined as conidia/ml.
C.L.: Confidence limits.

Table (1): Toxicity of some mineral oils, cypermethrin and Biofly to adult female mites T. urtica (Koch) and its predator A. gossipi (El-Badry).

KZ-oil 1700 Chemesol 3850 Supermasrona 930 Cypermethrin 265 Biofly* 66000	Compound LC ₂₀ * (ppm)	
88,8,8	3.*	
1164.4-2482.0 3031.5-4889.5 744.0-1162.5 210.3-333.9 55462.2-78540.0	CL**	T. urticae
1.55 2.11 2.60 1.97 2.00	Slope Value	
15.59 6.88 28.50 100	Toxicity Index	
800 800 1600 20 84000	(ppm)	
655.7-976.0 575.5-1108.8 1311.5-1943.4 14.3-28.0 60869.6-115987.6	CT	A. gassip
3.52 1.54 2.59 1.74	Slope Value	
2.50 2.50 1.25 100	Toxicity Index	
50 50 1,25	Safety	
0.470 0.210 1.720 0.076 1.270	ratio (S.R.)	Coxicity param
27.33 12.21 100 4.42	index	eters

The microbial pesticide Biofly (B. bassiana), when compared in its toxicity against the phytophagous mite and its predator, was found to be of slight selective effect on predator mite (selectivity ratio 1.27). This result is in agreement with those reported by Karadzhov (1973), Bartkowski et al. (1988) and Derbalah (1999).

Effect of compound residues on prey egg deposition and its hatchability

The effect of sublethal concentrations of tested compounds (LC₂₅) on eggs deposited by adult female, *T. urticae* and their hatchability was studied. The data in Table (2) show that KZ-oil and cypermethrin caused the highest reduction in egg deposition compared to control all over the different times between treatment and deposition (zero-72 hrs), while supermasrona showed the least effect on egg deposition. In general, the effect of different compounds can be arranged descendingly as follows: KZ-oil > cypermethrin > chemesol > Biofly > supermasrona > control. The data, in general, indicate that the eggs deposited by adult *T. urticae* increased as the pesticide residue decreased (from zero time to 72 hrs) on the leaf discs. The number of eggs deposited on discs at zero time after treatment was less, in general, than that deposited at 24 hrs. Stafford and Fukushima (1970) found the same result with benomyl on *T. pacificus*.

Table (2): Egg deposited by adult female mite *T. urticae* during 3 days on different compounds - pretreated leaf discs and its hatchability.

Compound	ir	eggs d dicated ter trea	l time	d at		% Hat	chability	· · · · · ·
	zero time	24 hrs	48 hrs	72 hrs	zero time	24 hrs	48 hrs	72 hr
KZ-oil	7	29	20	56	57.1	34.5	45.0	44.6
Chemesol	64	163	249	98	28.1	14.7	12.0	22.4
Supermasrona	408	621	548	477	58.1	60.1	70.6	55.6
Cypermethrin	12	55	35	59	16.7	40.1	45.8	17.0
Biofly	76	150	274	181	64.5	56.0	55.1	58.0
Control	550	550	550	550	91.8	91.8	91.8	91.8

There is no doubt that low levels of chemicals which do not cause mortality can influence this character. The present laboratory treatments simulate field conditions where the mites will be exposed to chemical residues on plant leaves through feeding on contaminated cell contents. The reduction in egg deposition may be due to interference with the division and growth of egg cells (Harries, 1961, 1963 and Nakashima and Croft, 1974). Stimulation of biochemical processes by small quantities of stressful chemical (hormoligosis) was suggested by Dittrich et al.(1974) as responsible for increase in egg laying of T. urticae exposed to carbaryl or DDT.

The data also indicate that KZ-oil, chemesol and cypermethrin were the most effective compounds on egg hatching, followed by supermasrona, but Biofly was the lowest in its effect on egg hatching.

Effect of different compounds on hatchability of prey eggs at different ages:

The ovicidal action of the tested materials on three different egg stages was carried out. The data in Table (3) exhibit that all compounds were highly toxic to eggs of *T. urticae* at its different stages (24, 48 and 72 hrs). In general, the effect of different compounds could be arranged descendingly as follows: chemesol = supermasrona > KZ-oil > cypermethrin > Biofly. Biofly had the lowest ovicidal effect on different egg stages. On the other hand, the three hydrocarbon oils exhibited about the same ovicidal action at different egg stages. No doubt that there is correlation between hatchability and egg age which may be negative or positive according to the physical and chemical properties of the tested compound. The chemicals of an ovicidal effect may act to prevent embryo formation or the compound may be of toxic effect to the developmental larval stages inside the egg membrane before hatching (El-Atrouzy et al., 1989).

The nature of physical toxicity of the hydrocarbon oils make them safe compounds from the environmental point of view, and physical changes may be expected on egg surface due to the oil treatment and this is why there is no difference between different egg stages in their response to oil treatment.

Table (3): Effect of different compounds on hatchability of prey eggs at different stages.

Compound	— % Hatchabi	lity of eggs at indi	cated stages
Compound	24 hrs	48 hrs	72 hrs
KZ-oii	1.2	0.8	13.8
Chemesol	1.9	1.9	zero
Supermasrona	2.8	10.6	zero
Cypermethrin	11.9	11.5	17.7
Biofly	11.8	1.4	19.8
Control	76.3	76.1	88.5

Effect of compound residues on feeding capacity and egg production of predatory mite, A. gossipi

From data shown in Table (4), the following points could be concluded:

- 1. The pyrethroid compound cypermethrin is the most effective on prey egg consumption and predator egg production.
- 2. Biofly and supermasrona are the most safe compounds that allowed the adult predator to consume the contaminated eggs.
- 3. The hatchability of predator eggs deposited on contaminated discs was highly affected by the hydrocarbon oil, chemesol.
- 4. The time elapsed before introducing the contaminated prey eggs to the predator is partially responsible for prey eggs consumption and accordingly the predator egg production.

It is interesting to know that the deposited eggs were not in correlation with the eaten ones. Mite activity can be influenced by the nature of the substrate of the surface (Blommers et al., 1977 and Everson, 1979 & 1980). The activity pattern of A. gossipi, which was not measured in this study, may be responsible for the non-correlated relation between feeding capacity and oviposition in the predator. The presence of chemicals at low levels on the leaf surface may be irritant enough to make the predator in contact with the contaminated prey eggs and, accordingly, the consumed eggs seemed to be almost of the same level of untreated control.

Table (4): Prey egg consumption and egg deposition of predatory mite A. gossipi feeding on different compounds – pretreated prey eggs introduced at different times after treatment.

KZ-oil 20.00 Chemesof 10.38 Supermaszona 8.25 Cypermethrin 9.13 Bioffy 13.13	Average No. Compound of consumed eggs/adult /day	
0.50 0.50 0.50 0.50 0.50 0.00 1.25	Zero time No. Average med deposited ult eggs/adult /day	
76.0 0.0 26.0 0.0 0.0	Hatchability (%)	
16.00 15.00 21.25 3.50 26.38 30.50	Average No. of consumed eggs/adult	a almost between
0.25 0.38 0.38 0.00 0.50	24 hrs Average deposited eggs/adult /day	treatment and c
100 34.0 65.8 0.0 100	Hatchability	egg introducti
13.13 26.38 27.25 4.50 18.63 29.63	Average No. of consumed eggs/adult /day	on
0.00 0.38 0.25 0.00 0.38	48 hrs Average Average deposited eggs/adult /day	
100 100 100 100 100 100	Hatchability (%)	

B. Field studies

Effect of different compounds on egg and motile stages of T. urticae on soybean plants in the field

The percentage reduction of infestation was calculated. The data presented in Table (5) show that the two oils supermasrona and KZ-oil were the most effective in reducing the population density of motile stages of T. urticae (95 and 91%, respectively), while cypermethrin exhibited the least reduction (62%). The same trend was almost shown in counts of the egg stage. Based on % reduction, all mineral oils were effective in reducing egg and motile stages. The biocide, Biofly did not show satisfactory control, cypermethrin was found to be the least effective compound in contrast to its results in the laboratory against motile and egg stage. These results are in accordance with that of Perring (1987) who found that cypermethrin was one of pyrethroids that caused significant increase in mite, T. urticae abundance. The same result was recorded by Bleicher et al.(1993).

The hydrocarbon oils exhibited efficiency in mite control. KZ-oil was found by El-Enany and Nawar (1988) to give 80% decrease in mite *T. urticae* population. KZ-oil and supermasrona gave more than 84% reduction in *T. arabicus* in the cotton fields (El-Zahi, 2000).

Clearly, if chemical, microbial pesticides and biological methods are successfully integrated, then the impact of compounds used to control key pests and disease must be minimized while the beneficial arthropods must be introduced.

REFERENCES

- Abbott, W.W. (1925). A method of computing the effectiveness of an insecticide. J. Econ. Entomol., 18: 265-267.
- Abou-Awad, B.A. and E.M. El-Banhawy (1985). Comparison between the toxicity of synthetic pyrethroids and other compounds to the predactious mite *Amblyseius gossipi* (Mesostigmata: Phytoseiidae). Experimental & Applied Acarology, 1: 185-191.
- Aref, S.A. (1997). Integrated control of some economic pests in cotton fields. M.Sc. Thesis, Fac. of Agric., Kafr El-Sheikh, Tanta University.

Table (5): Number of egg and motile stages of mite *T. urticae* on different compounds – treated soybean plants in the field.

No. of motile stages/ 0 leaves before	stages/40 leave indicated period treatment	leaves at period after transit	Mean reduction (%)	No. of eggs/40 leaves before treatment	No. of eggs/ indicated p treats	/40 leaves at seriod after ment	Mean reduction (%)
eatment -		}				1	
390	123	5	91.32	382	-	15	91.31
353	<u>s</u>	17	87.16	518	76	∵	90.87
320	S	2	94.89	371	77	34	87.12
255	308	95	£1.96	318	207	117	57.01
219	3	134	76.43	369	77	97	81.55
182	369	=	•	401	419	623	
	o, of motile stages/ leaves before treatment - 390 353 320 255 219 182	yre indi	ye indi	e stages/40 leaves at indicated period after treatment 48 hrs One week 123 16 169 17 53 15 308 95 89 134 369 411	re stages/40 leaves at indicated period after treatment 48 hrs One week 123 16 91.32 169 17 87.16 53 15 94.89 308 95 61.96 89 134 76.43 369 411 -	re stages/40 leaves at indicated period after treatment 48 hrs One week 123 16 165 17 87.16 518 76 53 15 94.89 371 77 89 134 76.43 369 411 - 401 419	re indicated period after treatment 123 16 17 87.16 518 53 15 94.89 134 76.43 369 411 - 401

- Bartkowski, J.; M.O. Odindo and W.A. Otiens (1988). Some fungal pathogens of the cassava green spider mite Mononychellus spp. (Tetranychidae) in Kenya. Insect Science and its Application, 9(4): 457-459.
- Bleicher, E.; C. Vidal-Neto-F. das and Das-C-Vidal-Neto-F. (1993). Effect of organophosphate and pyrethroid insecticides on the population of the cotton red spider mite, *Tetranychus* sp. Anais-da Sociedade, Entomologica do Brasil, 22 (1): 85-90.
- Blommers, L.; P. Lobbes; P. Vink and F. Wegdam (1977). Studies on the response of *Amblyseius biben* (Acarina: Phytoseiidae) to conditions of prey scarcity. Entomophaga, 22: 247-258.
- Croft, B.A. (1978). Potentials for research and implementation of integrated pest management on deciduous tree fruits. In "Pest control strategies, Ed. E.H. Smith and D. Pimentel, Academic Press.
- Deong, E.R.; R. Knight and C. Joseph (1927). A preliminary study of petroleum oil as an insecticide for citrus trees. Hilgardia, 2 (9): 351-384.
- Derbalah, A.S.H. (1999). Integrated pest management of spider mites. M.Sc. Thesis, Fac. Agric., Kafr El-Sheikh, Tanta Univ., pp. 158.
- Dettrich, V. (1962). A comparative study of toxicological test methods on a population of the two-spotted spider mite (*T. urticae*). J. Econ. Entomol., 55 (5): 644-648.
- Dittrich, V.; P. Streibert and P.A. Bathe (1974). An old case reopened: Mite stimulation by insecticide residues. Environ. Entomol., 3: 534-540.
- El-Atrouzy, Nawal A.; N.G. Iskander and M.L. Wahba (1989). Efficacy of "Cascade" on some biological aspects of *Tetranychus arabicus* (Attiah). Agric. Res. Review, 67 (1): 79-86.
- El-Badry, E.A. (1967). Five new phytoseiid mites from U.R.A., with collection notes on three other species (Acarina: Phytoseiidae). Indian J. Entomol., 29 (2): 177-184.

- El-Enany, M.A. and M.S. Nawar (1988). Evaluation of some local mineral oils on the two common spider mite species infesting cotton plants in lower and upper Egypt (Acari.: Tetranychidae). Bull. Zool. Soc. Egypt, 36: 25-30.
- El-Hariry, M.A.; I.A. Marzouk; R.M. Salem; E.M.E. Khalafalla and A.G. El-Sisi (1998). Field and laboratory evaluation of environmentally safe chemicals against some aphid species. Egypt. J. of Agric. Res., 76 (1): 127-139.
- El-Sisi, A.G. and M.A. El-Hariry (1989). Formulation and insecticidal efficiency of the Egyptian petroleum oil fractions against cowpea aphid *Aphis craccivora* (Kpch). Agric. Res. Rev., 67 (1): 13-18.
- El-Zahi, S.E. (2000). Effect of certain insecticides and natural products on some cotton pests and their natural enemies. M.Sc. Thesis, Fac. Agric.. Mansoura University.
- Everson, P. (1979). The functional response of *phytoseiulus persimilis* (Acarina: Phytoseiidae) to various densities of *Tetranychus urticae* (Acarina: Tetranychidae). Can. Entomol., 11: 7-10.
- Everson, P. (1980). The relative activity and functional response of *Phytoseiulus persimilis* (Acarina: Phytoseiidae) and *Tetranychus urticae* (Acarina: Tetranychidae). The effect of temperature. Can. Entomol., 112: 17-24.
- Gamieh, G.N.; Sohair E. Saadoon; A.M. Nassef and Ahlam A. Younes (2000). Efficacy of mineral oils, acaricides and their mixtures against *Tetranychus cucurbitacearum* (Sayed). Zagazig J. Agric. Res., 27 (2): 591-601.
- Handerson, C.F. and E.W. Tilton (1955). Test with acaricides against the brown wheat mite. J. Econ. Entomol., 48: 157-161.
- Harries, F.H. (1961). Effect of certain antibiotics and other compounds on the two-spotted spider mite. J. Econ. Entomol., 54: 122-124.
- Harries, F.H (1963). Effect of some antibiotics and other compounds on fertility and mortality of orchard mites. J. Econ. Entomol., 56: 438-441

- Hislop, R.G. and R.J. Prokopy (1981). Integrated management of phytophagous mites in Massachusetts (U.S.A.) apple orchards. 2. Influence of pesticides on the predator *Amblyseius fallacies* (Acarina: Phytoseiidae) under laboratory and field conditions. Prot. Ecol., 3: 157-172.
- Huffaker, C.B.; M. Van De Vrie and J.A. McMurtry (1970). Tetranychidae populations and their possible control by predators: an evaluation. Hilgardia, 40: 391-395.
- Hurkova, J. (1984). Response of OP-resistant Tetranychus urticae (Acarina) to pyrethroids. Vestnik-Ceskoslovenske-Spolecnosti-Zoologicke, 48 (2): 102-106.
- Karadzhov, S. (1973). The problems of harmful Acarina on apple. Rastitelna-Zashchita, 21 (11): 21-26.
- Keratum, A.Y.; H.A.I. Anber; M.M. Essawy and F.I. El-Shahawi (1994). The effect of permethrin residues on the activity of the predators, *Phytoseiulus persimilis* and *Amblyseius fallacies*. Alex. Sci. Exch., 15 (1): 67-82.
- Kovach, J. and C. Gorsuch (1986). Response of the two spotted spider mite, Tetranychus urticae Koch, to various insecticides and fungicides used in South Carolina Peach Orchards. J. Agric. Entomol., 3 (2): 175-178.
- Nakashima, M.J. and B.A. Croft (1974). Toxicity of benomyl to the life stages of *Amblyceius fallacies*. J. Econ. Entomol., 67: 675-677.
- Nassef, A.M.A. (1998). Toxicological studies on some sucking pests and their natural enemies. Ph.D. Thesis, Fac. Agric., Tanta Univ., pp. 174.
- Overmeer, W.P.J.; M. Doodeman and A.Q. Van Zon (1982). Population and 'egg production in *Amblyxeius potentiallae* and *Typhlodromus pyri* (Acarina: Phytoseiidae). Z. Angew. Entomol., 93: 1-11.
- Perring, T.M. (1987). Seasonal abundance, spray timing and acaricidal control of spider mites on cantaloupe. J. Agric. Entomol., 4 (1): 12-20.

- Rizk, M.A.; A.G. El-Sisi; N.A. Badr and S.M. Abdel-Halim (1999). Controlling of cotton sucking pests using safe materials. 2nd int. Conf. of Control, Mansoura, Egypt, Sept., 211-221.
- Siegler, E.H. (1947). Leaf-disc technique for laboratory tests of acaricides. J. Econ. Entomol., 40: 441-442.
- Staal, G.B.; G.F. Ludvix; S.G. Nassar; C.A. Henrick and W.E. Warly (1975). A novel group of miticides containing the cyclopropane moiety. J. Econ. Entomol., 68: 91-95.
- Stafford, E.M. and C. Fukushima (1970). Tests of benomyl for control of specific spider mites on grapevines. J. Econ. Entomol., 63: 308-310.
- Sun, Y.P. (1950). Toxicity index an improved method of comparing the relative toxicity of insecticides. J. Econ. Entomol., 43 (1): 45-53.
- Van De Vrie, M.; J.A. McMurtry and C.B. Huffaker (1972). Ecology of tetranychid mites and their natural enemies: A review. Ill. Biology, ecology and pest status and host-plant relations of tetranychids. Hilgardia, 41: 343-342.
- Wilkinson, C.F. (12976). Insecticide interactions in insecticide biochemistry and physiology (c.f. Wilkinson, Ed.). Plenum Press, New York, London, pp. 605-647.

Received 27 / 2 / 2003 Accepted 27 / 3 / 2003

التقييم المعملى والحقلى للمركبات الآمنة بينيا ضد الأكاروس النباتى (تترانيكس أورتيكا) والأكاروس المفترس (أمبليسيس جوسيباي)

عبدالعزيز حسنى ، عطية قريطم ، محمد النجار ، رفعت المعجوز قسم المبيدات - كلية الزراعة بكفر الثيغ - جامعة طنطا

أجريت التجارب المعملية والحقلية لتقييم التأثير الساك لخمسة مركبات، ثلاثة زيوت معدنية هيدروكربونية ومبيد بيريثرويدى (سيبرميثرين) ومركب حيوى (بيوفلاى) ضد العنكبوت (تترانيكس أورتيكا) والأكاروس المفترس (امبليسيس جوسيباى). كما تم اختبار التأثيرات الجانبية للجيرعات تحب المميية للمركبات السابقة على بعض الصفات البيولوجية للأكاروس النباتي والأكاروس المفترس. ودرس أيضا تقييم المركبات السابقة ضد الأكاروس على نبات فول الصويا في الحقل.

أظهرت النستانج أن مبيد السسيبرميثرين اليمكن التوصية به إذا أخذت قيم فهرس الأمان والإختيارية في الإعتبار – ولكن ارتفاع سميته للأكاروس وانخفاض سميته للتدييات يجعلنا نضعه في الأذهان تحت ظروف معينة. وأن الزيوت المعدنية ذات استعمال خاص لتأثيرها الطبيعي وارتفاع فهرس الأمان لها على الأكاروس ومفترسه. وأن زيت سوبرمصرونا مركب واعد في برامج المكافحة المستكاملة. ولم يظهر المركب بيوفلاي تأثير حدد كمبيد بيض على أعماره المختلفة. كما أن تأثيره على وضع البيض كان ينخفض بمرور الرمن بعد المعاملة. كما أنه كان مسن المركبات الأكثر أمانا بحيث يسمح الستهلاك البيض الملوث بالمبيدات بواسطة المفترس. وبصدفة عامة فإن الزمن المار قبل تقديم البيض المفوث بالمبيدات للمفترس يعتبر جزئيا مسئولا عصن الستهلاك البيض وبالتالي إنتاج بيض المفترس. ومن التجارب الحقلية اتضح أن الزيوت المعدنية المستخدمة على فول الصويا أظهرت انخفاضا عاليا في اعداد الأطوار المتحركة والبيض بينما كان مركب سيبرميثرين الأقل تأثيرا.