Improving herbicidal performance by mixing with oils in wheat

Farid S. Sabra¹ and Amel A. Hossien²

¹Pesticide Chem., Faculty of Agric., Alexandria Univ., Egypt.

²Central Pesticide Lab., Agric., Res. Center., Sabahia, Alex., Egypt.

ABSTRACT

Field experiments were carried out in two successive winter season, 2002 and 2003 at Research Experimental Station of Faculty of Agriculture, Alexandria University in wheat (*Triticum aestivum* cv. Sakha 8), using two compounds from sulfonylurea herbicides, tribenuron-methyl (Granstar) and (thifensulfuron-methyl + metsulfuron) (Harmony) at 0.5, 0.75 or the recommended field rate either alone or mixed with mineral or vegetable oils. The results revealed that, the tank mix of vegtable oil at (0.5 %) with tribenuron-methyl (0.75 fold of field rate) was reduced the cost per feddan up to the quarter of the cost. Also, thifensulfuron-methyl + metsulfuron (Harmony) had the same trend when mixed with 1 % mineral oil. At the applied doses, a reduction of costs per feddan ranged from 10 to 15 LE was happened.

INTRODUCTION

Wheat is the most widely grown cereals in Egypt where the total cultivation area is 2.450 million Feddans (Anonymous, 2003). Weeds are the major problem in wheat production. The percentage of weeds in the first 30 - 40 days after sowing (the critical period of crop-weed competition) can sensually limited the growth of wheat plants (Nedunzhiyan et.al., 1998). Almost hundred percent crop loss, due to weeds competition, was recorded (Lacey, 1985) in wheat field. Also, an increase of one gram in dry weight of weeds / m² was followed by decrease of 143 gm and 158 gm in grain and straw yields, respectively in wheat field (Tewari and Mehrotra, 1978).

The new groups of herbicides such as sulfonylurea appeared recently to solve the problem of broad leaf weeds in wheat plantation. Tribenuron - methyl (Granstar) and thifensulfuron-methyl + metsulfuron (Harmony) as members of this group of herbicides were commercially used in Egypt.

These compounds are used in few grams per feddan and very effective against all types of broad leaf weeds (Gulidov and Narezhnaga, 1994; Montazeri, 1995; Koscelny and Peeper, 1996; Koscelny et. al., 1996; Kumer et.al., 1996 and Sabra et al., 1999).

The use of mineral and vegetable oils greatly enhanced the activity of foliar- applied herbicide (Kirkwood, 1993). Oils are used as additives for several reasons such as reducing vapor loss of herbicides, enhancing the performance of herbicides on recalcitrant spices, and during adverse weather conditions. In the past, spray formulations have incorporated with petroleum-based oils, but more recently, crop oils such as canola have been used (McWhorth and Barrentine, 1988).

Canola is a name applied to edible oilseed rape. Rapeseed production became popular in North America during World War II as a source of lubricants. Commercial varieties of canola were developed from two species, *Brassica napus* (Argentine type) and *Brassica compestris* (Polish type), which produced seeds containing high polyunsaturated fatty acid (Mathiassen et. al., 1994).

The performance of specific graminicides and some sulfonylureas is usually increased by the addition of tank mix oils (Kudsk et. al., 1987; Manthey et.al., 1989; Kudsk and Foy 1992 and Zabkiewicz, 2000). Petroleum oils made of selected paraffinic compounds are widely used, but the share of vegetable oils is increasing. Vegetable oils are often more effective than their parent crud oils or than paraffinic oils (Manthey et.al., 1990; Mack et. al., 1995; McMullan et.al., 1995 and Cabanne, 2000).

The objective of this research was undertaken to reduce the herbicides dose through mixing with mineral or vegetable oils and to evaluate the efficacy of the recently introduced new herbicides (sulfonylurea group) against broad leaf weeds in wheat field as well as their effect on yield and yield component under Egyptian conditions.

MATERIALS AND METHODS

Field experiments were carried out in two successive winter seasons, 1st 2002 and 2 nd 2003 at Research Experimental Station of Faculty of Agriculture, Alexandria University at Abbis region. The Soil type was clay loam (clay 39.4 %, silt 26.9 % and sand 33.7 %). Sowing dates of wheat

(Triticum oestivum. CV. Sakha 8), for the first and second seasons were 25th of November and 15th November, respectively. The experimental design was a randomized complete block design with four replicates (21 m² for each replicate). The herbicidal treatments and their names, mixed oils, and rates of their application are as follows: Tribenuron-methyl, (2-{4methoxy-6-methyl-1,3,5-triazin-2-yl (methyl) carbamoyl aslfamoyl}= benzoic acid.). (Granstar, 75 % DF, field rate (F) / Fedd. 8 gm, 0.75F = 6 gm and 0.5 F = 4 gm) which were applied either singly (at field rate) or mixed with two types of oil when used with the lower rates by (0.5 and 0.75 of field rate) and thifensulfuron- metyl + metsulfurone, [{ thifensulfuronmethyl) (3-(4-methoxy-6- methyl-1,3,5-triazin-2-yl-carbamoy sulfamoyl) thiophen-=carboxylic acid) + (metsulfuron)(2-(4-methoxy-6- methyl 1.3.5triazine-2- yl carbamoylsulfamoyl) benzoic acid.)], (Harmony 75 % WG, field rate / fedd. 24 gm , 0.75~F = 18~gm and 0.5~F = 12~gm) was applied alone when used at field rate and mixed with two types of oils when used at (0.5 and 0.75 of field rate). Mineral oil (KZ oil) and vegetable oil (rapseed oil, canolite) were used as a tank mix with herbicides by rates 0.5 and 1 %. The treatments in the two seasons were applied as post-emergence treatments (2-5 leaf stage of wheat) using a CP3 Knapsack sprayer, with the red fan type nozzle. Unweeded check was also included in each of the two seasons. All the cultural practices were applied as usually made in wheat plantation. Evaluation of herbicidal efficiency was carried out, 35 days after herbicides application by collecting the broad leaf weeds grown in one m2 at random by throwing a wooden quadrangle for each plot. The fresh weeds were sorted out and weighted (biomass). Percentage of infestation of each weed in unweeded area according to the total weed was calculated (infestation %) and percent of weed reduction (R %) was also estimated.

The effect of the tested treatments on wheat yield and yield components were recorded as plant height (cm), number of tillers / plant, spike length (cm), number of spikelets / spike, 1000 grain weight (gm) (average of ten plant / replicate), grain yield tons / fed., biological yield (ton / fed.), and harvest index percentage was also calculated.

Statistical analysis of data collected were carried out according to Cohort Software Inc. (1986).

RESULTS AND DISCUSSION

I-Herbicidal efficacy of the tested hericides:

The herbicidal efficiency of the two new sulfonyl urea herbicides on broad leaf weed species at 0.5, 0.75 or recommended field dose either alone or mixed with mineral or vegetable oil were presented in Tables (1 and 2). They also showed the weed weight per square meter (biomass/gm.) of the total weed and the reduction percentages of fresh weight of weed. The data showed that the most predominant broad leaf weeds were, wild beet (Beta vulgaris) where its average infestation in the two seasons was 76 % followed by greater ammi (Ammi majus), 13.9 %; burclover (Medicago hispida), 1.57 % and scarlet pimpernel (Anagallis arvensis), 0.5 %.

I-1. Tribenuron- methyl (Granstar):

Tribenuron-methyl at the recommended dose (8.0 gm / Fed.) gave an average reduction in fresh weights of broad leaf weeds which accounted for 88.93 % (Table 1). Tribenuron-methyl efficiency was significantly decreased when reduced the recommended dose to half of the field rate whether mixed with 0.5 or 1 % of either mineral or vegetable oil. On the other hand, the tribenuron - methyl at 0.75 fold was enhanced the efficiency when it mixed with (0.5 %) vegetable or mineral oil (% of weeds reduction were 90.51 and 89.57 % respectively). These results agree with the findings of Reckmenn (1993) who indicated that the rapeseed oil - methyl ester was the most effective adjuvant to improve metamitron herbicide activity followed by rapeseed oil which was more effective than mineral oil. This result was sported by many workers in this field, Manthey et al. (1989 & 1990) and Nalewaja et al. (1990). They mentioned that vegetable oils may be more effective than pertroleum oil in enhancing absorption, translocation and phytotoxicity of herbicides. This enhancement was occurred in the case of foliage-applied herbicides by increasing the amount or rate of adsorption of the active ingredient (Harrison and wax, 1986, Nalewaja and Skrzypczak, 1986). Also, Kudsk and Foy (1992) reported that 1 % tank mix of vegetable oil improved the tribenuron-methyl rainfastness and occurring 2 h after application to Sinapis alba. On the other hand, the single application of mineral or vegetable oil by the two tested rates did not affect the weed growth and some times enhanced the weed growth.

There were no significant differences between 0.75 fold of field rate either with 0.5 % or 0.1 % vegetable or mineral oil in their effects against broad leaf weeds in wheat, except burclover, the mixture of 0.75 tribenuron

Table (1): The effect of tribenaron-methyl, rapesced oil and KZ-oil at different concentration and its mixture on the percentages of reduction of firsh weight of broad leaf weeds (% R) in wheat field during two seasons 2002 (1) and 2003 (2*) and their surrange (AA) and an included the percentages of reduction of firsh weight of broad leaf weeds

1st 2nd Medicago hispido Beta vulganiris Angle Angle Sun Sun Angle Sun	Treatments							[%%										
H 1st 2nd M	`			spido	43	ta vulgan	ris	Ange	allis ann		1	1					Ě	bel bioma	8
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	*		2nd	X)ad		1	ļ		4	in indicate	- 1		N ACCO				3
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0								151	717	Ξ	5	7117	Σ	ᄧ	75	Σ	1st	2nd	Σ
0.0 4.3 8.6 0.0 10.0 10.0 10.0 10.0 0.0 0.0 0.0 0.0	0.0			c	9	6	,		1										
0.15) S	2	9	0.0	00	0.0	0.0	0.0	00	0	c	0	c	0 10 1	400	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0				89.89	87.5	75.0	100.0	88	87.0	20.0	808	4	9	9	3	9	0.	189.0	1/4.6
0.5F 64.4 66.4 62.8 72.5 55.0 90.0 88.3 87.6 88.9 88.0 90.4 85.0 84.8 85.2 27.8 29.4 90.7 90.1 90.1 90.1 90.1 90.1 90.2 190.0 90.4 85.0 85.0 84.8 85.2 27.8 29.4 90.5 90.2 90.0 99.7 90.1 90.1 90.1 90.1 90.1 90.1 90.1 90.1				0.0	0.0	00	00	9	2 5	3 6	3 6	9	B 6	8	8	23.5	20	7.7	18.9
0.75F 90.2 90.0 90.3 94.8 90.0 90.4 90.1 90.1 90.1 90.4 86.5 85.0 84.8 65.2 27.8 29.4 0.0 8.5 10.3 6.9 85.3 86.3 86.3 86.3 86.5 90.1 90.1 90.1 90.1 90.1 90.4 90.5 90.7 90.3 16.9 16.9 16.9 0.0 8.5 10.3 6.9 85.3 86.3 86.3 86.3 86.3 86.3 86.3 86.3 86				67.6	72.5	55.0	5	9 6	3	3 5	3 5	> ;	5	0.0	0.0	0.0	192.3	197.5	193.1
0.0 8.5 10.3 6.8 3.3 85.0 91.7 80.1 80.1 90.1 90.1 90.2 90.4 90.5 90.7 90.3 16.9 16.9 0.5 90.7 90.3 16.9 16.9 0.5 90.7 90.3 16.9 16.9 0.5 90.7 90.3 16.9 16.9 0.5 90.7 90.3 16.9 16.9 0.5 90.7 90.3 90.3 90.3 16.9 16.9 16.9 0.5 90.7 90.3 90.3 90.3 16.9 16.9 16.9 0.7 90.3 90.3 90.3 16.9 16.9 16.9 0.7 90.3 90.3 90.3 10.0 16.0 16.0 10.0 10.0 10.0 10.0 10.0	_	,_		S	200	9 6) t	8 8	e i	8	9	4.0	85.6	85.0	8	85.2	27.6	8	25 A
0.5F 86.5 86.9 86.3 85.3 85.0 91.7 86.2 86.1 86.4 86.5 86.4 86.5 86.4 86.5 24.7 25.8 0.75F 100.0 100.0 100.0 97.3 86.9 87.2 7.0 87.2 86.4 86.5 86.4 86.5 24.7 25.8 0.75F 100.0 100.0 100.0 97.3 86.9 87.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 179.6 174.7 16.8 10.7 100.0				9	ļ.	3,0		3	8	8	95.2	0	90.4	90,5	20.7	8	4	9	9
0.75F 100.0 <th< td=""><td></td><td></td><td></td><td>P (</td><td>9</td><td>o,</td><td>0.0</td><td>8.7</td><td>10.2</td><td>7,</td><td>ф Ф</td><td>10.5</td><td>7.2</td><td>4</td><td>4</td><td>4</td><td>51.0</td><td>, ,</td><td>2</td></th<>				P (9	o,	0.0	8.7	10.2	7,	ф Ф	10.5	7.2	4	4	4	51.0	, ,	2
0.0 4.3 8.6 0.0 2.5 5.0 0.0 4.3 8.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 179.6 174.1 18.3 15.8 15.9 10.0 10				80.3	88	85.0	716	Š	£	7 28	67.0	0	! ;	2		D T	?	B	9
0.0 4.3 8.6 0.0 2.5 5.0 0.0 4.3 8.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 179.6 174.1 0.7 12.8 15.2 10.5 11.0 12.0 100				100.0	1000	Ş	2	2 2	2 0	9 6	7.70	n :	8	9	8	86.S	75	25.8	33.6
0.0 4.3 8.6 0.0 2.5 5.0 0.0 4.3 8.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 179,6 174,1 1 0.0 15,8 10.0 100.							3	5	9	0	3	0.00	100.0	8 8 8	6	90.3	17.6	18.3	16.9
3.6 4.3 8.6 0.0 2.5 5.0 0.0 4.3 8.5 8.6 0.0 <td></td> <td>æ</td> <td></td> <td>İ</td> <td></td> <td></td>		æ															İ		
1.0 4.3 8.6 0.0 2.5 5.0 0.0 4.3 8.5 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 179.6 174.1 75F 85.0 85.4 84.0 84.5 84.5 84.8 84.1 82.8 84.4 28.6 30.0 175 90.9 91.4 90.3 100.0 100.0 100.0 89.0 88.9 89.1 91.2 91.1 91.3 89.6 89.6 19.7 15 90.9 99.6 90.0 10.0 11.0 11.0 11.1 15.1 85.1 85.1 85.1 89.0 89.0 89.6 19.7 15 90.0 89.6 90.0 100.0 100.0 100.0 100.0 100.0 89.0 89.0 89.0 89.0 89.0 19.7 10.5 10.5 10.0 10.0 10.0 10.0 10.0 10.0 10.0<															į				
5F 85.0 85.4 84.6 100.0 100.0 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 179.6 174.1 75F 90.9 91.4 90.3 100.0 100.0 68.0 84.0 84.5 84.2 84.8 84.1 82.8 30.0 10 12.8 15.2 10.5 11.0 12.0 10.0 11.8 15.1 85.3 85.1 10.0 19.1 19.7 5F 90.0 89.6 90.3 89.7 100.0 11.8 15.1 85.7 89.0 90.4 83.9 88.6 18.0 19.7 5F 100.0 100.0 100.0 100.0 100.0 100.0 100.0 90.4 90.4 90.4 90.4 90.4 90.4 90.4 90.4 90.4 90.4 90.4 90.4 90.4 90.4 17.5 18.1 18.1 17.7 18.7 18.7 18.7 18.7	0.5 0.		89.69	00	2.5	20	Š	,	4		•	,							
75F 90.9 91.4 90.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 11.	0.5		85.4	84.6		֓֞֝֞֜֜֞֜֜֝֓֓֓֓֓֓֓֜֜֜֜֓֓֓֓֓֓֓֓֡֓֜֜֜֓֓֓֓֓֡֓֜֜֜֡֓֡֓֡֓֜֜֡֓֡֓֡֡֡֡	3 5	, 6	0 5	3 ;) S	9	0.0	0.0	0.0	0.0	179.6	174.1	185.1
1.0 12.8 15.2 10.5 11.0 10.0 10.0 10.0 10.0 11.0 10.0 10.0 10.0 11.0 10.0 10.0 10.0 11.0 15.1 8.5 11.3 8.6 80.6 80.6 80.6 10.0 10	0.5 0.7		4 16	8	5	2 2	5 5	2 6	3 6	3 t	2	2	2	\$	82.8	% 4.	28.6	30.0	27.2
SF 90.0 89.6 90.2 89.7 10.0 10.0 10.0 10.0 89.3 84.6 84.5 89.7 89.0 80.4 83.9 83.2 86.0 25.8 27.0 75F 100.0 100.0 100.0 100.0 87.4 87.1 87.7 100.0 100.0 90.4 83.9 83.2 86.0 25.8 27.0 6 14.8 13.0 1.1 1.7 74.0 78.1 10.1 7.2 2.27 1.72 0.55 0.46 5.93 7.54 1.47 1.67	1.0		15.2	10.5	5	3 5	3 5	9.0	8,0	2	21.2	91.1	<u>و</u> د	89.6	89.8	89. 6	19.0	19.7	18.2
75F 100.0 100.0 100.0 100.0 100.0 100.0 87.4 87.1 87.7 100.0 100.0 90.4 83.9 83.2 86.0 25.8 27.0 6.1 14.8 13.0 1.1 1.7 74.0 78.1 10.1 7.2 10.1 10.1 10.0 100.0 90.4 90.4 90.4 17.5 18.1 1.2 17.2 0.55 0.46 5.93 7.54 14.7 14.7 16.7	1.0		89.6	8	8	2 2	2 6	9 9	- 6	, 0	D) (15.3	8.5	10.4	12.0	8.8	159.9	160.5	159.3
4 14.8 13.0 1.1 1.7 74.0 78.1 10.1 7.2 2.27 1.72 0.55 0.46 5.93 7.54 1.47 1.47 1.47	1.0 0.7		9	5	200	3 5	2 5	9 6	8 9	ا (ع ان	2.5	0.00	8	83.9	83.2	86.0	25.8	27.0	245
4 14.8 13.0 1.1 1.7 74.0 78.1 10.1 7.2 2.27 1.72 0.55 0.46 5.93 7.54 1.47 1.87	:			3	3	3	3	4.70	6/.1	7.78	100.0	90.0	100.0	90.4	4.06	90.4	17.5	18.1	16.8
2.27 1.72 0.55 0.46 5.93 7.54 1.47 1.67	Infestation %		13.0		-	1		977	1							į			•
5.27 1.72 0.55 0.46 5.93 7.54 1.47 1.67	CD (0.05)	2.77						2	(0.1		10.1	7.							
	40.00.00.00.00.00	2.41	77.7		0.00	94.0		5.93	7.54		147	1 67							

Table (2): The effect of thitensulfuron-methyl+metsulfuron, rapeseed oil and K2-oil at different concentration and its mixture on the percentages of reduction of firsh weight of broad leaf weeds (%R) in wheat field during two seasons 2002 (1*) and 2003 (2*) and their average (M) and on final himmers of unserts

							i	×								ř	Total birmose	*
restments	Aden	dedicaso hispida	ida	2	Beto valeosris	25	Anage	Anagallis arvensis	Sis	Am	Ammi magass	-	Ğ	Total weeds	! :			2
ROW H	ī	7.19	Σ	ĕ	P4	X	1 th	3rd	×	<u>#</u>		×	r N	Æ	Z	, I	Ą	Σ
								1	1	•	;	1	;	;		į		,
0.0		0.0	00	0.0	0.0	0.0	0.0	0.0	0	0.0	0	9	0	0.0	0	7.6	9	5
0.0 0.TF		95.0	8	91.0	8	808	0.00	1000	100.0	82	92.1	92.3	<u>e</u>	6	<u>2</u>	4.8	17.6	6.2
90		00	00	00	00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0,0	0.0	194.0	191.5	193.5
P-0		2	85.6	8	198	198	28.7	1000	93.3	66.3	8	¥.08	88.2	98	8 8	24.1	28.7	25.4
20.0		90,0	900	8	85.3	85.7	100.0	100.0	100.0	100.0	8	100	89.1	- 68 	8	19.0	8 9.8	19.8
000		10.5	*	7	10.2	¥.	00	6.5	3.3	8.8	10.3	8	9.0	8.2	0.7	164.3	169.7	156.9
200		6	2	. 60	88.9	88	1000	1000	100.0	000	90.0	80	86.5	0.68	88.8	8	8	8
1.0 0.75F	1000	100.0	100.0	92.5	\$20	92.2	100.0	100.0	100	100.0	100.0	100.0	7	94.0	¥.	10.3	11.2	10.8
K.O.% H																		
					;	;	;		1	;	;	,	6	6	•	7 107		ţ
0.5 0.0		2.6	6 .	00	60	₩.	0.0	9	5	0.0	6		3	3	3	g	1728	2
0.5		87.4	87.7	85.4	85.5	85.5	96.7	00	8	86.3	8	86.5	88.9	85.9	82.0	24.6	1 9	25.6
0.5		100.0	100.0	82,8	85.1	65.4	8	0.00	98.8	100.0	0.00	100.0	88	88.9	8	19.4	89	2
10		45.3	4	60	15.3	£.	10.0	12.0	9	47.8	15.2	16.5	89.	12.0	10.4	159.2	160,2	160
450		8	97.9	85.0	83.8	7	100.0	100,0	0.001	82.5	a Z	93.6	17.1	97.0	87.1	22.0	24.4	23.5
10 0.75	1000	100.0	0.00	93.7	93.4	93.6	1000	100.0	1000	1000	0.00	1000	95.1	95.1	95.1	8	8.2	60
300/031	1.5	1.45		6 2 9	9		97.0	6										

- methyl with 1 % oil was more significantly active than the 0.5 % of the two types of oil. Consequently, we recommend the use of tribenuron-methyl at the rate of 0.75 from the field rate combined with 0.5 % vegetable oil and this my be reduce the cost and environmental pollution.

I-2 Thifensulfuron-methyl + metsulfuron (Harmony):

Harmony is the trade name of new product herbicide of sulfonyl ureas ready mix use by 24 gm / Fed. against broad leaf weeds in wheat plantation. From the data recorded in Table (2), this compound was more potent than tribenuron-methyl when used at the recommended dose against the dominant weeds in the area under field conditions. The same trend was observed with the mixture of either Harmony or tribenuron with oils. All mixtures except 0.75 fold of Harmony with 1 % oil (vegetable or mineral) were less efficient than when used the recommended rate, which gave highly reduction of weed biomass arrived to 94.08 % and 95.07 % for vegetable and mineral oil, respectively. In this case the mineral oil was more effective than vegetable oil and this result was agreed with the finding of Salembier (1993) who found that some compounds from sulfonylurea such as triflusulfuron-methyl when applied with mineral oil in sugarbeet, gave wide range controlled of broad leaf weeds.

The tank mixture of 0.5 % oil to tribenuron-methyl (0.75 fold) reduced the cost per feddan by 25 % when compared with tribenuron-methyl alone, especially with rapeseed oil than mineral oil. Also, the same trend was noticed with Harmony but when mixed with 1 % oil, especially with mineral oil. These results reduced the cost per Feddan from 10-15 LE.

$\Pi\text{--}$ Effect of herbicidal treatments on wheat plant characters, yield and yield components:

Concerning the effect of herbicides and oils alone and their mixtures on wheat plant characters, yield and yield components in both seasons were recorded in Tables 3 and 4.

The data of wheat plant height, number of tillers per plant, spike length, number of spiklets / spike, and 1000 grain weight, revealed that all herbicidal treatments, significantly enhanced these parameters when compared with untreated plants (check). These parameters were enhanced due to the absence of weeds competition with wheat plants, leading to increment of wheat yields, except with oil alone at both rates of 0.5 and 1% which gave no significant differences when compared with untreated

28.10 32.10 25.50 33.00 35.00 Table (3): Effect of tribenuron-methyl, rapeseed oil and KZ-oil at different conc. and its combination on yield and yield components on wheat field during two seasons 2002 and 2003. 25.36 35.10 35.30 24.50 24.50 33.30 35.07 2003 Harvest index প্র 25.90 31.87 34.90 35.47 32.90 34.80 25.40 35.30 32.20 35.00 35.00 35.00 35.00 35.40 2002 5.63 5.63 5.61 5.61 6.80 Biological yield (tons/f addan) 2002 2003 5.88 5.73 6.73 6.73 5.08 5.85 5.85 5.80 5.90 6.00 6.00 5.85 5.85 5.82 5.82 5.78 5.78 5.73 1.25 2.20 1.15 1.85 2.03 2.03 Graim yield (ton/Faddan) 2002 2003 58.55 58 58.55 58.55 58.55 58.55 58.55 58.55 58.55 58.55 58.55 58.55 58. 2.10 1.25 1.25 1.20 1.20 1.83 2.03 1000 grain Weight (gm) 43.13 50.68 45.84 53.58 49.06 38.68 38.08 48.74 49.51 49.51 47.28 44.51 47.78 45.08 54.41 50.21 44,81 46.64 47.30 48.11 45.81 47.00 50.00 2002 46.70 44.40 47.50 49.20 49.50 33.60 47.50 42.70 42.70 42.70 45.80 No. Of spiklets/spike 2002 2003 47.50 42.00 53.00 59.40 60.70 45.20 55.10 43.50 48.90 48.80 48.80 49.50 9.20 9.23 9.60 19.45 6.75 9.55 9.55 9.65 9.65 9.85 Spike length (cm) 8.65 8.80 9.97 9.65 9.75 9.35 9.75 9.45 9.45 9.80 9.40 10.00 2002 06.4.4.0.00 06.00.00.4.0.00 06.00.00.00.00.00 06.00.00.00.00.00 06.00.00.00.00.00 06.00.00.00.00.00 06.00.00.00.00.00 06.00.00.00.00.00 06.00.00.00.00 06.00.00.00.00 06.00.00.00.00 06.00.00.00.00 06.00.00.00 06.00.00.00 06.00.00 06.00.00 06.00.00 06.00.00 06 No. of Tillers/plant 2002 2003 2.38 2.30 2.30 3.30 5.20 5.20 5.20 3.90 3.40 6.50 6.10 6.10 6.10 6.80 6.80 6.80 2002 81.80 78.30 81.00 82.10 86.50 82.50 90.90 91.80 97.20 82.25 83.35 <u>8</u> Plant height **E** 77.10 80.30 74.90 80.00 88.60 72.70 85.50 70.50 86.70 79.90 89.90 89.70 80.50 8 herbicide 0.00 0.00 0.50F 0.75F 0.00 0.50F 0.50F 0.00 0.75F 0.00 0.90F 0.75F Treatments Rayseed % K2 oil % 8 8 8 8 8

1.59

190

5.72

95.6

85

L.S.D.(0.05)

Table (4): Effect of thifensulfuron-methyl+metsulfuron, rapessed oil and KZ-oil at different conc. and its combination on yield and yield components on wheat field during

,														
	Harvest index	(S)		35.55	8 8 8	25.90 28.90	33.70	90.00		28 40	32.20	85.85 6.65 7.	33.20	38.10
	H.	3002	, k	88	33.20	8 X	33.50	3		25.90	32.00	25.75	33.00	33.00
	Biological yield	(tons/Fadden) 002 2003	8	40, 40 24, 51	98.5	5.08	5.87 5.90			4.79	5.75 5.87	A.	8. s.	2
	Biolog	2002	4.49	π. 4. π. 5.	7.87 5.75	4.7 50.4	5,78 5,74			4.63	0, 10, 2, 6,	4.86 5.86	# 19 10 10 10 10 10 10 10 10 10 10 10 10 10	
i	Grain yield	2002	5.5	202 28.58	2. 58 58 58	6.3 8.3	2.10			1.25	2.10	1,15	2.07	
ļ	Gratic Constitution	2002	£.5	7 to	2.03 2.07	5.5	2.06			8 8	8	<u> </u>	2.05	1
	rain Weight (gm)	2003	38.06	. 6 . 5	46.33	5.38 8.38	46.91			46.55	47.57	48.61	47.08	8 8
000	(gm)	2002	50.81 18.81	20 % 20 %	52.08	43.82	48.62		47.78	51.56	6.X	46.91	4.40	6.71
2	spidets/spike		48.30	51.90 48.30	49.50 2.75	38.00	42.30		46.10	49.90	5.4 6.8	5.30	3	8.27
	Page 1	7007	5.54 5.50 5.00	8. 8.8	8. 8. 8. 8.	53.80	3		47.50	46.30	48.80	5.55 5.65 5.65		804
Spike length	(E)		6.0	8.52 8.72 8.73	8. 6. 6. 5.	5.03 50.03			8.50	9, 9 5, 5	9.90	8 € 5 €		83
.	2002		0.00				ļ		9.75	9.50	9.80	8.60	18	
No. of	202 2003		90.00						4 8	8.8	8 6 8 8	4.90	2.0	4
F			84.4						5 S	3.40	4. 4. 8. 18	4.70	8	
Tant height (cm)			6.79 5.09			_			85.00	20.30	73.80	76.40	4.02	
į Ž	7007	85.50	8 88 5 5	83.60	89.90	79.80		77 40	61.40	26.26 8.26	73.45	72.40	6.39	
Treatments	herbicide	0.00	000	0.75	0.90 0.50F	0.75F	herbicade	0.00	0.50F	0.75F	405.0	10.75		
Tream	Rapseed %	90.00	8 8	8 8	385	8	KZ oil %	0.50	0.50	200	88		L.S.D.(0.05)	
	~					İ	-					ļ	L.S.	

control. This fact was confirmed by many workers (El-Deeb et.al., 1986; Gouda, et.al., 1994; Soliman, 1995; Panwar et.al., 1995 and Sabra et.al., 1999). Concerning the effect of herbicides and their mixture with oils on biological yield, grain yield (tons / Feddan), and harvest indx of wheat, all these treatments significantly increased wheat yield, which was confirmed also by the harvest index. The most effective mixture in this respect was tribenuron – methyl (0.75 Fold + 0.5 % rapeseed oil), which gave 2.15 tons / Feddan grain yield and 35.15 % harvest index. The average of grain yield and harvest index in untreated check were 1.19 ton / Feddan and 25.35 %, respectively. Also, the best mixture of Harmony with oil was 0.75 fold of Harmony with 1 % mineral oil which gave 2.06 tons / Feddan grain yield and 35.55 % harvest index. The average of these parameters in both seasons gave highly significant increase when compared with unweeded check, since the average grain yields were 2.6 and 1.25 ton / feddan for Harmony and untreated check respectively.

REFERENCES

- Anonymous (2003). The annual report of Agricultural Statistics. Ministry of Agriculture & Land Reclamation Economic Affairs Sector, Egypt Volume 2, June.
- Cabanne, F. (2000). Increased efficacy of clodinafop-propargyl by terpineols and synergistic action with esterified fatty acids. Weed Res., 40: 181-189.
- Cohort Software Inc. (1986). Costat user's manual, Version 3.03. Berkeley. California, USA.
- El-Deeb, S. T.; A. A. Galelah and E. E. Shalaby (1986). Chemical weed control in wheat, with respect to its effect on yield and yield components. Pro. 2nd Conf. Agron., Alex., Egypt., (1):619-34
- Gouda, M. H.; M. M. El-Shami and M. S. Sharshar (1994). Effect of planting methods, seeding rates and use of herbicide on yield and its component of wheat. J. Agric. Sci. Mansoura Univ., 19(1): 39-47.
- Gulidov, A. M. and E. D. Narezhnaga (1994). Herbicides in winter wheat. Zashchita Rastenii (Moskva) No. 8(18): (c.f. Weed Abstracts 1996, (45) No.2776).

- Harrison, S. K. and L. M. Wax (1986). Adjuvant effects on absorption, translocation, and metabolism of haloxyfop-methyl in corn (zea mays). Weed Sci., 34: 185 195.
- Kirkwood, R. C. (1993). Use and mode of action of adjuvants for herbicides: A review of some current work. Pestic. Sci., 38:93-102
- Kosceleny, J. A. and T. F. Peeper (1996). Herbicides for winter hardy wild oat control in winter wheat. Weed Technol., 11(1):35-38.
- Kosceleny, J. A.; T. F. Peeper and E. G. Krenzer (1996). Sulfonyluera herbicides after hard red wheat forage and grain yield. Weed Technol., (10):531-534.
- Kudsk, P. and C.'L. Foy (1992). The effect of adjuvants on rainfasteness of thifensulfuron and tribenuron. Adjuvants –for- Agrichemicals, 441-448.
 - Kudsk, P.; K. E. Thonke and J. C. Streibig (1987). Method for assessing the influence of additives on the effect of foliar- applied herbicides. Weed Res., 27:425-429.
- Kumar, L.; D. Singh and S. S. Pahuja (1996). Evaluation of tribenuron-methyl for control of broad leaf weeds in winter wheat. Harayana Agric Univ. J. Res., 29(3): 199-201.
- Lacey, A. L. (1985). Weed control. In Pesticide Application: Principles and Practice. Haskell, P.T.(ed) Oxford Univ. Press, 456-485 pp.
- Mack, R. E.; G. C. Volgas; J. R. Roberts; J. Thomas and A. K. Underwood (1995). Effect of several adjuvant classes on two herbicides for weed control. In: Proceeding fourth International Symposium On Adjuvants for Agrochemicals (ed. EGAskin), 448-453. Melbourne, Australia.
- Manthey, F. A.; J. D. Nalewaja and E. F. Szelezniak (1989). Herbicide-oil-water emulsions. Weed Technol., 3: 13-19.
- Manthey, F. A.; J. D. Nalewaja and E. F. Szelezniak (1990). Small grain and grass weed response to BAS-514 with adjuvants. Weed Technol., 4: 366-370.

- Mathiassen, S. K.; P. Kudsk and P. K. Jansen (1994). Adjuvants for Gallant. SP-Report 1994; presented at the 11th Danish Plant Protection Conference on the Side Effect of Pesticides Used on Weeds. (6): 183 192.
- McMullan, P. N.; K. N. Harker; R. E. Blachshaw; G. C. Volages and J. R. Roberts (1995). Effect of methylester composition and phosphate ester, on tralkoxydim and fenoxaprop-p-ethyl. In: Proceeding Fourth International Symposium On Adjuvants for Agrochemicals (ed. EGAskin), 426-431. Melbourne, Australia.
- McWhorteh, C. g. and W. L. Barrentine (1988). Spread of paraffinic oil on leaf surfaces of Johnson grass (sorghum halopenes) Weed Sci., 36:111-117.
- Montazeri, M. (1995). Efficacy of several herbicides in control of weed in wheat. Iranian J. Plant Pathol., 30(1-4):29-31.
- Nalewaja, J. D. and C. A. Skrzypczak (1986). Absorption and translocation of fluazifop with additives. Weed Sci., 34: 572-576.
- Nalewaja, J. D.; Z. Woznica and F. A. Manthey (1990). Sodium Bicarbonate Antagonism of 2,4-D Amine. Weed Technol., 4: 588-591.
- Nedunzhiyan, M.; S. P. Varma and R. C. Ray (1998). Estimation of critical period of crop weed competition. Advances in Horti. Sci., 12(2):101-104.
- Panwar, R. S.; S. S. Rathi and R. K. Malik (1995). Effect of isoproturon and 2,4-D combination on weed control in wheat. Haryana Agric. Univ. J. Res., 25 (3): 101-105.
- Reckmann, U. (1993). Seed oil and seed oil derivatives as adjuvants for metamitron. Brighton Crop Protection Conference-Weeds. 1341-1346.
- Sabra, F. S.; F. A. Kassem and M. A. Khalifa (1999). Effectiveness of herbicidal treatments against weeds in wheat and their action on yield and yield components. J. Pest. Cont. & Environ. Sci., 7(3): 103 121.

- Salembier, J. F. (1993). Results of 2 years trials on the study of the effect of DPX 66037 on sugarbeet. Mededelingen-van-de-Faculteit-Landbouw Wetenschappen-Univ., Gent, 58: 3A, 871 885.
- Soliman, F. S. (1995). Assessment of some herbicidal combinations in wheat field of Dierab, Saudi Arabia. Gulf J. Sci. Res., 13 (3):521-34.
- Tewari, R. N. and O. M. Mehrotra (1978). Note on intrinsic relationship of weed growth with performance of wheat. Indian. J. Agric. Res., 12(2): 101-103.
- Zabkiewicz, J. A. (2000). Adjuvants and herbicidal efficacy- present status and future prospects. Weed Res., 40: 139-149.

Received 10 / 11 / 2004 Accepted 22 / 12 / 2004

تحسين كفاءة مبيدات حشانش القمح بالخلط مع الزيوت المعدنية والنباتية

د. فریدسٹیمان صبرہ ٔ ۔۔د. امل احمد حسین ' احسم کیمیاء المبیدات ۔ کلیة الزراعة ۔ جامعة الإسکندریة ِ ۲۔المعمل المرکزی للمبیدات ۔ مرکز البحوث الزراعیة ۔ المسیاحیة ۔ الاسکندریة ِ

تم تنفيذ تجربتين حقليتين في الموسم الشتوى لعام ٢٠٠٢، ٢٠٠٣ في محصول القمح صنف سخا ٨ في محطة البحوث الزراعية التابع لكلية الزراعة جامعة الإسكندرية بأبيس. بأستخدام مركبين من مجموعة السلفونيل يوريا وهما تراى بنيرون ميثايل (جرانستار)، ثيفنيثيرون ميثايل + ميثلفرون (هارموني) بأستخدام التركيزات الحقلية ونصفها وثلاثة أرباعها منفردة وبخلطها أيضا مع الزيت المعدني أو الزيت النباتي (بتركيز ٥٠،٠ ١ %).

أوضحت النتائج الأتى:- أن خلط الزيت النباتى بمعدل ٠٠٠ % مع ٠٠٠ من التركيز الحقلى للتراى بنيرون-ميثايل توفر ربع تكلفة المنصرف وأيضا مبيد ثيفنئيرون ميثايل + ميتثلفيرون (هارسوئى) تسلك نفس السلوك ولكن باستخدامه مخلوطاً مع ١ % زيت معدنى وهذه النتيجه توفر في الجرعة المستخدمه للفدان وتوفر تكلفه من ١٠ – ١٠ جنيه مصرى للغدان.