Evaluation of insecticidal rotation against cotton whitefly Bemisia tabaci on the Nili tomato crop.

Farida A. Ayad¹, M.M. Emara², M.M. Rahal², Fatma M. Ghallab¹ and Nabila M. Bakry³

ABSTRACT

A field trial was conducted on a viral-infection tolerant tomato variety (Rover E.446 F₁ hybrid), at Etay El-Baroud, Agricultural Research Station (Zarzoura), Behera Governorate, Egypt. Three treatments with different biorational and conventional insecticides in a rotational program had been applied for controlling the cotton whitefly *Bemisia tabaci*.

The present results showed that the best treatment was a sequence of fenpropathrin, pymetrozine and lambda-cyhalothrin. It gave good result for controlling the different stages of *B. tabaci* and minimized visible virual symptoms. Also, the highest yield of tomatoes was obtained after three sprays during the season.

INTRODUCTION

Tomato, Lycopersicon esculentum Miller is one of the most important vegetable crops in Egypt, for fresh consumption, processing and exportation. Viruliferow whiteflies are able to infect tomato plants with Tomato Yellow Leaf Curl Virus (TYLCV) within 4 hours of inoculative feeding insecticides with a quick killing effect on adults are needed for preventing the spread of this virual disease. There are four regular periods of tomato plantation in Egypt: Early summer, Summer, Nili plantation and Winter plantation. Bemisia tabaci is a common pest on all these plantations

Project # FC/20/28-97, financed from Bureau de Liaison Agricole, Franco-Egyptien.

¹ Central Agric, Pesticide Laboratory, Agriculture Research Center, Giza, Egypt. ² Etay El-Baroud Agric, Res. Station, Agriculture Research Center, Giza, Egypt.

Pesticide Chemistry Dept, Faculty of Agriculture, Alexandria University, Egypt.

but Nili plantation is the most severely affected. Complete yield loss in the autumn plantation (Nili) is common.

Organo Phosphate compounds (OPs), carbamates and pyrethroids are usually used in Egypt to suppress the whitefly populations. However, most of them does not give satisfactory results, probably because of development of resistance (Ayoub 1994, Cahill et. al., 1995; and Ayad et al., 1997 & 1999). The present study aimed to evaluate and affirm the effect of certain alternation or insecticidal rotation schemes on whitefly infestation, virual transmission and average yield of harvested tomatoes.

MATERIALS AND METHODS

A field trial was conducted on tomato variety Rover (E-446)F₁ hybrid at Etay El-Baroud Agricultural Research Station (Zarzoura), Behera Governorate, Egypt Seedlings of tomato 22 days old, were transplanted in open field plots on August 16, 1998, after melon crop. The experimental design was strips of three treatments and an untreated check. Plot size was 250 m², with 4 replicates. Normal agricultural practices were followed with the application of the recommended rates of the biorational and conventional insecticides in a rotational program as illustrated in (Table 1). A single nozzle Knapsack sprayer was used.

Table (1): Treatments, spraying dates and rates of application.

	Date	31/8/1998	7/9/1998	14/9/1998	21/9/1998	28/9/1998
Treat	ments	1St Spray	2nd Spray	3rd.Spray	4th.Spray	5th Spray
	1	Pirimiphos-methyl (Actellic EC 50%) 375 ml / 1001.	Beauveria bassiana (Biofly ΠJ 3 • 10 ⁷ 100 ml / 1001.	Minerral oil (KZ-oil FC 95%) 1,5 1/100L	Chlorpyrifos- methyl (Reldane EC50%) 250 ml / 100L	Potassium salts of fatty acids (M-Pode 49%) 1.51/100L
Rova (E-446)	2	(Dathri	ropathrin in EC 20%) ml / fed.	Pymetrozine (Chess SP 25%) 480 gm / fed.	Lambda-Cy (Karate F 94 ml /	C 5%)
Rova	3	Beauveria hassiana (Biofly)	Imidacloprid (Confidor SC 35%) 75 ml / 1001.	Minerrat oil (KZ-oil)	Thiocyclam hydrogen oxalate (Evisect SP 50%) 250ml / 100L	Potassium salts of fatty acids (M-Pede)

The efficacy of the products used against the adult stages was determined by counting insects on the lower surface of 20 compound leaves at the center of each replicate (80/treatment). Counts were made in the early morning when flight activity is minimal according to Butler et al. (1988). Pre-treatment counts were made in the early morning just before application and post-treatment counts were made on day 1, 3, 5 and 7 after treatment. The spray program was set depending on the average adult count approximately three on the compound leaf (Mehta et al., 1994).

The efficacy against immature stages (eggs and nymphs) was tested by collecting 20 compound leaves/replicate (80/treatment) on day 2, 5 and 7 after each application, leaves were carried to the laboratory and whitefly immature stages were counted using a binocular microscope. Percent reduction was calculated according to Henderson and Tilton equation (1955).

The TYLCV symptoms were evaluated on 25 randomized plants in each replicate (100/treatment) 34, 48, 62 and 76 days after transplanting. Symptoms were evaluated morphologically. The number of plants exhibiting virual symptoms was recorded, and the percent virual symptoms severity was visually estimated. Determination of disease percentage and severity was estimated according to infection degrees (ID) as follows: no visible symptoms (1); slight stunting and no apparent other symptoms (3); moderate stunting and other mild symptoms (5); moderate to severe stunting and striking other symptoms (7) and severe symptoms (9) (Polston et al., 1994; Abney and Ploper, 1994):

Diseases Severity =
$$\frac{\sum [infection deg rees \times number of samples]}{max of ID \times Total number of samples} \times 100$$

RESULTS AND DISCUSSION

Data in (Table 2) showed the efficacy of the chemicals used on eggs. Treatment 2 showed the highest efficacy followed by treatment 1 and 3.

The efficacy of the chemical used on larvae (Table 3) showed that treatment 2 was still the best followed by treatment 3 then 1, respectively.

Table (2): Efficacy of certain treatments against whitefly eggs on tomato Niii plantation, presented as

		<u>(S</u>	_	ec ec		1
	86	70 0	v,	oc	\$	
-	28/6/82	D5(5)	₹	8	22	
percent reduction of infestation at different time intervals.		D2(5)	21	8	‡	
,		D7(4)	6 6	81	39	
	21/9/98	D5(4)	8	94	62	
		D2(4)	82	98	23	
.		D7(3)	46	66	98	
	14/6/98	05(3)	8	83	11	
tervals		D2(3)	8	8	0	
me int		D7(2)	8	8	43	
rent ti	86/6/L	DS(2)	ı	8	%	
t diffe		D2(2)	8	8	81	
ation a		D7(1)	24	23	٤	
infest	3/8/68	D5(1)	81	8	6 8	
ction of	13.1	D2(1)	83	91	51	
percent reduction of infestation at different time intervals.	Date	Treatment D2(1) D5(1) D7(1) D2(2) D5(2) D7(2) D2(3) D5(3) D7(3) D2(4) D5(4) D5(4) D2(5) D5(5) D7(5)	-	7	ဗ	

Table (3): Efficacy of certain treatments against whitefly larvae on tomato Nili plantation, presented as percent reduction of infestation at different time intervals.

핕	D2(1)	31/8/98 21/9/98 28/9/98 28/9/98 21/9/98 20/9/98 28/9/98 D5(1) D7(1) D2(2) D5(2) D7(2) D2(3) D5(3) D7(3) D2(4) D5(4) D7(4) D2(5) D5(5) D7(5)	D7(1)	D2(2)	7/9/98 D5(2)	D7(2)	D2(3)	D5(3)	D7(3)	D2(4)	21/9/98 D5(4)	D7(4)	D2(5)	28/9/98 DS(5)	D7(5)
	93	77	0	0	4	0	0	61	63	38	\$	\$	ક	Ş .	c
	66	66	93	87	2	36	63	8	7	79	93	82	8	۶	8
	8	22	20	8	7	0	5 0	85	Z	84	93	71	8	89	7

Table (4): Efficacy of certain treatments against whitefly as immature stages (eggs & larvae) on tomato

Date		3/8/88			86/6/L			14/9/98			21/9/98			28/6/88	
Treatment D2(1) D5(1) D7(1) D2(2) D5(2) D7(2) D2(3) D5(3) D7(3) D2(4) D5(4) D7(4) D2(5) D5(5) D7(5)	D2(1)	D\$(1)	D7(1)	D2(2)	D5(2)	D7(2)	(£)2Q	D\$(3)	07(3)	D2(4)	D5(4)	D7(4)	D2(5)	D\$(5)	07(5
-	87	2	14	94	•	74	2.5	25	90	ક્	7.4	7,	ų	89	7
7	95	46	8	76	8	98	83	Q	75	00	70	· ~	6		5 6
m	57	7.	8	8	63	4	77	.	.	Į,	%	\$	1 7	ş	3 %

Table (5): Efficacy of certain treatments against whitefly adults on tomato Nili plantation, presented as percent reduction of infestation at different time intervals from treatment.

28/9/98	D31 D33 D35	61 92 57
	D29	48 ×
	200	-8-
21/9/98	3 28	c % c
21/9	3.54	0 8 =
	D22	9 % 0
	021	600
14/9/98	D19 (5)	\$ 2 ¥
14/	(3)	37 68 17
	1 (1)	82 92 71
	3 2	9 69 9
86/6/2	32	0 75 28
1/2	ಕ್ಷಿ	282
	2 3	0 91 87
200	8	4 % 13
86/8/1	DI D3 D5	20 20 20 20
 	<u> </u>	5 8 3 28 9 28
Date	Treatment I	-45

From the results of (Tables 2 and 3) it can be noted that eggs of *B. tabaci* appeared to be more susceptible than larvae to the tested chemicals. These findings disagreeded with those obtained by El-Sayed and Abou El-Ghar (1992) However, when the results of both stages were combined as immature stage (egg+nymphs), treatment 2 was the best followed by 3 then 1, respectively. (Table 4).

Regarding the efficacy on adults (Table 5), treatment 2 gave the highest effect with the least number of adults on the leaves followed by treatment 3 then 1. Treatment 2 gave the best results for all stages, however, it was sprayed only three times, the first with fenpropathrin, then pymetrozine and Lambda-cyhalothrin. These results fully agreeded with both Korkor et al., (1995) of who reported that synthetic pyrethroids were the most effective insecticides against B. tabaci., also with those previously obtained by Ayad et al., (1999 & 2002).

Also Among pyrethroids, it was found that cyhalothrin and fenpropathrin controlled *B.tabaci* and suppressed leaf crumple virus transmission. Moreover, in another study, pymetrozine was reported to be an effective insecticide on the different stages of whitefly (Fluckiger *et al.*, 1992). Also it was mentioned by Elbert *et al.*, (1990) that imidacloprid was highly effective insecticide for controlling whitefly resistant strain.

Table (6): Per-cent of Plants infected with virus from 34-76 days after transplanting

Date	19/9	3/10	17/10	31/10
	Infection	%		
Treatment	D34	D48	D62	D76
Check	19	66	100	100
1	14	50	81	84
2	8	36	57	61
3	18	61	89	90

The average percentages of virual infected plants (Table 6) showed that treatment 2 was still the best with the minimal severity of infection (Table 7). Verma et al., (1989) reported that the incidence of tomato leaf curl virus was directly related to the population density.

Table (7): Per-cent Severity with visible virus symptoms.

Date	19/9	3/10	17/10	31/10
	Severity	%		
Treatment	D34	D48	D62	D76
Check	7	8	9	9
1	6	6	7	8
2	3	4	4	4
3	5	6	7	7

The average yield of harvested tomatoes is presented in (Table 8). Treatment 2 produced the highest yield followed by 3 then 1. It is quite clear that there was a relation between the population density of *B. tabaci* and tomato yield losses.

Table (8): Average yield of harvested tomatoes

Treatment	Check	1	2	3
Yield in kg	304	483	1437	744

REFERENCES

- Abney, T. S. and L.D. Ploper (1994). Effect of bean pod mottle virus on soybean seed maturation and seedborne *Phomopsis spp.* Plant Dis. 78: 33-37.
- Ayad, F.A.; M.I. El-Shehaby, S.M. Allam and N.M. Bakry (1997). Relative susceptibility of some field strains of *Bemisia tahaci* Genn. (Aleyrodidae) to certain insecticides. Alex. Sci. Exch., 18 (3), 277-286.
- Ayad, F. A; N. M. Bakry, M. M. Abdel-Hafez, M. E. Keddis, Y. F. Ghoneim and S. Khalid (1999). Monitoring of resistance in Egyptian field strains of the Whitefly *Bemisia tabaci* Genn. For the season, 1998. Strategy for Safe Agricultural Production Conference. Cairo, Egypt. 677-693.

- Ayad, F.A., M.M. Emmara, M.M.Rahal and N.M. Bakry (2002). Evaluation of insecticide rotation against whitefly *Bemisia tahaci* on tomato winter plantation. The first conf. of The Central Agric. Pesticide laboratory. Giza, Egypt. 3-5 sept. vol-2, 657-663.
- Ayoub, S. M. (1994). Field and Laboratory studies on the susceptibility of the whitefly *B.tabaci* (Genn.) to insecticides M. Sc. thesis, Fac. Agric. Cairo Univ.
- Butler, G. D., Jr. D. L. Coudriet and T. V. Hennebery (1988). Toxicity and repellence of soybeans and cottonseeds oils to the sweet potato whitefly and the aphids on cotton in greenhouse studies. Southwest, Entomol. 13 (2): 81-96.
- Cahill, M.; F. J. Byrne, K. Gorman, I. Denholm and A. L. Devonshire (1995). Pyrethroid and organophosphate resistance in *Bemisia tabaci* (Homoptera: Aleyrodidae) Bull. Of Entomol. Res. 85, 181-187.
- Elbert, A., H. Overbeck, K. Iwaya and S. Tsuboi (1990). Imidacloprid a novel systemic nitromethylene analogue insecticide for crop protection Proceedings, Brighton Crop Protection Conference-Pests and Diseases p21-28.
- El-Sayed, A. M. and Abo El-Ghar (1992). The influence of normal and low-rate application of insecticides on population of the cotton whitefly and melon aphid and associated parasites and predators on cucumber. Aneiger for Skunde, Pflanzenschutz, umweltshuzt 65:54-57.
- Fluckiger, C. R.; H. Kristinsson, R. Senn, A. Rindlisbacher, H. Buholzer and G. Voss (1992). CGA 215944 a novel agent to control aphids and whiteflies Brighton Crop Protections Conference Pests and Diseases.
- Henderson C. F. and E.W. Telton (1955). Tests with acaricides against the brown wheat mite. J. Econ. Entomol. 48: 157-161.
- Korkor, A.A.; M.Z.F.Awad, A.M. Hamid and M.B. Abo-Salem (1995). Screening of some insecticides against Bollworms and whitefly attacking cotton plants Com. In Sci. and Dev. Res. N=745 Vol50 141-157.

- Mehta, P.; J.A. Wyman, M. K. Nakhla and D. P. Maxwell (1994). Transmission of tomato yellow leaf curl germinivirus by *Bemisia tabaci* (Homoptera: Aleyrodidae). J. Econ. Entomol. 87:1291-1297.
- Polston, J. E.; D. Bois, C. A. Serra and S. Concepcion (1994). First report of a tomato yellow leaf curl-like geminivirus in the western Hemisphere. Plant Dis. 78: 831 (Disease notes).
- Verma, A. K.; D. Basu, P. S. Nath, S. Das, S. Ghatak and S. Mukho pathyay (1989). Relationship between the population of whitefly, *Bemisia tabaci* (Genn.) (Homoptera: Aleyrodidae) and incidence of tomato leaf curl virus disease. Indian J. of Mycological Res. 27: 49-52.

Received 29/6/2003 Accepted 7/9/2003

تقييم المبيدات الحشرية في برامج دورية على الذبابة البيضاء في محصول الطماطم النيلي

غريدة لحمد عيك ، مختل محمد عمارة ، مجدى محمد رحال ، فنطمة محمد غلاب، كبيلة محمد بكرى المعمل المركز والمعبدات ، محطة اتباى البارود للبحوث الزراعية – مركز البحوث الزراعية كمم كيمياء المبيدات – كلية الزراعة – جامعة الإسكندرية

تم تقييم ثلاثة معاملات بالمبيدات التقليدية وغير التقليدية على صنف الطماطم الطماطم Rover (E-466) F 1 hybrid لمكافحة لذبابة البيضاء شي محصول الطماطم النيلي كانت مساحة القطعة التجرببية ٢٥٠ م٢ شرافع قسمت إلى لربع مكررات.

أوضحت النتائج أن المعاملة بالفينبروبالرين (دائرين ٢٠%) بيمترازين (تشيس ٢٥%) ثم لندامبيهالوثرين (كرات ٥٠٥) في تتابع قد أعطت أفضل نتيجة بالنسبة لمكافحة البيض، البرقات، الحشرات الكاملة كذلك أعطت أفضل محصول وأقل نمية إصابة فيرومية مع انخفاض في شدة الإصابة.