Efficacy of certain herbicidal combinations and growth stimulator against weeds and their impact on productivity and quality of wheat

Fouad S. Soliman, F. S. Sabra, A. M. El-Shazly and I. M. A. Awwad Pesticide Chemistry Dept., Faculty of Agric., Alexandria University

ABSTRACT

Two field trials of wheat (Triticum aesitivum var. Sids 1) were carried out in two different sites in Salama Hegazy village in Bangar El-Sokkar region under optimum cultural practices. These fields were severely infested with grassy and broadleaf weeds. Nine herbicidal combinations were performed with or without atonik as a plant growth stimulator. The effects of herbicidal combinations with or without atonic on weeds; wheat grain yield and yield components; and grain quality were studied. The results indicated that most herbicidal combinations with atonik gave highly significant reduction of grassy weeds and clodinafop is a graminicide when combined with either new broadleaved herbicides (derby, harmony or metosulam) or with old broad leaf herbicides (Pyridate Fluroxypyr or bentazone) gave good results in controlling grassy and broadleaf weeds in Bangar El-Sokkar region. Regard to the number of spikes/m², and spikelets / spike, biological yield and grain yield, clodinafop combinations significantly increased wheat grain yield and its components. The data also revealed that the wheat quality characters (protein %, starch and total soluble sugar) were significantly improved in wheat grain especially in the presence of atonik stimulator.

INTRODUCTION

It is well known that wheat growth and productivity is highly sensitive to the competition of the grassy and broadleaf weeds during their early stages of growth. Weeds in wheat fields showed to be strong competitors for nutrients particularly nitrogen, light and moisture (Roberts, 1982). According to Tewari and Mehrotra (1978) an increase of one gram in dry weight of weeds per square meter in wheat fields was followed by a decrease of 143 g in grain yield. In a negative hyperolic function, weed biomass explained 31 % of the variation in yield loss due to weeds (Milberg and Hallgren, 2004). The problem of weeds is additionally aggravated

because of continuous intensive cereal cropping, grazing animal, manure and irrigation by water drainage in new desert reclaimed land in Egypt. It would be useful to combine graminicides with broadleaf herbicides to broaden the spectrum of weeds controlled. Several investigators controlled weeds in wheat by applying combinations of post-emergence herbicides without any harmful effects on yield and yield components. Panther gave excellent control of many weeds when applied by 1.1 kg a.i. / hectare (Chill, 1988; Horsenail and Turner, 1988; Whiting and Davies, 1990; Hallgren, 1990; and Fisher et al, 1993). Montazeri (1995) observed that tribenuron in combinations with four graminicides controlled many wheat weeds. Tralkoxydim with fluroxypyr or metsulfuron-methyl provided good overall weed control against grassy and broad leaf weeds (Panwar et al 1995). In field trials, Montazeri (1995) studied the efficacy of four grassy herbicides (fenoxaprop - p, diclofop - methyl, imazamethabenz and tralkoxydim) and five broadleaf-weeds herbicides (tribenuron-methyl, terbutryn, triasulfuron, 2,4-D and bromoxynil) for the control of many wheat weeds. He found that all the herbicidal combinations controlled Avena spp., Phalaris minor and Sinapis arvensis and increased grain yield. Fluroxypyr and tralkoxydim singly or in combination were effective for controlling weeds in wheat and in most cases caused significant increases in grain yields (Heap and Mitchell, 1992; Panwar et al 1992; Balyan et al. 1992, Mirkamal, 1993; Panwar et al 1994, Lenerle and Verbuk, 1995; Singh et al 1995; Panwar et al 1996; and Sabra et al, 1999). Diclofop plus bentazone gave significant increase in wheat yield (Khosro et al 1983). Sabra et al (1999) found that the most effective herbicidal combinations for controlling weeds and increasing grain yield were metosulam and clodinafop- propargyl. Also, Sabra et al (1999) showed that diflufinican, isoproturon, metosulam, tralkoxydim and clodinafop - propargyl enhanced plant height, number of tillers per plant, spike length and 1000 grain weight. These results are in agreement with that found by El-Deeb et al (1986), Gouda et al (1994) and Panwar et al (1995).

Certain herbicides affect wheat grain quality characters in particular protein content, total sugar content, and gluten content (Sabev and Stoeva 1988, Hallgren 1989, Lisoval *et al* 1989, Martin *et al* 1989 & 1990, Ponce *et al* 1989 and Randhawa and Gill 1989).

A natural plant growth stimulator (Atonik) is extracted from Moka tree. Its chemical composition is Sodium-p-nitrophenolate 0.3%, sodium – 0-nitrophenolate 0.2%, sodium -5-nitro-guaiacolate 0.1% and inert ingeradient 99.4%. Atonik is a yield and growth enhancer which increases crop yield

through enhancing assimilation (nutrient uptake, nitrate reduction and photosynthesis), improving the flow of assimilates (assimilate translocation and cytoplasmic streaming) and increasing cell integrity (Guo and Oosterhuis, 1997).

The field trials in this article were conducted to determine the efficacy of certain herbicidal combinations with or without plant growth stimulator (Atonik) for selective control of mixed populations of grassy and broadleaf weeds and their effects on growth, productivity and quality of wheat.

MATERIALS AND METHODS

Herbicide combinations and Atonik treatments: Nine herbicide combinations and unweeded check were distributed at random and performed within each with or without atonik growth stimulator during the 1997 – 1999 seasons, in Salama Hegazy village, Bangar El-Sokkar region. The experimental design was a split plot with four replicates, and the area of the single subplot was 6 x 5m. The main plots represent the atonik treatment whereas subplots represent the herbicidal combinations. Wheat (*Triticum aesitivum* cultivar Sids 1) was cultivated by afeer cross sowing method by seed drilling (using 65 kg / feddan). The herbicidal treatments were sprayed post-emergence 30 days after wheat sowing using a knapsack sprayer. On the other hand, atonik was applied at a total rate of 125 cm³ / feddan at two times, after 2 days from the herbicide application and before the heading stage. The herbicidal treatments, formulations, common and trade names and rate / feddan are presented in Table (1).

Assessment of weed control: Weed control assessments included scoring the grown weeds by a visual rating system at early stage (Frans and Talbert, 1977 and Roberts, 1982) 25 days after the herbicide application; weed mass at heading stage by sampling weeds from random quadrats (minimum 2, with size 0.25 m²) from each plot. The weeds were cut at the ground level, sorted and weighed immediately (Roberts 1982); grassy seed heads at harvesting stage were counted according to the methods (Roberts 1982), besides the calculation of reduction percentage for each herbicidal combination.

Table (1): Common and trade names, rate, and formulations of applied herbicides

Treatments	Common name	Trade name	Rate /fedd	Formula
-	Diflufenican + isoproturon	Panther (ready mix)	1 ⁷ / ₁	28 SC
7	(Florasulam 7.5% + flumetsulam 10%)	Derby (ready mix)	20 cm	17.5 SC
	+ tralkoxydim.	+ Grasp	_	10 % EC
3	(Florasulam 7.5% + flumetsulam 10%)	Derby (ready mix)	20 cm	17.5 SC
	+ clodinafop-propargyl	+ Topik	100 ml	24 % EC
4	(Thifensulfuron 68.2% + metasulron 6.8%)	Harmony (ready mix)	15 gm	75 %WG
	+ tralkoxydim	+ Grasp		10 % EC
5	(Thifensulfuron 68.2% + metasulron 6.8%)	Harmony (ready mix)	15 gm	75% WG
	+ clodinafop – propargyl	+ Topik	100 m	24 % EC
9	Metosulam + clodinafop - propargyl	Sinal + Topik	40 ml	10 % SC
			100 cm ³	24 % EC
1	Lentagram + clodinafop - propargyl	Pyridate + Topik	700 cm ³	23 09
			160 gm	15 WP
∞	Fluroxypyr + clodinafop - propargyl	Starane + Topik	200 cm ³	20 % EC
			160 gm	15 WP
6	Bentazone + clodinafop - porpargyl	Basagrane + Topik	500 cm ³	SM % 84
			160 gm	15 WP
10	Unweeded check			

Assessment of wheat plant growth: Number of wheat spikes per square meter were counted using quadrate (50 cm x 50 cm) for each plot.

Assessment of grain yield and yield components: Ten spikes from each plot were collected to determine, number of spikelets / spike, and 1000 grains weight. Wheat grains yield in each plot were harvested and weighed to recorded biological yield (grain and straw yield), then the wheat was threshed for each plot, then the grain yield was calculated in ton / feddan. Harvest index was also calculated.

Assessment of grain wheat quality characters

-Total nitrogen content: The total nitrogen in grain wheat was converted into, ammonium sulfate and then distilled into boric acid, then titrated with standard sulfuric acid with an appropriate indicator. The determination was done by Micro-Kjeldahl, digestion, according to the method described by Chapman and Partte (1961).

-Starch content: Starch content was measured according to A.O.A.C (1980) and Thomas and Ducher (1924).

-Total soluble sugar contents: Total soluble sugars were determined by picric acid method as described by Thomas and Dutchar (1924). The sugar content was calculated as glucose from the standard curve in the range of 0.5 - 5 mg/ml.

Statistical analysis of the data was carried out according to Cohrt Soft Ware Inc. (1986).

RESULTS AND DISCUSSION

1) Assessment of weed control

Tables 2,3 and 4 illustrate the effect of herbicidal combinations and the atonik for controlling weeds, as a visual observation, weed mass, and weed seed heads counts

a. Visual weeds coverage (at early stage): Results of the visual coverage are recoded in Table 2, all the statistical analysis of visual percentages of weed coverage showed no significant differences between

herbicidal combinations with or without atonik except in case of grassy weeds in the first season. Since, atonik significantly enhanced the lowering of weed coverage, where the mean percent coverage were 6.66 and 10.13 for treatments with atonik and without atonik, respectively.

On the other hand, most of the herbicidal combinations with or without atonik gave significantly control of grassy and broad leaf weeds compared to unweeded check. Since, the lowest weed coverage were obtained with derby + tralkoxydim, metosulam + clodinafop - propargyl and harmony + tralkoxydim. These results are similar to the finding of Sabra et al (1999) and Soliman et al (2000). Atonik - herbicide interaction showed significant effect for broad leaved and total weeds in the first season only. So, derby + tralkoxydim and metosulam + clodinafop-proparygl were the lowest weed coverage in this respect for total weeds.

b. Weed mass at heading stage: Table (3) indicated significant effect for atonik stimulator except with grassy weeds in the second season. Also, herbicidal combinations had significant effects on the fresh weight of weeds in the two seasons. Atonik-herbicide interaction showed also significant effect for weeds fresh weight in both seasons.

Atonik stimulator exhibited significant differences in the first season for fresh weight of grassy weeds and in both seasons for broadleaved and total weeds. Where, the highest fresh weight for grassy, broadleaved and total weeds was observed in untreated check with atonik stimulator, this may be due to activation of weeds by atonik stimulator in absent of herbicide combinations. This result confirm the finding of Kreuz, (1993) who found that chlormequat stimulator increased total weeds.

Highly significant differences were found between the ten herbicidal combinations with regard to fresh weight of grassy, broadleaved and total of all weeds in the two seasons compared to unweeded check. Generally, ciodinafop-propargyl combinations gave the best results followed by tralkoxydim mixed with either derby or harmony in controlling grassy weeds in both seasons. On the other hand, acetolactate synthase (ALS) inhibitor herbicide (derby, harmony or metosulam) when combined with tralkoxydim or clodinafop-propargyl, in addition to panther gave highly significant control for broadleaved weeds in two seasons. With respect to total of all weeds, combinations of clodinafop with derby, harmony or metosulam showed highly significant control compared to the unweeded

Table (2): Statistical analysis of visual percentages of weed coverage (% C) of grassy, broad leaved and total weeds as a result of application of herbicide combinations and atonik stimulator during 1997 – 1999 seasons.

And the second s		seas	Mean		13.77	10.68	20.21	805	300	17.20	10.50	19.33	23.78	19.70	\$1.92		AR = 6 13	10 00	2.03	18.94	20.24	16.43	19.61	21.73	25 66	20.8.1	24.11	01.00	01.07		AB=N.S
	1000	oral Of all weeds	¥ië.	atonik	10.62	8 72	8 77	13.02	10.63	20.02	7/.0	19.77	31.56	19.75	51.36	18.37	B = 434	18.78	20.24	20.34	70.07	16.58	19.79	20.32	25.46	20.80	23.67	20.00	21.62	16.12	B = 3.77
			w ithout	atonik	16.92	12.64	13.40	16.23	13.00	96 61	07.71	18.88	16.00	19.66	52.48	19.25	S'N= Y	68 6	17.53	200	7.07	16.28	19.42	23.15	25.85	20.82	24.56	27.17	21.46	C#.17	V.Z.H.K
(A)	spa		Mcan		8.92	8.76	9.50	650	10.49	10.15	10.00	33.63	22.83	19.24	45.72		AB = 6.38	15.27	15.20	16.03	200	\$7.71	14.79	18.43	23.47	19.28	22.02	24.18		AB=NC	5.71
Atonik Stimulator (A	Broadleaf weeds	With	Jimote	atulifia	7.49	8.72	8.72	11.57	6.67	8.72	10 77	21 56	20.10	17.20	45.89	17.14	B=4.51	15.35	15.84	16.87	12.25	75.70	13.70	70.71	18.77	19.33	21.80	25.12	18.27	R=316	1 00
¥		Without	atonik	10.26	10.35	8.80	10.27	7.49	11.30	11.57	18.34	14.10	10.22	22 54	05.21	13./0	A=N.S	15.19	14.55	16.99	12.25	13 99	10.70	27.72	24.13	19.24	22.24	23.25	18.09	A=NS	
	S	Mean		10.70	10.70	7.5.	4.35	4.24	6.16	3.08	3.08	4 35	4.35	18 08	07:01	21.	AB = N.S	10.74	10.27	9.33	10.27	12.40	10.78	000	30.7	20.07	8.01	13.46		AB = N.S	AD - Integration
	Grassy weeds	With	atonik	414	200	0.23	0.25	7.60	4.35	0.25	0.25	0.25	4.35	17.85	999	20.00	0 - 3.20	17.6	17.28	10.16	10.16	11.57	6.67	945	27.5	1,50	00.7	13.93	9.94	B = 2.10	Significant
		Without	atonik	14 00	7.60	00.	0.10	14.00	7.55	4.35	4.35	6.16	4.35	20.05	10 13	Δ = 1.46		07.71	0.20	8.51	10.38	13.23	12.28	8.72	661	100	10.0	12.98	10.29	A = N.S	N. S. = Not Significant
	Herbicide	(<u>B</u>		*-	,	2 6	٠,	4	S	9	7	&	6	10	Mean	SPer	10.00		7	5	4	5	9	7	~	0	١		Mean	L.S.Dons	=
****	Year			1997-1998													1998-1999									4	•	-4			* See Table (I)

Table (3): Effect of herbicidal combinations and atonik stimulator on the fresh weight (g/m^2) of grassy and broadleaf weeds in wheat crop during 1997 – 1999 seasons.

	Grop during	_ 1	1991 - 1999 seasons	9.						
					Ato	Atonik Stimulator (A.	(A)			
 V	Herbicide		Grassy weeds		1	Broadleaf weeds	S	1	Total of all weeds	S
E CA	(B)	Without	With	Mean	Without	With	Mean	Without	With atonik	Mean
		atonik	atonik		atonik	atonik		atonik		
1997-1998	*1	2020	3960	2990	0.0	0.0	0.0	2020	3960	2990
	2	340	1260	800	09	0.0	30	400	1260	830
	3	565	920	757.5	5	7.5	6.25	009	927.5	763.8
	4	575	1040	807.5	\$	- 5	5	280	1045	812.5
	5	52.5	660	356.3	25	10	17.5	77.5	029	373.8
	9	120	460	290	5	01	7.5	125	470	297.5
	7	40	0.0	20	245	537	391.25	582	\$37.5	411.3
	8	140	20	08	162.5	3600	1881.25	302.5	3620	1961.3
	6	06	70	08	1405	480	942.5	1495	055	1022.5
	10	1285	1790	1535	2710	2885	2797.5	3995	4675	4332.5
	Mean	525.7	1018		462.25	753.5		0.886	1771.5	
	L.S.D _{0.05}	A = 110.8	B = 247.7	AB = 350.3	A = 115.1	B = 257.3	AB = 363.9	A = 148 8	B = 332.7	AB = 470 S
6661-8661	1	344	284	314	244	228	236	885	\$12	055
	2	548	304	426	52	119	85.5	009	423	\$11.5
	3.	260	160	210	54	78	0.99	314	238	276
	4	618	954	786	68	0	44.5	404	654	830.5
	5	200	243	371	148	12	80.0	648	255	451.5
	9	130	100	115	284	146	215	414	246	330
	7	18	184	101	481	1437	959.3	499.5	1621	1060.25
	8	160	136	148	636	572	604.0	961	208	752.0
	6	09	132	96	626	582	604.0	989	714	200
	10	924	940	932	1627	2633.5	2130.5	5.1552	3573.5	3062.5
	Mean	356.2	343.7		424.2	580.75		780.4	924.45	
	L.S.D _{0.05}	A = N.S	B = 60.52	AB = 85.59	A = 103.32	B = 231.02	AB = 326.71	A = 111.44	B = 249.19	AB = 352.41

N.S = Not Significant

check. Pyridate + clodinafop treatment gave also best control in the first season. Other herbicide combinations exhibited moderately effects against total weeds compared with unweeded check.

With regard to atonik stimulator-herbicide interaction, pyridate + clodinafop and fluroxypyr + clodinafop showed excellent results in controlling grassy weeds with atonik, whereas, panther and harmony with either tralkoxydim or clodinafop and derby with clodinafop gave highly significant control of broadleaved weeds with atonik stimulator compared with unweeded check, where, clodinafop with harmony or metosulam gave the lowest fresh weight of total weeds in the first season without atonik, while clodinafop with derby, harmony or metosulam caused the lowest weeds fresh weight in the second season with atonik stimulator.

These results are in accordance with the finding of Rasinsh et al., (1987) and Kreuz (1993). They pointed out the importance of integration between more than one method of weed control specially plant growth regulator (chlormequat) or herbicides, fungicides and crop rotation to increase the efficiency of weed control. Hofmann and Pallutt (1989) observed that tank mixtures of bentazone herbicide with ammonium nitrateurea solution increased *Galium aparine* control.

c. Grassy seedheads: There are significant differences between all treatments with and without atonik in both seasons. In unweeded check, atonik stimulated growth of grassy seed-heads / m² compared to without stimulator, where the number of seed-heads were 134 and 68 in 1997-98; and 61 and 47 in 1998-1999, respectively (Table 4).

Combinations of clodinafop with metosulam, pyidate, fluroxypyr, bentazone, derby or harmony gave highly significant control in two seasons for grassy seed-heads.

The atonik-herbicide interaction showed that there is a significant differences between atonik treatment and herbicidal combinations in both seasons, where the lowest grassy weed seed-heads were observed with pyridate + clodinafop and bentazone + clodinafop in the first season as well as derby + clodinafop and pyridate + clodinafop in the second season in case of atonik application, while, fluroxypyr + clodinafop and betazone + clodinafop were the lowest in the first season, and pyridate + clodinafop and derby + clodinafop in the second season without atonik application.

Table (4): Effect of herbicidal combinations and atonik stimulator on number of seed heads/m² of the grassy weed in wheat crop during 1997 – 1999 seasons.

			Atonik	Atonik Stimulator (A)		3.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1
Treatments		(1997 – 1998)			(1998 – 1999)	
(B)	Without atonik	With atonik	Mean	Without atonik	With atonik	Mean
*-	54.0	143.0	98.5	33.0	26.0	29.5
2	3.0	15.75	9.38	18.0	26.0	22.0
3	7.75	13.25	10.05	9.0	11.0	10.0
4	12.0	42.0	27.0	21.0	25.0	23.0
5	10.0	19.0	14.5	19.0	31.0	25.0
9	3.0	4.0	3.5	24.0	17.0	20.5
7	1.0	0.0	0.5	17.0	10.0	13.5
&	0.0	1.0	0.5	23.0	17.0	20.0
6	0.0	- 0.0	0.0	23.0	32.0	27.5
10	0.89	134.0	101	47.0	019	54.0
Mean	15.88	37.02		23.400	25.6	0.40
	A = 4.03			A = 1.24		
L.S.D _{0.05}	B = 9.01			B = 2.78		
	AB = 12.74			AB = 3.93		
* See Table (1)	AB = Interaction	teraction				The second control of

2) Grain yield and yield components

Concerning the yield and yield components in the first season (Table 5) almost all treatments resulted in higher grain and biological yields than the unweeded check. Highest wheat grain yields (1.678 t/fedd.) was redorded with derby + tralkoxydim; whereas the lowest one was observed with unweeded check (1.220 t/fedd.). The increase in biological and grain yields may be due to the decrease in weed population density (Tewari and Mehrotra, 1978) and atonik treatment. Data of grain yield components indicated no significant differences among the atonik treatments on spike numbers/m², spikelets number / spike and 1000 kernel weight (Table 6). In contrast, harvest index was significantly increased by atonik treatment (Table 5). All herbicide treatments significantly increased spike numbers/m² and harvest index. On the other hand, all herbicide combinations significantly decreased 1000-kernel weight. These results are in harmony with that of Soliman (1995). He indicated that tribunil and duplosane super + arelone significantly decreased 1000 - kerenel weight when compared with the unweeded check. The lowering of biological and grain yield, and harvest index in the first season may be due to spread of rust disease in Bangar El-Sokkar region.

In the second season, almost all treatments had significant effect on biological and grain yield compared with unweeded check. The highest grain yields (2.779 t / fedd.) was observed with derby + traikoxydim (like first season), whereas the lowest yield (1.847-t/fedd.) was found with unweeded check. Atonik stimulator also increased biological and grain yields. With regard to grain yield components in the second season, almost all herbicidal combinations gave significant differences on spike numbers /m², spikelets number / spike and harvest index. It is evident that, atonik treatment also increased spikelets number/spike and harvest index compared with treatment of without atonik (Table 6).

3) Grain quality characters

Data in Table (7) represent the side effects of the examined herbicide combinations and atonik stimulator on grain quality characters (starch, protein % and total soluble sugars). The results indicated significant increasing effect for atonik stimulator on starch, protein %, and total soluble sugars in two seasons compared to without atonik. The mean values of all

Table (5): Effect of herbicidal combinations and atonik stimulator on the what biological yield, grain yield, and harvest index in Bangar El-Sokkar regian during 1997 – 1999 seasons.

Herbicide Herb	Biological yield (tons.) feddan 1998 – 1999 1997 – 1998 1998 – 1998 1997 – 1998 1997 – 1998 1998 – 1998 1997 – 1998 1997 – 1998 1998 – 1998 1997 – 1998 1997 – 1998 1998 – 1998 1998 – 1998 1997 – 1999 1997 – 1998 1998 – 1999 1997 – 1999 1997 – 1998 1997 – 1999 1997 – 1999 1997 – 1998 1997 – 1999 1997 – 1999 1997 – 1999 1997 – 1999 1997 – 1999 1997 – 1999 1997 – 1999 1997 – 1997 – 1999 1997 – 1999 1997 – 1997 – 1997 – 1999 1997 – 1997 – 1997 – 1999 1997 – 1997 – 1997 – 1999 1997 – 1997 – 1997 – 1999 1997 – 1997 – 1991 – 1										Atonik Sti	Atonik Stimulator (A)								in serial march
Without With Mean atonik ato	Without With Mean Without With With Mean Without Without Without With With Mean Without With With With Mean Without With Mithout With With <th< th=""><th>Herbicide</th><th></th><th>Biolog</th><th>ical yield</th><th>l (tons / fed</th><th>dan)</th><th></th><th></th><th>Ō</th><th>rain yield</th><th>tons/feddan</th><th>(1)</th><th></th><th></th><th></th><th>Harvest</th><th>Index</th><th>276</th><th></th></th<>	Herbicide		Biolog	ical yield	l (tons / fed	dan)			Ō	rain yield	tons/feddan	(1)				Harvest	Index	276	
Without With Mean Mithout With Mean Mithout With Mean Without With Mean With Without Without With Wi	Without atonik	Treatments	51	861 - 168		51	5661 - 866	•	-	8661 - 166			661 - 8661	6		997 - 1998	~	51	6661 - 86	
4800ik atonik atonik<	stonik atonik atonik<	(B)	Without	With	Mean	Without	With	Mean	Without	¥3.	Mean	Withou	With	Mean	Withou	With	Mcan	Without	¥is	Mean
5840 6.914 6.377 6.379 9.111 7.745 1.226 1.340 1.799 2.625 2.121 0.210 0.223 0.247 0.234 0.237 0.231 0.237 6.696 7.223 6.597 7.639 9.264 8.451 1.569 1.786 1.678 2.532 3.025 2.779 0.234 0.241 0.331 0.327 6.436 6.605 6.520 8.018 8.849 8.433 1.421 1.747 1.889 2.635 2.643 0.224 0.247 0.243 0.323 0.233 0.323 6.439 7.077 6.788 7.561 7.301 1.520 1.786 2.461 2.625 2.543 0.245 0.231 0.323 0.323 6.439 7.077 6.788 7.581 1.520 1.721 1.624 1.627 2.420 2.682 0.237 0.242 0.335 0.323 6.522 6.103 6.524 1.580 1.881 <	5840 6.914 6.375 6.379 9.111 7.745 1.226 1.540 1.383 1.799 2.625 2.212 0.210 0.223 6.696 7.223 6.936 7.639 9.264 8.451 1.569 1.786 1.678 2.532 2.795 0.234 0.247 6.436 6.697 6.520 8.018 8.849 8.433 1.421 1.747 1.589 2.591 2.635 2.613 0.221 0.247 6.439 7.077 6.736 7.519 8.949 8.034 1.521 1.520 2.451 2.635 2.643 0.225 6.435 7.641 7.827 1.631 1.622 2.395 2.431 0.243 0.225 6.441 7.827 7.827 1.589 1.852 2.421 2.625 0.225 0.225 6.441 7.827 7.827 1.849 1.849 1.842 1.478 2.420 2.435 0.215 0.225 6.422		atonik	atonik		atonik	atonik		atonik	atonik		t atonik	atonik		t atonik	atonik		atonik	atonik	
6.696 7.223 6.959 7.639 9.264 8.451 1.569 1.786 1.678 2.532 3.025 2.779 0.234 0.241 0.331 0.327 6.436 6.605 6.520 8.018 8.849 8.433 - 1.421 1.747 1.589 2.591 2.613 0.221 0.249 0.243 0.246 0.245 0.246 0.245 0.245 0.246 0.215 0.243 0.249 0.241 0.322 0.245 0.245 0.245 0.246 0.215 0.249 0.245 0.241 0.246 0.215 0.242 0.245 0.245 0.242 0.245 0.245 0.242 0.242 0.242 0.242 0.242 0.242 0.242 0.342 0.333 0.342 0.342 0.342 0.242 0.242 0.242 0.242 0.242 0.242 0.242 0.242 0.242 0.242 0.242 0.242 0.242 0.242 0.242 0.242 0.244 0.242 0.244	6.696 7.223 6.959 7.639 9.264 8.451 1.569 1.786 1.678 2.532 3.025 2.779 0.234 0.247 6.436 6.605 6.50 8.018 8.849 8.433 1.421 1.747 1.589 2.591 2.635 2.613 0.221 0.224 6.439 7.077 6.716 7.300 7.431 1.520 1.556 2.461 2.625 2.543 0.221 0.225 6.735 6.637 6.716 8.024 1.523 1.721 1.622 2.395 2.970 2.682 0.225 0.225 6.933 7.827 7.834 1.533 1.721 1.637 2.420 2.431 2.425 0.225 0.225 0.225 6.222 6.03 7.843 7.784 1.644 1.649 1.689 1.742 2.420 2.431 0.212 0.225 0.225 0.224 0.225 0.224 0.225 0.226 0.225 0.226 <t< td=""><td>-</td><td>5.840</td><td>6.914</td><td>Ī</td><td>6.379</td><td>9.111</td><td>7.745</td><td>1.226</td><td>1 540</td><td>1.383</td><td>1.799</td><td>2.625</td><td>2.212</td><td>0.210</td><td>6.223</td><td>0.217</td><td>0.280</td><td>0.288</td><td>0.284</td></t<>	-	5.840	6.914	Ī	6.379	9.111	7.745	1.226	1 540	1.383	1.799	2.625	2.212	0.210	6.223	0.217	0.280	0.288	0.284
6436 6.605 6.520 8.018 8.849 8.433 - 1,421 1747 1.889 2.591 2.613 0.221 0.264 0.233 0.323 0.329 6.439 7.077 6.768 7.561 7.300 7.431 1.520 1.520 2.461 2.625 2.543 0.246 0.215 0.231 0.325 0.335 0.335 6.735 6.678 6.716 7.119 8.949 8.034 1.523 1.721 1.622 2.345 0.245 0.215 0.231 0.325 0.335 0.335 0.335 0.335 0.335 0.335 0.335 0.335 0.335 0.325 0.245 0.221 0.245 0.213 0.235 0.325 0.335 0.335 0.335 0.335 0.335 0.335 0.325 0.245 0.221 0.245 0.221 0.245 0.225 0.235 0.235 0.325 0.325 0.325 0.325 0.325 0.325 0.235 0.225 0.225 0	6.436 6.605 6.520 8.018 8.849 8.433 - 1.421 1.747 1.589 2.591 2.635 2.643 0.221 0.264 6.439 7.077 6.786 7.561 7.300 7.431 1.591 1.520 1.556 2.461 2.623 2.543 0.246 0.215 6.735 6.677 6.716 7.119 8.949 8.034 1.523 1.721 1.622 2.395 2.970 2.682 0.226 0.257 6.933 7.827 7.503 8.025 7.764 1.610 1.644 1.637 2.420 2.431 2.425 0.225 0.213 6.441 7.03 7.868 8.408 7.784 1.584 1.789 1.789 1.787 2.420 2.430 0.212 0.213 6.130 6.582 5.906 5.512 6.678 6.095 1.231 1.207 1.220 2.519 2.291 0.221 0.214 6.666 6.792 7.276	2	969.9	7.223	6.959		9.264	8.451	1.569	1.786	1.678	2.532	3.025	2.779	0.234	0.247	0.241	0.331	0.327	0.329
6459 7.077 6.768 7.561 7.300 7.431 1.520 1.526 2.461 2.625 2.543 0.246 0.215 0.231 0.325 0.335 0.335 6.735 6.675 6.716 7119 8.949 8.034 1.523 1.721 1.622 2.395 2.970 2.682 0.256 0.257 0.235 0.335 0.335 0.335 0.335 0.335 0.335 0.335 0.335 0.325 0.254 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.251 0.255 0.255 0.255 0.255 0.254 0.255 0.255 0.254 0.255 0.255 0.254 0.255 0.255 0.254	6.459 7.077 6.768 7.561 7.300 7.431 1.591 1.520 1.556 2.461 2.625 2.543 0.246 0.215 6.735 6.575 6.716 7.119 8.949 8.034 1.523 1.721 1.622 2.395 2.970 2.682 0.226 0.257 6.933 7.827 7.301 8.025 7.764 1.610 1.664 1.637 2.420 2.431 2.425 0.225 0.213 7.441 7.020 7.231 8.090 7.164 1.464 1.480 1.789 1.789 1.789 2.442 2.627 2.534 0.212 0.215 6.656 6.130 6.582 5.906 5.12 6.460 1.464 1.496 1.480 1.718 0.226 0.225 0.226 0.235 6.130 5.882 5.906 5.512 6.678 6.095 1.233 1.207 1.226 2.593 0.226 0.234 A = N S <td< td=""><td>3</td><td>6.436</td><td>6.605</td><td>_</td><td>8.018</td><td>8 849</td><td>8.433 -</td><td>1.421</td><td>1 747</td><td>1.589</td><td>2.591</td><td>2.635</td><td>2.613</td><td>0.221</td><td>0.264</td><td>0.243</td><td>0.323</td><td>0.298</td><td>0.313</td></td<>	3	6.436	6.605	_	8.018	8 849	8.433 -	1.421	1 747	1.589	2.591	2.635	2.613	0.221	0.264	0.243	0.323	0.298	0.313
6735 6.697 6.716 7119 8 949 8 034 1.523 1.721 1.622 2.395 2.970 2.682 0.226 0.257 0.242 0.335 0.335 6.933 7.827 7.503 8 0.25 7.764 1.610 1.664 1.637 2.431 2.425 0.232 0.213 0.235 0.313 0.303 7.441 7.020 7.231 8.080 7.483 7.787 1.589 1.885 2.442 2.634 0.212 0.216 0.211 0.301 0.301 6.622 6.103 6.363 7.868 6.460 7.164 1.464 1.486 1.778 2.430 2.304 0.225 0.235 0.231 0.239 7.372 6.772 5.822 5.904 5.512 6.678 6.095 1.233 1.207 1.239 2.249 0.201 0.212 0.231 0.234 8 6.130 5.822 5.904 6.792 8.848 1.888 1	6.735 6.697 6.716 7119 8.949 8.034 1.523 1.721 1.622 2.395 2.970 2.682 0.226 0.257 6.933 7.827 7.380 7.503 8.025 7.764 1.610 1.664 1.637 2.420 2.431 2.425 0.232 0.213 7.441 7.020 7.231 8.090 7.483 7.787 1.581 1.589 1.585 2.442 2.627 2.534 0.212 0.226 6.622 6.103 6.364 7.164 1.464 1.496 1.480 1.718 2.430 2.304 0.221 0.226 7.372 6.774 7.073 7.068 8.408 7.738 1.665 1.820 1.220 1.539 2.304 0.221 0.226 0.235 6.130 5.682 5.906 5.512 6.678 6.095 1.233 1.220 1.220 2.553 2.941 1.847 0.201 0.213 A = N S <td< td=""><td>4</td><td>6.459</td><td>7.077</td><td>6.768</td><td>7.561</td><td>7.300</td><td>7 431</td><td>1.591</td><td>1.520</td><td>1.556</td><td>2.461</td><td>2.625</td><td>2.543</td><td>0.246</td><td>0.215</td><td>0.231</td><td>0.325</td><td>0.359</td><td>0.342</td></td<>	4	6.459	7.077	6.768	7.561	7.300	7 431	1.591	1.520	1.556	2.461	2.625	2.543	0.246	0.215	0.231	0.325	0.359	0.342
6.933 7.827 7.380 7.503 8.025 7.764 1.610 1.664 1.637 2.420 2.431 2.425 0.232 0.213 0.225 0.333 0.303 7.441 7.020 7.231 8.090 7.483 7.787 1.589 1.585 2.442 2.637 0.212 0.212 0.211 0.301 0.351 6.622 6.103 6.363 7.686 6.460 7.164 1.464 1.486 1.778 2.430 2.304 0.221 0.245 0.231 0.307 0.316 6.130 6.732 6.774 7.075 8.628 2.041 1.847 0.221 0.225 0.234 0.234 0.234 0.307 0.309 6.130 6.572 6.672 6.792 1.488 1.658 1.628 2.041 1.847 0.201 0.201 0.301 0.309 0.324 7 6.666 6.792 7.268 8.693 1.488 1.886 1.886	6.933 7.827 7.380 7.593 7.64 1.610 1.664 1.637 2.420 2.431 2.425 0.232 0.213 7.441 7.020 7.231 8.090 7.483 7.787 1.581 1.589 1.585 2.442 2.627 2.534 0.212 0.226 6.622 6.103 6.363 7.868 6.460 7.164 1.464 1.496 1.480 1.178 2.430 2.304 0.221 0.245 7.372 6.774 7.073 7.068 8.408 7.738 1.665 1.820 1.678 2.072 2.519 2.296 0.226 0.235 6.130 5.682 5.904 5.512 6.678 6.095 1.233 1.207 1.220 1.658 2.041 1.847 0.201 0.213 A = N S A = N S A = 0.361 A = 0.1068 A = 0.1068 A = 0.1002 A = 0.005 A = 0.005 B = 0.844 A B = 1.411 A B = 0.250 A B = 0.479	5	6.735	6.697	6.716	7.119	8 949	8.034	1.523	1721	1.622	2.395	2.970	2.682	0.226	0.257	0.242	0.336	0.332	0.334
7.441 7.020 7.231 8.090 7.483 7.787 1.589 1.589 1.589 1.589 2.442 2.627 2.534 0.212 0.226 0.213 0.231 0.301 0.351 0.301 0.351 0.377 0.376 6.622 6.103 6.543 7.68 6.460 7.164 1.464 1.496 1.178 2.430 2.304 0.221 0.245 0.233 0.277 0.376 6.130 5.612 6.774 7.073 1.658 2.072 2.519 2.296 0.225 0.231 0.299 0.394 6.666 6.792 7.276 8.053 1.488 1.586 2.255 2.593 0.221 0.207 0.307 0.309 A = N S A = N S A = 0.361 A = 0.0168 A = 0.1717 A = 0.1502 A = 0.005 A = 0.006 0.324 0.304 0.324 0.304 0.304	7.441 7.020 7.231 8.090 7.483 7.787 1.581 1.589 1.585 2.442 2.627 2.534 0.212 0.226 6.622 6.103 6.363 7.868 6.460 7.164 1.464 1.496 1.480 1.178 2.430 2.304 0.221 0.245 7.372 6.774 7.073 7.068 8.408 7.738 1.665 1.520 1.628 2.072 2.519 2.296 0.226 0.235 6.130 5.682 5.904 5.512 6.678 6.095 1.233 1.207 1.220 1.658 2.041 1.847 0.201 0.212 6.666 6.792 7.276 8.053 1.488 1.866 2.255 2.593 0.223 0.234 A = 0.644 A = 0.361 A = 0.1068 A = 0.1502 A = 0.005 A = 0.005 B = 0.010 AB = 0.864 A B = 1.141 AB = 0.250 AB = 0.479 AB = 0.014 AB = 0.014	9	6.933	7.827	7.380		8 025	7.764	1 610	1664	1.637	2.420	2.431	2.425	0.232	0.213	0.225	0.323	0.303	0.313
6622 6.103 6.363 7.868 6.460 7.164 1.464 1.496 1.178 2.430 2.304 0.221 0.245 0.233 0.277 0.376 7.372 6.774 7.073 7.068 8.408 7.738 1.665 1.592 2.072 2.519 2.296 0.226 0.231 0.293 0.299 6.130 5.622 5.906 5.512 6.678 6.095 1.233 1.207 1.658 2.041 1.847 0.201 0.207 0.301 0.399 6.666 6.792 7.206 8.053 1.488 1.586 2.253 2.593 0.224 0.307 0.309 0.324 A = N S A = 0.15 A = 0.15 A = 0.1502 A = 0.1502 A = 0.1007 A = 0.1009 A = 0.1009 A = 0.000	6.622 6.103 6.363 7.868 6.460 7.164 1.464 1496 1.480 1.178 2.430 2.304 0.221 0.245 7.372 6.774 7.073 7.068 8.408 7.738 1.665 1.592 1.628 2.072 2.519 2.296 0.226 0.235 6.130 5.682 5.904 5.512 6.678 6.095 1.233 1.207 1.220 1.658 2.041 1.847 0.201 0.212 6.666 6.792 7.276 8.053 1.488 1.866 7.255 2.593 0.223 0.234 A = N S A = 0.361 A = 0.0768 A = 0.1502 A = 0.005 A = 0.005 B = 0.614 A B = 1.141 A B = 0.209 A B = 0.479 A B = 0.014	7	7441	7.020	7.231	8 090	7.483	7.787	1.581	1 589	1.585	2.442	2.627	2.534	0.212	0.226	0.211	0.301	0.351	0.327
7.372 6.774 7.073 7.068 8.408 7.738 1.665 1.592 1.628 2.072 2.519 2.296 0.226 0.233 0.293 0.299 6.130 5.682 5.906 5.512 6.678 6.095 1.233 1.207 1.628 2.041 1.847 0.201 0.207 0.301 0.307 6.656 6.792 7.276 8.053 1.488 1.586 2.255 2.593 0.223 0.234 0.309 0.324 A = N S A = N S A = 0.361 A = 0.0768 A = 0.1502 A = 0.005 A = 0.007 A = 0.005 A = 0.007 AB = 0.614 AB = 0.1117 AB = 0.3358 AB = 0.014 AB = 0.014 AB = 0.014 AB = 0.004	7372 6.774 7073 7068 8.408 7.738 1 665 1 592 1 628 2 072 2 519 2 296 0 226 0 235 6.130 5 682 5 906 5 512 6 678 6 095 1 233 1 207 1 220 1 658 2 041 1 847 0 201 0 212 6 666 6 792 7 276 8 053 1 488 1 586 2 255 2 593 0 223 0 223 0 212 A = N S A = N S A = 0 361 A = 0 1068 A = 0 1050 A = 0 005 B = 0 010 AB = 0 868 AB = 1 41 AB = 0 250 AB = 0 479 AB = 0 014	*	6.622	6.103	6.363	7.868	6.460	7.164	1.464	1 496	1 480	1.178	2.430	2.304	0.221	0.245	0.233	0.277	0.376	0 325
6.130 5.682 5.906 5.512 6.678 6.095 1.233 1.207 1.626 2.041 1.847 0.201 0.212 0.207 0.307 0.307 0.307 0.307 0.307 0.307 0.307 0.323 0.324 0.323 0.324 <th< td=""><td>6.130 5.682 5.906 5.512 6.678 6.095 1.233 1.207 1.658 2.041 1.847 0.201 0.212 6.666 6.792 7.276 8.053 1.488 1.586 2.255 2.593 0.223 0.234 A = N S A = 0.361 A = 0.368 A = 0.0168 A = 0.1502 A = 0.005 B = 0.614 B = 0.806 B = 0.117 A B = 0.358 B = 0.010 AB = 0.868 AB = 1.141 AB = 0.250 AB = 0.479 AB = 0.014</td><td>6</td><td>7.372</td><td>6.774</td><td>7.073</td><td>7.068</td><td></td><td>7.738</td><td>1.665</td><td>1 592</td><td>1.628</td><td>2.072</td><td>2.519</td><td>2 296</td><td>0.226</td><td>0.235</td><td>0.231</td><td>0.293</td><td>0 299</td><td>0.296</td></th<>	6.130 5.682 5.906 5.512 6.678 6.095 1.233 1.207 1.658 2.041 1.847 0.201 0.212 6.666 6.792 7.276 8.053 1.488 1.586 2.255 2.593 0.223 0.234 A = N S A = 0.361 A = 0.368 A = 0.0168 A = 0.1502 A = 0.005 B = 0.614 B = 0.806 B = 0.117 A B = 0.358 B = 0.010 AB = 0.868 AB = 1.141 AB = 0.250 AB = 0.479 AB = 0.014	6	7.372	6.774	7.073	7.068		7.738	1.665	1 592	1.628	2.072	2.519	2 296	0.226	0.235	0.231	0.293	0 299	0.296
6.666 6.792 7.276 8.053 1 488 1 586 2.255 2.593 0.223 0.234 0.309 A = N S A = 0.768 A = 0.0150 A = 0.003 A = 0.003 A = 0.003 A = 0.003 B = 0.614 B = 0.806 B = 0.1717 B = 0.3358 B = 0.010 B = 0.044 AB = 0.868 AB = 1.141 AB = 0.250 AB = 0.479 AB = 0.014 AB = 0.064	6 666 6.792 7276 8.053 1488 1586 2.255 2.593 0.223 A = N S A = 0.361 A = 0.068 A = 0.068 A = 0.1502 A = 0.003 B = 0.614 B = 0.806 B = 0.1717 B = 0.3358 B = 0.01 AB = 0.868 AB = 1.141 AB = 0.250 AB = 0.479 AB = 0.01	10	6.130	5.682	\$.906	5.512	8.678	6.095	1.233	1 207	1.220	1.658	2.041	1.847	0 201	0 212	0 207	0 301	0.307	0.306
A = NS A = 0.361 A = 0.0768 A = 0.1502 A = 0.005 A = 0.005 A = 0.010 B = 0.	A = N S A = 0.361 A = 0.068 A = 0.1502	Mean '	999.9	6.792		7 2 7 6	8.053		1 488	1 586		2.255	2.593		0.223	0.234		0 309	0.324	
B = 0.806 B = 0.1717 B = 0.3358 B = 0.010 B = 0.010 AB = 1 141 AB = 0.250 AB = 0.479 AB = 0.014 AB = 0.014	B = 0.614 B = 0.806 B = 0.117 B = 0.3358 B AB = 0.868 AB = 1.141 AB = 0.250 AB = 0.479 AB	LSD _n _m	SN # Y			A = 0.36	_		A = 0076	∞		10 = Y	502		A = 0.0	35		000 = A	1	
AB=0.141 AB=0.250 AB=0.479 AB=0.014	AB=0868 AB=1141 AB=0250 AB=0479		B = 0.6	4		B = 0.8(9 2		B = 0.17	17		B = 0.3	358		B = 0.0	2		B = 0.0	2	
			AB=08(300 300		AB = 1 14	=		AB = 0 25	_		AB = 0.4	79		AB = 00	4		AB = 00	92	

Annual Line and Line								* Table 1	A touch chim	Ind I wou ker	Tel weight	during	600 - 100	Seasons				
Herbicide		*	heat spike	Wheat spike number / m2				WE	THE STILL	ulator (A)								The state of the s
Treatments	51	8661 - 1661			1908 - 1900	9		w nea	It spirelets	wineat spikelets numbers / spike	pike				000 - Ken	1000 - Kernel weight		
<u>@</u>	Without	N. ork	Man	17.71	-	L		3	_	61	861 - 86		2	1000				
		_	502	M IEDOUE	<u>=</u>	Mean	Without	£	Mean	Wichan	-	1				-	88 - XX	
	atonik	atonik		atonik	atonik		atonik			in order	5	Mean	W IThout	₹ 5	Mean	Without	¥.	1
•	380.5	346.8	363 63	555.0	0109	578.0	10 55	10.30		atonik	atonik		atonik	atonsk	•	atomk	atronit.	į
2	676.5	509.0	592.5	542.0	5430	200	30.05	17.30	13.40	18.98	19.85	167	33.13	31 73	32 43	17 50	10,0	1
3	646.8	4723	\$ 655	630.0	6363	2.50	20.02	19.60	19.83	18.85	19.95	19.40	310	27.83	17 0%	30 81		
4	528.0	4520	1000	0 (5)	0.070	6760	20.43	20.05	20.24	18.98	86 61	19 44	32.5	36.60	35 72	17.00	2 0	2
~	515.0	0 07.5	6220	0 100	0.76	20%	19.63	19.35	19.49	18.03	18.65	22.8	36.3	17 88	202		; ;	£ 2
4	1116		332.0	250.0	031.0	590.5	20.53	20.20	20.36	18 53	10 66	200			5	cs /+	47.53	17 41
,	2	407.3	455.0	635.0	\$52.0	593.5	20.88	20.48	20.68	200		5	77.	37.43	32.58	47 38	48 50	47 94
	493.0	8.098	526.90	586.0	586.0	5860	20.08	10.00	200	19.33	19.38	8	338	31 23	32 488	18 40	18 75	25 27
∞	580.0	966.0	573.0	589.0	0519	603	20.02	19.70	50.67	8/.6	89 61	19.73	31.13	3363	32.38	18 55	48.55	3 2
6	554.0	692.0	623.0	5480	5280	248.0	20.75	20 62	97.77	18.35	19.75	19 05	336	32 63	3 =	17.14	16.80	
0	248.8	288.0	268.38	343	4700	406.5	90 01	00.07	80 5	18.33	1985	60.61	32 25	32.65	3243	18 75	21 27	
Mean	507.0	489.8		556.8	8 095		10.00	19.30	67.6	18.08	18.75	18 41	01 17	36.75	38 93	17.35	01 01	27
LSD, os	SN= V			SN = A	4		207	/3.8/		8 64	19 54		33.64	32.83		17.80		7
	B = 66.74	•		B = 68 13.	134		0980 = 12	g		A = 0.407		-	SN = V			27 = V		Ī
	AB = 94.39			AB = 96 360	091		N E BA	.		SZ # A			B = 3645	•	-	14		
• See table (1)	AB = Interaction	craction					21 - 00		1	AB = N.S			AB-NS			AP - NA		
																,		-

treatments with and without atonik were 79.3 and 73.6 mg/g for starch, 9.60 and 8.69% for protein and 26.61 and 23.86 mg/g for total soluble sugars (TSS) respectively in the first season, while the corresponding mean values in the second season were 97.17 and 94.98 mg/g; 8.78 and 7.82%; and 37.88 and 33.14 mg/g, respectively.

With respect to the effect of herbicidal combinations on wheat grain quality characters, generally, panther was the only herbicidal treatment caused highly significant increasing on protein content in two seasons compared to the other treatments. Most of herbicidal treatments significantly increased protein content in the second season. Pyridate + clodinafop increased starch content in two seasons, while Derby + tralkoxydim and metosulam + clodinafop increased starch content in the second season. Other herbicidal combinations had no effect or decreased starch content compared with unweeded check. Among all treatments, the highest significant increase in total soluble sugars was obtained in the case of clodinafop combinations with derby, harmony, pyridate or fluroxypyr in the first season compared with unweeded check. With respect to the second season, derby + tralkoxydim and metosulam + clodinafop gave highly significant increase to the studied traits. On the other hand, the other herbicidal combinations had no effect or decreased these quality characters. These results are in accordance with the findings of Martin et al. (1989); Sabev and Stoeva (1988); and Randhawa and Gill (1989). They indicated that herbicide treatments either increased or decreased seed protein% content and sugar contents, depending on the year.

It could be concluded from the obtained results that clodinafop-propargyl is a new good effective graminicide when combined with either new broadleaved herbicides (derby, harmony or metosulam) or old broadleaved herbicides (pyridate, fluroxypyr or bentazone) gave highly significant weed control and may be solve weed problem in wheat crop in Bangar El-Sokkar district. On the other hand, the addition of atonic stimulator to the herbicide combinations enhanced the control of grassy and broad leaf weeds compared to unweeded check. Moreover, atonik treatments increased wheat productivity by 20-30% depended on herbicidal combinations, biological and grain yields as well as quality parameters.

9 Mean 1332 2419 3646 31374 13541 3541 3541 3556
Virth aronis aronis aronis 36 05 30 81 30
2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
he sugars atom atom 3 40 3 9 41 3 37 4 33 37 6 33 38 6 32 88 6 32 88 7 15 88 7 15 88 7 15 88 7 15 88 7 15 88 8 15 88
ons Mean Mean Mean Mean Mean Mean Mean Mean
Total 1997 season Total 1997 - 1908 With atonik 26.73
~
20 20 21 22 21 22 21 22 21 22 21 22 21 22 21 22 21 22 21 22 21 22 21 22 21 22 21 22 21 22 21 42
S S S S S S S S S S S S S S S S S S S
111.30 80.43
Atonic Starch, and set Atonic Starch (mgg) Starch (mgg) Mean Without 103.01 72.24 87.58 72.24 87.58 72.24 87.58 72.29 96.02 72.79 96.02 72.79 96.02 73.79 96.02 74.75 104.15 80.15 95.24 77.70 94.98 77.03 95.46 8
Etin, starch, and Stratch, and Starch (mg/g) Starch (mg/g) Starch (mg/g) fean Without atonik 2.24 87.58 8.91 108.70 1.40 74.85 1.57 89.28 1.59 96.02 1.57 89.28 1.59 95.24 2.59 93.83 0.3 95.46 A = 0.4 B = 1.4
Atonik Star 1998
1997 - 1998 1997 - 1998 1969 - 1998 1969 - 1992 1992 - 1992 1992 - 1992 1992 - 1992 1993 - 1993 1716 - 1990
heat grain Without atonik 64 78 73 40 78 90 66 44 77 66 69 64 77 65 77 65 77 65 78 90 78 90 8 4 49 8 = 4 49 AB = 6 35
Mean V Mean Mean Mean Mean Mean Mean Mean Mean
999 999 4 9915 4 9915 9 280 8 160 8 270 9 145 7 035 7 345 7 345
198 - 1999 1998 - 1999 1998 - 1999 10 94 10 94 9 25 9 26 9 25 7 19 9 38 7 19 9 38 7 19 7 69 8 13 7 69 8 13 7 69
s and atonik 10% Without atom 769 875 769 750 750 769 769 788 8 = 0.104 AB = 0.148
Protein % ato 10.72 7 69 9 52 7 69 9 91 9 7 50 9 9 1 9 7 8 8 8 7 6 8 8 8 7 6 8 8 9 2 1 7 69 9 9 1 9 7 50 9 9 9 1 9 7 50 9 9 1 9 7 50 9 9 1 9 7 50 9 9 1 9 7 50 9 9 1 9 7 50 9 9 9 1 9 7 50 9 9 9 1 9 7 50 9 9 9 1 9 7 50 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
cidal combination property of the property of
1997 – 1998 1997 – 1998 1094 1030 984 1030 973 963 1010 963 1040 2040
2t of the hery 19 Without atonik 9 63 9 63 8 10 8 10
Herbicide Treatments (B) (B) (B) (B) (B) (B) (B) (B) (B) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C
Table (7). E. Herbicide Treatments (B)

REFERENCES

- A.O.A.C. (1984) Official methods of analysis, The Association of Official Agricultural Chemists. 19th Editor, Washington.
- Balyan, R.S.; Malik, R. K.; and Panwar, R. S. (1992) Effects of rats, times and methods of Application of tralkoxydim on wild oats in wheat. Tropical Pest Management. 38 (4): 411 415 (Weed Abst. 42 (10): 3324, 1993).
- Chapman, H.; Partte, P. (1961) Methods of analysis for soil, plants and water, University of California Division of Agriculture Science.
- Chill, M. L. (1988) Diffusenican and isoproturon: a case history of its development in winter cereals in Ireland. Aspects of Applied Biology No. 18: 247 264. (Weed Abst. 38 (6): 1590, 1989).
- Cohort Software Inc. (1986) Costat user's manual version 3.03. Berkeley. California. U.S.A.
- El-Deeb, S.T.; Galelah, A. A.; and Shalaby, E. E. (1986) Chemical weed control in wheat, with respect to its effect on yield and yield components. Proc 2nd Conf. Agron, Alex., Egypt., (1): 619 634.
- Fisher, N. M.; Davies, D. K.; and Whytock, G. P. (1993) Reliability of broad-leaved weed control in cereals using low doses of herbicide. In British Crop Protection Conference, Brighton Weeds. 3: 1223 1228.
- Frans, R. E. and Talbert, R. E. (1977) Design of field experiments and the measurement and analysis of plant responses. In: Truelove, B. (ed.) Research Methods in Weed Science, Southern Weed Sci., Soc. USA, 15 23 pp.
- Gouda, M. H.; El-Shami, M. M.; and Sharshar, M. S. (1994) Effect of planting methods, seeding rates and use of herbicide on yield and yield component of wheat. J. Agric. Sci. Mansoura Univ. 19 (1): 39 47.

- Hallgren, E. (1989) Inflence of different factors. On the effect of spring cereals in the spring with oxiril 4 as regards weeds and grain yield 3. Influence on yield quantity and quality. In Swedish Crop Protection Conference. 2: 145 479 (Weed Abst. 39 (9): 2907, 1990).
- Hallgren, E. (1990) New herbicides for control of annual grass weeds in cereal. Swedish Univ. of Agric. Sci. 31: 78 92 (Weed Abst, 40 (2): 373, 1991).
- Heap, J. W.; and Mitchell, G. J. (1992) Yield increases in cereals following control of two perennial weeds in southern Australia. Australis; weed science society of Vectoria. 2: 216 218 (Weed Abst. 42 (1): 308, 1993).
- Hofmann, B.; and Pallutt, B. (1989) Studies in the control of *Galium aparine L*. with sys 67 Gebifan + Basagran as well as tankmixes of these herbicides with bercema Bitosen N or ammonium nitrate with urea solution. Nachrichtenblatt fur den pflanzenschutzin der DDR, 43 (9): 180 183 (Weed Abst. 39 (3): 671, 1990).
- Horsenail, G. B.; and Turner, M. T. F. (1988) Weed control in winter wheat cereals with a diflufenican plus isoprturon mixture; results of trials on very light soils. Aspects of Applied Biology. No. 18: 265 276. (Weed Abst. 38 (6): 1582, 1989).
- Guo, C. and Oosterhuis, D.M. (1997) Atonik a plant growth regulator to enhance yield in cotton. pp. 269-275. Proc. FAO/UN Meeting "Plant nutrition, fertilizer use and plant growth regulation in cotton. Cairo, Egypt.
- Khosro, K.; Robert, E.; Farm, S. and Fred, C.C. (1983) Diclofop a selective herbicide for Italian rye grass control in winter wheat. Weed Science, 31:436-438.
- Kreuz, E. (1993) The late weed infestation in winter wheat stands in relation with intensification of cultivation and with crop rotation Archives of Phytopathology and Plant Protection 28 (5): 379 388 (Weed Abst. 44 (6): 2421, 1995).

- Lenerie, D.; and Verbuk, B. (1995) Influence of soil water deficient on performance of foliar-applied herbicides for wild Oat and annual rye grass in wheat. Plant Protection Quarterly, 10 (4): 143-147.
- Lisoval, A. P.; Zosimov, V. D.; Moskalev, L. M.; Dolya, N. N.; and Pravilov. (1989). Efficiency of Nitrogen top dressing of winter wheat on chernozem soils of the Ukrainian. SSR. Agrokhimiya No. 1, 3-9: (Weed Abst. 39 (3): 665, 1990).
- Martin, D. A.; Miller, S. D.; and Alley, H. P. (1989) Winter wheat response to herbicides applied at three growth stages. Weed Technology. 3 (1) 90 94.
- Martin, D. A.; Miller, S. D.; and Alley, H. P. (1990) Spring wheat response to herbicides applied at three growth stages. Agronomy Journal, 82 (1): 95 97. (Weed Abst. 39 (9): 2914, 1990).
- Milberg, P. and Hallgren, E. (2004) Yield loss due to weeds in cereals and its large-scale variability in Sweden. Field Crops Research, 86 (2-3: 199-209.
- Mirkamal, H. (1993) Chemical control of grasses in wheat. In British Crop Protection Conference, Brighton 2: 579 – 584.
- Montazeri, M. (1995) Interaction of tribenuron and graminicides in wheat.

 Proceedings of An International British Crop Protection
 Conference, Brighton, Vol. 2, 753 756.
- Panwar, R. S.; Malik, R. K.; Balyan, R. S. and Singh, D. P. (1995) Effect of isoproturon, sowing method and seed rate on weeds and yield of wheat. Indian Journal of Agricultural Science. 65 (2): 109—111 (Weed Abst. 45 (12): 4817, 1996).
- Panwar, R. S.; Malik, R. K.; and Malik, R. S. (1992) Effect of weedcides weed control in wheat crop. Indian journal of Agronomy. 37 (2): 320 323. (Weed Abst. 43 (1): 294, 1993).

- Panwar, R. S.; Malik, R. K.; and Rathi, S. S. (1996) Effect of tralkoxydim and its combination with other new herbicides on the control of weeds in wheat (*Triticum aestivum*). Indian of journal of Agronomy 41 (3): 401-405. (Weed Abst. 46 (8): 3171, 1997).
- Panwar, R. S.; Mailk, R. K.; Samar, S.; and Balyan, R. S. (1994) Influence of tralkoxydim applied alone or as tank, Mixture on the control of grassy weeds in wheat. Haryana Agric. Univ. J. of Res, 24 (1): 25 32.
- Ponce, R. C.; Lamela, A.; and Salas, M. L. (1989) Effects of nitrogen and herbicide on grain yield and protein content of all and semi-dwarf wheat. Cultivar in semi-arid condition. Development. In Plant and Soil Sciences. 41. (Weed Abst. 43 (1): 296, 1990).
- Randhawa, S. K.; and Gill, H. S. (1989) Effect of wheat herbicides wheat rotation. Journal of Research Punjab Agricultural University, 26 (1): 25 28. (Weed Abst. 39 (1): 15, 1990).
- Rasinsh, A. P.; Gavare, L. A., Zemite, A. F.; and Samonina, I. N. (1987)
 Weed control in winter wheat cultivated with intensive technology in the Latvin SSR. Akademiya sel' skokhozy-aistvennykh Nauk in V.I.; Lenina: 51 56 (Weed Bast. 40 (2): 382, 1991).
- Roberts, H. A. (1982) Weed Control. Handbook BCPC, BlackWell Scientific Publication, London, 252 279 pp.
- Sabev, G.; and Stoeva, I. (1988) Effect of some herbicides on the yield and quality of the wheat cultivar pliska. Rasteniev dni Nuki, 25 (3): 108 112. (Weed Abst. 38 (8): 2287, 1989).
- Sabra, F. S.; Kassem, F. A.; and Khalifa, M. A. S. (1999) Effectiveness of herbicidal treatments against weeds in wheat and their action on yield and yield components. J. Pest Cont. & Environ. Sci. 7 (3): 103 – 121.

- Singh, S.; Malik, R. K.; Sangwan, N., and Tamak, J. C. (1995) Performance of tralkoxydim and isoproturon against phalaris minor in wheat. Agricultural Science Digest (Karnal) 15 (3): 153 155 (Weed Abst 46 (3): 1089, 1997).
- Soliman, F.S.; El-Tabakh, S.; and Sabra, F.S. (2000) Integrated weed management of wheat crop in reclaimed Land in Egypt. First Near East conference on improved weed management 5-8 February 2000, Cairo Egypt.
- Soliman, F. S. (1995) Assessment of some herbicidal combinations in wheat fields of Dierab, Saudi Arabia. Arab Gulf Scient. Res. 13 (3): 521 534.
- Tewari, P. N.; and Mehrotra, O. M. (1978) Note on intrinsic relationship of weed growth with performance of wheat. Indian. Agric. Res. 12 (2): 101 103.
- Thomas, W.; and Dutcher, R. A. (1924) Picric acid method for carbohydrate. J. Am. Chem. Soc., 46: 1662 – 69.
- Whiting, A. J.; and Davies, D. H. K. (1990) Response of winter wheat to herbicide rate and timing. Association for Crop Protection in Northern Britain. 77 32. (Weed Abst. 39 (12): 4080, 1990).

تأثير خلائط بعض مبيدات الحشائش ومنشط النمو على الحشائش وأنتاجية وصفات جودة محصول القمح

د. فؤاد شعبان سليمان - د. فريد سليمان صبره - د. عبد الله محمود الشاذئي - أسماعيل عواد

تم تصميم تجربة حقلية تكررت في موسمين زراعين متتالين لمحصول القمح في موقعين مختلفين بقرية سلامه حجازى بمنطقة بنجر السكر تحت ظروف الزراعة المثلى – وكانت هذه الحقول مصابه طبيعيا بشدة بالحشائش النجيلية وعريضة الأوراق – تم تصميم التجربة حيث تحسوى على تسعة مخاليط مبيدات حشائش بالإضافة إلى معاملة الكنترول وذلك سواء في وجود المنشط النباتي (الأتونيك) أو في عدم وجوده وذلك لمعرفة التأثير على مكافحة حشائش القمح وجودتة .

أظهرت النتائج أن معظم مخاليط مبيدات الحشائش في وجود المنشط أعطت أعلى خفض معنوى في الحشائش الرفيعة وناتج خلط المبيد المتخصص للحشائش الرفيعة كلودينافوب مع مبيدات الحشائش عريضة الأوراق الجديدة وهي (دربي، هرموني ، ميتوسولام) وكذلك مع مبيدات الحشائش العريضة القديمة (بيريدات ، فلوروكسيبير ، بتنازون) قد أعطت أعلى معدل في مكافحة الحشائش العريضة والرفيعة في منطقة بنجر السكر .

وقد أدت مخاليط مبيد كلودينافوب إلى زيادة معنوية فى محصول القمح وفى مكوناته وذلك مسع المنشط النباتى وأوضحت النتائج أيضا أن خصائص الجودة من (نسبة البروتين ، النشا والسكريات الكلية) قد زادت زيادة معنوية نتيجة هذه المعاملة خاصة فى وجود الأتونيك كمنشط نباتى مع مبيدات الحشائش .