Cyclic fluctuation of daily acetylcholine esterase activity in Spodoptera littoralis (Boisd.) moth

Ibrahim A. Gaaboub

Dept. of Plant Protection, Faculty of Agriculture, Moshtohor, Zagazig University

ABSTRACT

The present study was executed to assess the fluctuations of esterases and acetylcholine esterase (AChE) rhythmic activity in adult central nervous system (CNS) of the cotton leafworm Spodoptera littoralis (Boisd.). Series of the experiments dealt with esterases rhythmic in CNS and electrophysiological experiments on the tarsus sensilla were conducted. The esterases activities in either male or female heads and thorax of S. littoralis were assayed 24 times (an hour interval), 8 times (3 hours intervals), 4 times (6 hours intervals) and 2 times (12 hr intervals) in the day. The obtained results showed that the cyclic fluctuation of AChE activity was significantly higher in the head and lower in the thorax during different day times. The highest AChE daily activity levels occurred in the female and male at 4 O'clock (scotophase), while the lowest activity levels occurred at 12 O'clock (photophase). Also, results showed that the averages of AChE phase activity levels were higher in the female of 3-4 days old after ecloucion and male of 2-4 days after ecloucion. In addition, contact chemoreceptors in tarsus, sensilla showed higher sensitivity to different chemicals, i.e., sodium chloride and sucrose in the scotophase than in photophase.

Key words: *Spodoptera littoralis*, acetylcholine esterase, electrophysiology, circadian, rhythm, contact chemoreceptors.

INTRODUCTION

Circadian clocks are endogenous timing mechanisms that generate daily rhythms in all organisms from unicellular to humans. Circadian clocks provide temporal synchronization of life processes and adaptation of organisms to environmental cycles (Giebultowicz, 1999). Several behavioral rhythms are known in insects, such as those of pheromone production and release mating, or oviposition (Saunders, 1982 and Gaaboub and Halawaa, 2003). Some of these physiological rhythms have been well established in insects (Brady, 1974 and Vijayalakshmi and Babu, 1978).

The cyclic fluctuations of AChE activity were studied in nocturnals, moths, cockroach and cricket as well as in diurnals, boll weevil, desert locust and grasshopper. In moths, highly significant differences were found in ACh and AChE activity among the different tested light conditions and with the different day times (El-Aw, 1997). The influence of photoperiodism and the day time on the K_m and V_{max} values for esterases hydrolysing α-naphthylacetate in the 4th and 6th instar larval heads of S. littoralis was studied by Hashem (1989). The responsiveness of peripheral sensilla of S. littoralis was tested by many investigators (Schoonhoven et al., 1991 and Simmonds et al., 1991). A physiological functions in insect are fluctuated with deal rhythmicity (Ry), some of these rhythms (Rms) have been found when it has been necessary to produce standard insect material for a particular physiological study, the initial trials have yield inconsistent results at different times of day (Brady, 1974).

Esterases are multifunctional enzymes that catalyze the hydrolysis of ester linkages irrespective of chain length or solubility and regulate a variety of tissue functions. The most significant esterase is the AChE as it regulates nervous impulses in insect CNS (El-Aw, 1997). ACh is the major neurotransmitter in insects and many insecticides, which degrades ACh, inhibits the AChE and prevents cholinerigic toxicity (Bose, 1990). The presence of true ChE (EC 3.1.1.7) hydrolysing ATCh in the nervous tissue (NT) of *Prodenia littura* may be important in the functioning of the nervous system (Mehrotra and Chandra, 1974). AChE was highest in the head of *Dacus cucurbita* and *S. littoralis* followed by thorax and was lowest in the abdomen (Shukla and Srivastava, 1980).

The present work aimed to investigate the rhythmicity of AChE enzyme and the response activity during the life span of S. littoralis. Also, the sensitivity of the contact chemoreceptors, sensilla chaticum was carried out under different conditions. The correlation between AChE activity and the contact chemoreceptors will be detected to find their role in the interpretation of the receptor mechanism of insect.

MATERIALS AND METHODS

Tested insect:

Moths of S. littoralis (Boisd.) were obtained from a stock culture maintained under constant conditions of 26.0 ± 2.0 °C and 70.0 ± 5.0 % relative humidity in the Department of Entomology, Faculty of Agriculture, Moshtohor. The culture was reared on castor leaves.

Preparation of homogenates:

Heads or thoraxes of the adults of both male and female insects were collected to determine the specific activity of esterases. The head and thorax were homogenate with phosphate buffer (pH 7.4) under ice conditions. Homogenates were centrifuged for 20 min at 6000 xg and the supernatants were obtained.

Determination of protein and AChE activity:

Protein was determined according to the protein-dye binding method of Bradford (1976), which was prepared by dissolving 100 mg of Coomassie Brilliant Blue G-250 in 50 ml 95 % ethanol and 100 ml 85 % (w / v) phosphoric acid made the dye solution. To 5 ml of this solution, 0.1 ml homogenate preparation was added, and the contents were mixed by vortexing. Absorbance was measured at 595 nm against a reagent blank using a Spectronic 21D Spectrophotometer. The concentration was estimated from a standard curve of concentrations of bovine serum albumin (BSA).

Acetylcholine esterase activity was determined by measuring the rate of hydrolysis of acetylcholine iodide (3X10⁻³ M) in 0.1M sodium phosphate buffer (pH 8) according to Ellman *et. al.*, (1961).

The specific activities of esterase (AChE) were determined in the head and thorax homogenates of both sexes of S. littoralis adults. The investigation of the diel rhythmic changes in the AChE activities under life span after ecloucion were carried out 24 times (an hour interval), 8 times (3 hours intervals), 4 times (6 hours intervals) and 2 times (12 hr intervals, at 12 O'clock and 24 O'clock) in the day.

The statistical analysis adapted in such randomized complete block design (RCBD) was the analysis of variance (ANOVA) of the factorial experiment (Steel and Torrie, 1981).

Electrophysiology experiments:

Responses from individual sensilla (sensilla chaeticum) to chemical stimuli on the ventral side of the tarsus and in the antennae were recorded using the tip recording technique (Hodgson et al., 1955). The potentials were amplified and filtered using AC amplifiers. A blunt glass microelectrode filled with salt solution (IM NaCl) was placed over the shaft of the sensillain to stimulate the chemosensory afferents. Controlled movements of this electrode were used to deflect the sensillum so as to elicit spikes in the mechanosensory afferents. The same electrode was therefore used simultaneously to evoke and record the spike of the afferents. The displacement of a sensillum did not deform its short and stout shaft.

RESULTS AND DISCUSSION

The AChE activity of *S. littoralis* moth through life span was estimated from eclousion to 72 hr old. This activity started after 18, and 30 hr for male and female, respectively and rised up gradually to a maximum activity after 36 and 48 hours from eclousion in male and female, respectively (Fig. 1). This result was similar to that of Bebas *et al.*, (2002) in which the maximum activity of AChE in the head of *S. littoralis* was achieved after 36 and 48 hours in male and female, respectively.

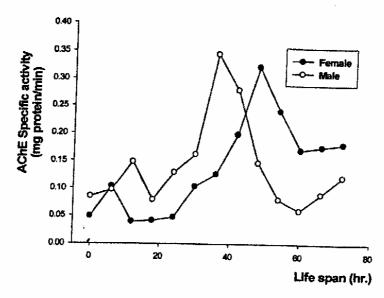
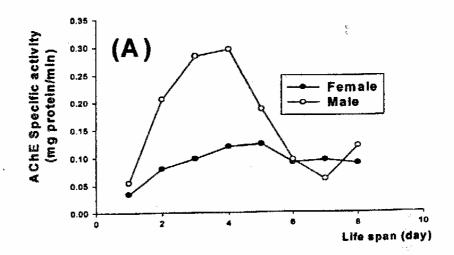



Fig. (1): Specific activity of AChE for S. littoralis moths every 6 hours after eclusion.

The AChE activity was determined in the heads of both male and female moths of *S. littoralis* at two times 12 O'clock in photophase and 24 O'clock in scotophase through eight days. The AChE activity was lower in the photophase than in scotophase (Fig. 2). In addition, the patterns of the activity of AChE at 24 O'clock in the scotophase showed a fluctuated rhythm correlated with age after eclousion. The maximum activities of AChE were detected in the second day in male and third day in female moths. The AChE activity levels of *S. littoralis* head homogenates were generally higher in the female than in the male in all tested moths The results indicated highly significant differences in AChE activity during the life span, daytime as well as between male and female (Table 1).

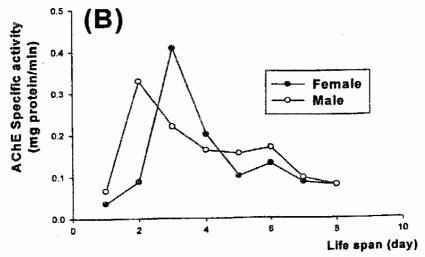


Fig. (2): Specific activity of AChE for S. littoralis
moths during life span of 1st to 8th day
(A) At 12 O'clock (photophase)
(B) At 24 O'clock (scotophase)

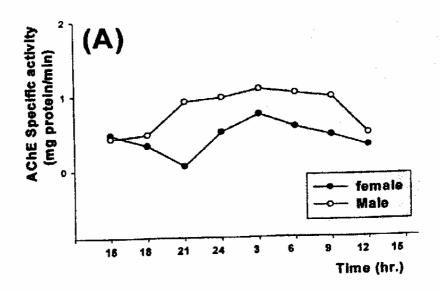
Table (1) Mean squares of specific activity of AChE in head capsules and thorax of S. littoralis male and female affected by life span intervals, sex and their interactions.

		Life span from 1 st to 8 th day At 12 O'clock in head capsules At 24 O'clock in head						
		At 12	At 12 O'clock in head capsules At 24 O'clock in head capsules					
S.O.V.	d.f	Mean Square		Fc. Mean S		Square Fc.		
~	_		_					
Rep.	2	0.002:		0.454	0.0122		1.0517	
Sex (S)	1	0.069		12.54	0.0008		0.0689	
Time(T)	7	0.008		1.454	0.0468		4.034*	
$(S) \times (T)$	7	0.0131		2.381*	0.0196		1.689	
Error	30	0.0055	5		0.0116			
	····	Life span interval for 3 days old insect						
		1 hr interval		3 hr interval		3 hr interval		
		in head capsules		in head capsules		in thorax		
			to 7 O'clo					
S.O.V.	d.f	Mean Sq	uare Fc.	Mean Sc	juare Fc.	Mean Sq	uare Fo	
Rep.	2	0.405	3.139	.27	2. <i>5</i>	0.0339	9.2	
Sex (S)	ï	0.206	15.96**	1.15	19.45*	0.638	5 54	
Time(T)	7	0.152	11.78**	0.196	1.73	0.016	1.41	
(S) x (T)	7	0.0688	5.33**	0.053	0.48	0.0734	0.649	
Error	30	0.0129		0.11	0.10	0.0113	<i>,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	·····		Life sp	an interval	for 3 days	old insect		
		6 hr interval in head capsules						
S.O.V.	d.f	Mean Square		Fc.				
Rep.	2	0.00676		0.6035				
Sex (S)	1	0.0786		7.017				
Time(T)	12	0.0785		7.008**				
` '	12	0.0088		0.785				
$(S) \times (T)$								

^{*} Significant
** Highly significant

Gaaboub, A. I.

The maturity of reproductive system was complete in the second and third day for male and female, respectively (Giebultowicz, 1999 and Bebas et al., 2002). The averages of AChE activity levels, in both sexes were higher in the scotophase than in the photophase, after overnight retention in the vas deferens lumen. The exit of sperm bundles from the testis to vas deferens is restricted to a few hours in the evening, and subsequent transfer of sperm from the vas deference to seminal vesicles occurs only within a few hours in the morning in gypsy moth, Lymantria dispar (Riemann et al., 1974, Riemann and Giebultowicz, 1991, Giebultowicz et. al., 1996 and Bebas, et al., 2002). In Periplanta americana reared under LD (light dark) 12 hr: 12 hr conditions the CNS AChE and electrical activities were maximum at 24 O'clock (midnight) and minimum at 12 O'clock in which ACh content showed an opposite rhythm (Vijayalakshmi et al., 1977).


Figures (3 A & B) represent the AChE activity levels at each 3 hours during 24 hours, starting at 15 O'clock. The obtained results revealed that, the maximum activity in head occurred at 4 O'clock (in the scotophase) for male and female, while the minimum activity lied between 12 O'clock and 18 O'clock (in the photophase). The specific activity values of AChE in the head homogenates of both sexes were ranged from 0.337 to 0.743 and from 0.435 to 1.028 (mg protein / min) for male and female, respectively. The fluctuation in AChE activity levels were more pronounced in the head capsule than thorax.

Also, highly significant differences in AChE activities were found among day times. AChE activity was significantly higher in the head than in the thorax at all time intervals (Table 1). In addition, in the adult male and female, the average AChE phase activity was slightly higher between 2 to 4 O'clock in the scotophase. The ratio of AChE activity was higher in heads than in thorax in either sex. Exogenous factors like photoperiod and temperature have a great influence on the activity of the enzyme (Bauer, 1976). It was suggested that elevation in the head AChE activity levels of several lepidopteran species are in coincidence in the rising in the locomotor activity during the scototophase for the 4th larval instar and during scotophase for the moths (Omino et al., 1973). In contrast, in the case of the grasshopper Poecilocerus pictus, the average level of AChE during light hours was higher than during dark hours and vice versa for the ACh levels in the CNS (Vijayalakshmi and Babu, 1978). The activity of AChE in the whole body extract of boll weevil Anthonomus grandis was about 25 % greater during the photophase (insect is active) than during the night (Bull

and Lindquist, 1968). Rhythms controlled by circadian clock are selfrustained, persist in constant darkness and temperature at daytime period (close to a 24 O'clock). The endogenous periods of many rhythms were not close to 24 O'clock, and they are synchronized, or entrained, to the 24 hour lay cycle of light and darkness and daily temperature fluctuation (Giebultowicz, et al., 1997).

For further comparison of AChE activities in the scotophase, records were performed every an hour (Fig. 4). The highest activity occurred at 3 & 4 O'clock in male and female of S. littoralis moths, respectively. In general esterases in insect have been implicated in reproductive behaviour Richmond et. al., 1990, c. f. Parker et al., 1991), phoromone and hormone netabolism (Hammock et al., 1985). AChE is an important regulatory enzyme responsible for controlling the transmission of nerve impulses across cholinergic synapses where it acts to hydrotyze the excitatory penrotransmitter, 'acetylcholine (Huston and Roberts, 1985, c. f. Parker et ai., 1991). In Manduca sexta, experiments on preparatory behaviour indicate that a brain-independent circadian clock may control the phase of the ecdysteroid decline (Truman, 1984 and 1992). The physiology of insect riccadian rhythm implicit the concept of biological clock is the assumption war it runs on some sort of biochemical mechanism. It has proved very elusive and attempts to measure its immediate products have generally been unrewarding, since it is impossible to know whether the substance examined is an important link in the clockwork itself, or some quite incidental secondary byproduct.

many moth species sex pheromone-mediated mating behavior occurs faring the scotophase period. Numerous examples from studies on female release and male response to pheromone indicate that the timing of this behavior despite the influence of temperature, is governed by a circadian mechanism (Kanno, 1981, Kamimura and Tatsuki, 1994 and Linn et al., 1996). The adaptive significance of a circadian-based regulation of mating behavior relates to added efficiency in the coordinated exchange between sender and receiver, and the occurrence of mating during optimal environmental condition (Linn, et. al., 1996).

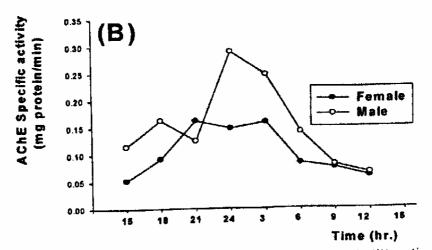


Fig. (3): Specific activity of AChE in for 5. lillorolis moths during the period of 15 to 12 O'clock for insect of 3 days old.

(A) Head capsuls

(B) Thorax

64

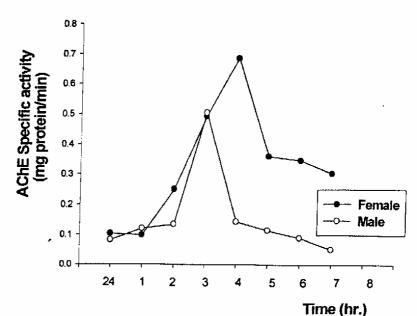


Fig. (4): Specific activity of AChE in head capsules of *S. lillorolis* moths during 24 to 7 O'clock for insect of 3 days old.

The rhythmicity was observed in the electrophysiological response from sensilla in the scotophase and photophase, it was clear that response and sensitivity in sensilla to different chemicals were higher in the scotophase especially between 2 and 4 O'clock. The highest response was detected from 3:30 O'clock to 4 O'clock (Fig. 5). The result showed higher activity of moth in the scotophase as nocturnal insect when compared with diurnal insect.

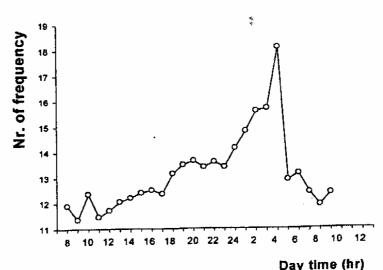


Fig. (5): Mean of the frequency number in female of 3 days old.

The rhythmicity of the mean AChE activities in the heads of adult male and female reached their peak of activities at 4 O'clock, at this time the sensitivity response of sensilla to stimulation by sucrose solution (50 mM mixed with 25 mM NaCl) was in a maximum value and fluctuation for response in daily stimulation was found (Fig. 6). Simmonds et al., (1991) found that the responsiveness of peripheral sensilla on S. littoralis to sucrose was influenced by the age of the larvae and that, within a day, neural activity could differ between morning and afternoon. Schoonhoven et al., (1991) showed that the responsiveness by using sinigrin and inositol on S. littoralis under laboratory conditions was affected by the timing of stimulation. In Periplanta americana reared under LD 12:12 conditions the CNS AChE and electrical activities were maximum at midnight and minimum at 12 O'clock as ACh content showed an opposite rhythm (Vijayalakshmi et al., 1977).

It could be concluded that the AChE activity of S. littoralis moth was recorded to maximum level after 36 and 48 hr from eclousion in male and female, respectively. The activity was higher in the scotophase than in the photophase in particular at 3 and 4 O'clock. The correlation between AChE activity and the contact chemoreceptor of sensilla was significant. The

results indicated that knowing the time of the highest activity of AChE could be useful in Integrated Pest Management (IPM) program.

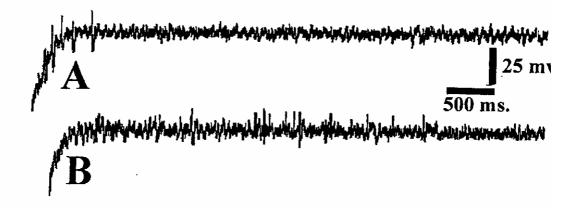


Fig. (6) Recording from tarsus sensilla (sensilla chaticum) to 50-mm sucrose mixed with 25 mM NaCl were used to stimulate the chemosensory afferent (A) at 15 O' clock and (B) at 3 O' clock.

REFERENCES

- Bauer, H. C. (1976). Effects of photoperiod and temperature on the cholinesterase activity in the ganglia of *Schistocerca gregaria*. J. Insect Physiol., 22, 683 688.
- Bebas, P.; B. Cymborowski and J. M. Giebultowicz (2002). Circadian rhythm of acidification in insect vas deferens regulated by rhythmic expression of vacuolar H+-ATPase. J. Exp. Biol., 205, 37-44.
- Bose, C. (1990). *In vivo* inhibition of acetylchoilnesterase by carbamate and organophosphorous pesticides in the cockroach *Periplaneta americana*. Biol. Mem., 16 (1/2): 66 -70.
- Bradford M. .M. (1976). A rapid and sensitive method for the quantitative microgram quantities utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248-254.

- Brady, J. (1974). Physiology of insect circadian rhythms. Adv. Insect Physiol., 10, 1-115.
- Bull, D. L. and D. A. Lindquist (1968). Cholinesterase in boll weevils, *Anthonomus grandia* Boheman -1. Distribution and some properties of the crude enzyme. Comp. Biochem. Physiol., 25, 639 649.
- EI-Aw, M. A. (1997). Further physiological studies on the CNS of insects Ph. D. Thesis, Faculty of Agriculture₁ University of Alexandria, Egypt.
- Ellman, G. L.; K. D. Courtney; V. Andres and P. M. Featherstone (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 7:88-95.
- Gaaboub, I. and S. Halawaa (2003). Oviposition deterrent in larval frass of Spodoptera littoralis (Boisd.) 1st Int. Egyptian Romanian Conf. Zagazig Univ., December 6 8, Pp. 101-116.
- Giebultowicz, J. M.; M. B. Blackburn; P. A. Thomas-Laemont; F. Weyda and A. K. Raina (1996). Daily rhythm in myogenic contraction of vas deferens associated with sperm release cycle in moth. J. Comp. Physiol., A 178, 629-636.
- Giebultowicz, J. M.; F. Weyda; E. F. Erbe and W. P. Wergin (1997). Circadian rhythm of sperm release in the gypsy moth, *Lymantria* moths. J. Insect Physiol., 43, 1133-1147.
- Giebultowicz, J. M. (1999). Insect circadian clocks: is it all in their heads? J. Insect Physiol., 45, 791-800.
- Hammock, B. D.; D. E. Moody and A. Sevanian (1985). Epoxide hydrolases in the catabolism of sterols and isoprenoids. In: Methods in Enzymology, Volume III, Steroids and Isoprenoids, Part B, (Law, J.H. and H.C. Rilling, eds.), Academic Press, Orlando, Florida, pp. 303-311.
- Hashem, M. (1989). Effects of photoperiodism, daytime and development on the kinetics of *Spodoptera littoralis* (Boisd.) larval head esterases. Com. Sci. & Dev. Res., 25, 175-186.

- J. Pest Cont. & Environ. Sci. 12 (1/2): 55-71 (2004).
- Hodgson E. S.; J. Y. Lettvin and K. D. Roeder (1955): Physiology of a primary chemoreceptor unit. Science 122: 417-418.
- Kamimura, M. and S. Tatsuki (1994). Effects of photoperiodic changes on calling behavior and pheromone production in the Oriental Tobacco budworm moth, *Helicoverpa assulta*. J. Insect Physiol., 40, 732-734.
- Kanno, H. (1981). Mating behavior of the rice stem borer moth, Chilo suppressalis Walker (Lepidoptera: Pyralidae). VI. Effects of photoperiod on the diel rhythms of mating behaviors. Appl. Entomol. Zool., 16, 406-411.
- Linn, C. E.; M. G. Campbell; K. R. Poole; Wu, Wen-Q. and W. L. Roelofs (1996). Effects of photoperiod on the circadian timing of pheromone response in male *Trichoplusia ni*: relationship to the modulatory action of octopamine. J. Insect Physiol., Vol. 42 no. 9. Pp. 881-891.
- Mehrotra, K. N. and D. Chandra (1974). Cholinesterase in the larvae of *Prodenia litura* Fabricius. Indian J. Exp. Biol., 12 (5): 457 458.
- Omino, T.; Y. Shinji and T. Hideakira (1973). Experimental studies on the daytime behavior of noctuid larvae, the Cabbage Armyworm, *Mamestra brassicae*, the Tobacco cutworm, *Spodoptera litura* and the black cutworm, *Agrotis ipsilon*. Jap. J. Appl. Entomol. Zool., 17, 215 220 (c.f. Pyza, 1985).
- Parker, A. G.; A. C. D. Russell and J. G. Oakeshott (1991). Biochemistry and physiology of esterases in organophosphate-susceptible andresistant strains of the Australian sheep blowfly, *Lucilia cuprina*. Pestic. Biochem. Physiol., 41 (3): 305-318.
- Riemann, J. G.; B. J. Thorson; R. L. Ruud (1974) Daily cycle of release of sperm from the testes of the Mediterranean flour moth. J. Insect Physiol., 20, 195-207.
- Riemann, J. G.; J. M. Giebultowicz (1991). Secretion in the upper vas deferens of the gypsy moth correlated with the circadian rhythm of sperm release from the tests. J. Insect Physiol., 37, 53-62.
- Saunders, D. S. (1982) Insect clocks, Pergamon Press, Oxford.

- Schoonhoven L. M.; M. S. J. Simmonds and W. M. Blaney (1991). Changes in the responsiveness of the maxillary styloconica sensilla of *Spodoptera littoralis* to inositol and sinirgrin correlate with feeding behaviour during the final stadium. J. Insect Physiol., 37, 261-268 (cf. Simmonds *et al*, 1992).
- Shukla, R. P.; A. S. Srivastava (1980). Distribution and kinetics of acetylcholinesterase in *Dacus cucurbitae* (Coquillet). Indian J. Entomol., 42 (1): 102 105.
- Simmonds, M. S. J.; L. M. Schoonhoven and W. M. Blaney (1991). Daily changes in the responsiveness of taste receptors correlate with feeding behaviour in larvae of *Spodoptera littoralis*. Entomologia Exp. App., 61, 73-81. (c.f. Simmonds *et al*, 1992).
- Steel, R. G. D. and T. H. Torrie (1981). Principles and procedures of statistics. 2nd edition, Mc. Graw Hill, N. Y., USA.
- Truman, J. W. (1984). The preparatory behavior rhythm of the moth *Manduca sexta*: an ecdysteriod triggered circadian rhythm that is independent of the brain. J. Comp. Physiol., A 155, 521-528.
- Truman, J. W. (1992). The eclosion hormone system of insects. Progress in brain research 92, 361-374.
- Vijayalakshmi, S.; P. M. Mohan and K. S. Babu (1977). Circadian rhythimicty in the nervous system of the nervous system of the cockroach, *Periplaneta americana*. J. Insect Physiol., 23, 195-202.
- Vijayalakshmi, S. and K. S. Babu (1978). Diurnal rhythmicity of cholinesterase activity in central nervous system of grasshopper *Poecilocerus pictus*. Indian J. Exp. Biol., 16, 1305-1307.

Received 22 / 8 / 2004 Accepted 20 / 10 / 2004

الإيقاع الدوري اليومى لنشاط الأسيتايل كولين استيريز في فراشة دودة ورق القطن

إيراهيم عبدالله جعيوب قسم وقاية النبات، كليّة الزراعة بمشتهر مجامعة الزقازيق

الدّر اسة الحاليّة لقدّت لتقييم الثر فترة الحياة بعد الخروج من العذراء على معدل ومستوى نشاط الأسيتايل كولين استيريز في الجهاز العصبيّ المركزيّ في الحشرات البالغة لدودة ورق القطن . تعاملت سلسلة التجارب مع معدل ومستوى نشاط الأسيتايل كولين استبريز في الجهاز العصبي المركزي و استخدام تكنيك الألكتروفسيولوجي لقياس معدل نشاط واستجابة الشعرات الحسية على رسغ الحشرة . وتم تقدير نشاط وكمية إنزيم الأسيتايل كولين استيريز في الراس والصدر لذكور وإناث فراشة دودة ورق القطن بمعدل ٢٤ مرة يوميا أي قياس معدل الأنزيم كل ساعة و ٨ مرّات في اليوم أي قياس معدل الأنزيم كل ٣ ساعات و ٤ مرات في اليوم أي قياس معدل الإنزيم كل ٦ ساعات و مرتان في اليوم أي قياس معدل الإنزيم كل ١٢ ساعة واظهرت النتائج أن التذبذب الدوري لنشاط الأسيتايل كولين استيريز كان عاليًا بدرجة كبيرة في الرّأس عن الصدر في أثناء أوقات اليوم المختلفة نهارا أو ليلا مستويات نشاط إنزيم الأسيتايل كولين استيريز اليومية الأعلى حدثت في الأنثى و الذكر الستاعة ٤ فجرا بينما حدثت مستويات النشاط الأكثر انخفاضنا الستاعة ١٢ ظهرا ". ايضاً أظهرت النتائج أن متوسطات مستويات نشاط إنزيم الأسيتايل كولين استيريز كانت أعلى في الأنثي في اليوم الثالث والرابع بعد الخروج من العذراء و في الذكر في اليوم الثاني و الثالث بعد الخروج من العذراء. بالإضافة لذلك أظهرت الدراسة الالكتروفسيولجية أن الشعرات الحسية وخاصة المستقبلات الكيماوية منها حساسية أعلى للمواذ الكيميانية المختلفة (ملح كلوريد الصوديوم أو السكروز) في فترة الظلام ليلا عن فترة الضوء نهارا.