

https://doi.org/10.21608/zumj.2025.421930.4173

Volume 31, Issue 12, December. 2025

Manuscript ID:ZUMJ-2509-4173 DOI:10.21608/zumj.2025.421930.4173

ORIGINAL ARTICLE

Added Value of Qualitative and Quantitative Diffusion Weighted Magnetic Resonance Imaging (DWI-MRI) in Assessment of Non-neoplastic Achilles Tendon Related Pathologies

Amgad M. Elsheikh, Lamiaa Haitham Mohamed*, Mohamed Fathy Khater, Fatma Mahmoud Zaiton, Mostafa Mohamad Assy

Radiodiagnosis Department, Faculty of medicine, Zagazig University, Zagazig, Egypt

*Corresponding author:

Lamiaa Haitham Mohammad Abo Hashem

Radiodiagnosis Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt E-mail address

lamia.haitham.lh@gmail.com

Submit date 10-09-2025 Revise date 15-10-2025 Accept date 16-10-2025

ABSTRACT

Background: It has been demonstrated that magnetic resonance imaging (MRI) techniques of Diffusion Weighted Imaging (DWI) and Apparent Diffusion Coefficient (ADC) mapping can facilitate the identification of structural and biochemical alterations in tissue, offer early detection of pathological changes, and track tissue damage. Purpose of this study was to assess how useful DWI and ADC mapping are for identifying Achilles tendon (AT) disorders.

Methods: This case-control study was done on 60 participants; 30 symptomatic patients with suspected AT pathology and 30 healthy volunteers as control group. Subjects underwent MRI of the ankle with multiple sequences (T1, T2, STIR, proton density), complemented by DWI and ADC images.

Results: Final MRI diagnosis was tendinopathy, inflammation, partial tear, complete tear and Haglund's syndrome. DWI demonstrated high sensitivity in detecting pathology of Achilles tendon with relatively lower specificity. ADC measurement had statistically significant higher value comparing the patients and healthy controls (p value <0.001.) with sensitivity (100%) and specificity (96.67%). Combining DWI& ADC with conventional MRI improved the diagnostic accuracy sensitivity (100%), specificity (75%), accuracy (95%), PPV of (78 %) and NPV of (100%). Agreement between DWI/ADC and reference standard was good. **Conclusions:** Quantitative **ADC** mapping provides complementary information to conventional MRI in diagnosing AT pathologies. While DWI offers good sensitivity and diagnostic accuracy, ADC analysis helps distinguish true diffusion restriction from T2 shinethrough effects. In addition, diffusion MRI remains limited by lower spatial resolution and image quality compared with conventional MRI images.

Keywords: DWI MRI, ADC mapping, Conventional MRI, Achilles tendon.

INTRODUCTION

The Achilles tendon (AT) is the thickest and the most powerful tendon; it plays a vital role in the biomechanics of the lower extremities and in activities like walking, running, and jumping. In addition to being the strongest tendon in our body, because of its size and functional overload, the AT is the most injured tendon. AT is prone to both acute and chronic damage and is directly or indirectly involved in many pathologies of the

foot and ankle [1]. Achilles tendon disorders can affect different age groups, increased involvement in sporting activities over the past years lead to increased overuse injuries also complete or spontaneous ruptures of the AT are found [2]. Achilles tendinopathy is characterized by localized pain and functional impairment due to mechanical loading, its etiology has multiple factors affecting it including repeated overloading, negative drug effects, ageing and various comorbidities [3].

Elsheikh, et al 5761 | Page

Diagnosis of Achilles tendon pathologies relies on clinical data and physical While conventional examination [4]. radiography is the first step in evaluation by excluding osseous injury, it is often insufficient for detecting subtle tendon or ligament abnormalities, particularly in the absence of bone avulsions or significant effusions [5]. In this context, accurate imaging is crucial, as misdiagnosis of subtle tendon pathology may alter treatment planning [5]. Among the different imaging techniques available, magnetic resonance imaging (MRI) has been well recognized as a reference tool in identifying and diagnosing AT pathologies including tears, micro-tears and degenerative changes [2]. As MRI provides high tissue contrast and resolution it detailed assessment of morphology and pathology and may decrease the need for invasive diagnostic procedures [6]. With the evolving technology, new MRI sequences have been designed to improve the diagnostic accuracy of routine MRI protocol particularly for musculoskeletal pathologies involving muscles, nerves, ligaments and tendons [7]. These new imaging sequences provide a more accurate assessment of pathology, specifically in areas of muscles, nerves, ligaments and tendons [2]. Diffusion Weighted Imaging (DWI) and Apparent Diffusion Coefficient (ADC) mapping are advanced MRI methods that use water molecules' thermal motion to evaluate the tissue microstructure [8]. DWI provides qualitative information on tissue organization while quantitative **ADC** [8],the measurements provide early diagnostic indicators for the existence of pathogenic alterations and monitoring tissue damage [9]. Although numerous studies have explored the role of MRI in diagnosing AT lesions, limited evidence exists regarding the contribution of DWI and ADC mapping for specific AT pathologies. Therefore, this study designed to assess the added value of DWI and ADC mapping in diagnosing Achilles tendon injuries, in comparison conventional MRI sequences.

METHODS

This prospective study was conducted in the Radiology Department at our institute during

the period between January 2024 and January 2025. The protocol was approved by the Institutional Review Board (ZU-IRB#11165, approved on October 4,2023). The Helsinki Declaration of the World Medical Association for experiments involving humans was followed in the conduct of this study. Sixty participants were included; 30 symptomatic patients for AT pathology or suspected AT injury, their ages ranged between 21 to 65 years. In addition, to 30 age matched healthy volunteers serving as a control group, their ages ranged between 20 to 65 years. Inclusion included symptomatic criteria presenting with signs suggestive of AT pathology (e.g., pain, swelling, tenderness) or suspected AT injury on initial clinical examination. Exclusion criteria included contraindications to MRI such as cardiac pacemakers or metallic implants and patients refused to be enrolled in the study. All patients were subjected to clinical assessment including full medical history mechanism of injury, history of previous trauma) and local examination of affected ankle for site of trauma, erythema, swelling, and joint instability or stiffness. Magnetic resonance imaging was done, using Philips Achieva 1.5 T scanner. Multi-planner imaging of the injured ankle in different planes was performed using the following sequences: T1weighted imaging: TR 400ms, TE 12ms, slice thickness 3 mm, FOV 12 cm, T2-weighted imaging: TR 4500 ms, TE 81 ms, slice thickness 3 mm. FOV 12 cm. Proton density FAT SAT imaging: TR 1000 ms, TE 10-30 ms, slice thickness 3 mm, FOV 12 cm, STIR imaging: TR 3800 ms, TE 46 ms, slice thickness 3 mm, FOV 12 cm, Diffusionweighted imaging (DWI): TR 2000-7500, TE 65 ms, FOV 200×200 mm, matrix 80×112 , slice thickness 3 mm, interslice gap 1 mm, bvalues = 600, 800, and 1000 s/mm^2 , ADC Mapping: Apparent diffusion coefficient (ADC) values were measured by manually placing regions of interest (ROIs) within the lesions on ADC map images.

Image Interpretation

The obtained DWI, ADC & conventional magnetic resonance images were independently assessed on separate sessions by two radiologists, each with more the 10

Elsheikh, et al 5762 | Page

years of experience in ankle imaging. Both radiologists were blind to clinical data. Evaluation included tendon boundaries. consistency, size. shape. signal characteristics, and quantitative ADC values. Conventional MRI sequences were additionally assessed for lesion site, laterality, and type of AT abnormality.

Gold Standard

Surgical repair was done for cases with complete tendon tear, Arthroscopy was done for cases of partial tendon tear, comparison with clinical diagnosis and follow-up findings were used in cases of inflammation and tendinopathy.

Statistical analysis

The collected data were coded, entered, and analyzed by computer using a database software program, IBM SPSS 23.0 for windows (SPSS Inc., Chicago, IL, USA). One way analysis of variance (ANOVA) test used to analyze the difference between means of independent variables of more than two groups. p value < 0.05 was considered significant. Chi-square [X2] test is a nonparametric test that is used to study if there is a relationship between two or categorical variables. The ROC curve (receiver operating characteristic) gives a useful way to evaluate the sensitivity and specificity quantitative diagnostic for measures that categorize cases into one of two groups.

RESULTS

Regarding demographic data, patients' ages ranged from 21 to 65 years (mean \pm SD, 36.5 \pm 10.9), with 14 males (46.7%) and 16 females (53.3%). The control group ranged from 20 to 65 years (mean \pm SD, 32.7 \pm 12.5), comprising 12 males (40%) and 18 females (60%). Regarding qualitative DWI and quantitative ADC Findings, all examined Achilles tendons in the patient group demonstrated abnormal high signal intensity on DWI (100%). Of these, 19 patients (63.3%) had non-insertional lesions, while 11 (36.7%) had insertional lesions. Complete tendon tear was suspected in 6 cases based on loss of tendon continuity [Table S1]. On qualitative assessment, all patients showed abnormal high signal on both DWI and ADC (100%), consistent with T2 shine-through effect rather than true diffusion restriction. Facilitated diffusion was observed in all cases, with no restricted diffusion detected [Table 1]. The mean ADC values were significantly higher in patients compared to controls (p < 0.001) [Table 2]. Final gold standard diagnoses in the patient group included: 3 normal cases (10%), 10 cases of tendinopathy (33.3%), 6 partial tears (20%), 6 complete tears (20%),4 cases inflammation (13.3%) and one patient with Haglund's syndrome (3.3%) [Table S2]. Comparing findings with DWI revealed 3 false positive cases diagnosed as normal by DWI. Regarding the type of pathology, DWI cannot differentiate between different types except for complete tear where discontinuity of the tendon is visible (6 cases). As regards correlation with gold standard, there was a statistically significant association between ADC values and gold standard diagnosis. ADC values were lower in patients with normal tendons and inflammation, progressively higher in tendinopathy, partial tears, and complete tears. Agreement between DWI/ADC findings and gold standard diagnosis was excellent ($\kappa = 0.925$, p < 0.001) [Table 3]. As regards ROC curve analysis, Receiver operating characteristic (ROC) analysis demonstrated that ADC values had excellent diagnostic performance distinguishing patients from healthy controls. The optimal cutoff value was 0.063×10^{-3} mm²/s, yielding a sensitivity of 100% and specificity of 96.67%, with an AUC of 1.00, P Value <0.001 [Table 4]. Subgroup ROC analysis provided cutoff values of 0.06, 0.49, 1.27, and 1.51 \times 10⁻³ mm²/s for differentiating inflammation, tendinopathy, partial tear, and complete tear, respectively. The combined use of DWI and ADC maps in detecting Achilles tendon pathology demonstrated a sensitivity of 100%, specificity of 75%, accuracy of 95%, positive predictive value of 78%, and negative predictive value of 100% [Table S3]. Our cases are illustrated in [Figure 1, 2, 3].

Elsheikh, et al **5763** | P a g e

Table (1): DWI and ADC findings among the patients group

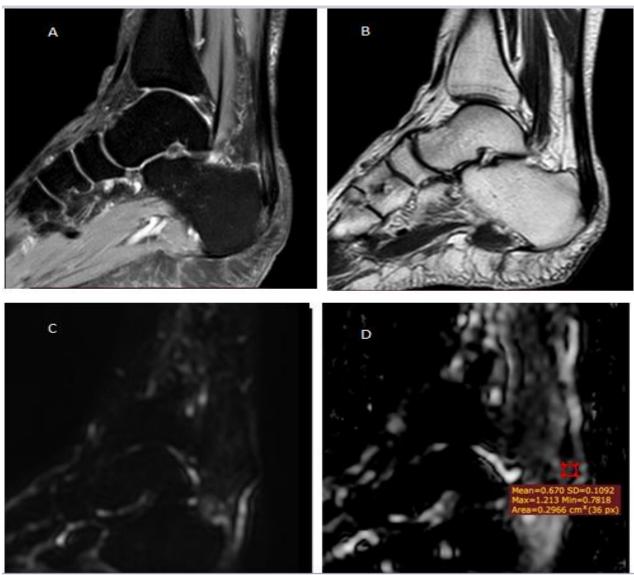
Variables (n. %)		Patients group	
		(n=30)	
DWI & ADC	No abnormal signal	0 (0%)	
	High signal	30 (100%)	
	Facilitated	30 (100%)	
	Restricted	0 (0%)	

Table (2): ADC value among the studied groups

Variables		Patients group	Control group	P
		(n=30)	(n=30)	Value
ADC value	$Mean \pm SD$	0.93 ± 0.51	0.05 ± 0.009	
	Range	(0.13 - 1.6)	(0.03 - 0.06)	< 0.001

^{*}Student T-test, Non-significant: P >0.05, Significant: P ≤0.05

Table (3): Association between ADC value and gold standard diagnosis among the studied participants


Types of pathology at Achilles tendon (n. %)	N (%)	ADC value x10 ⁻³ mm ² /sec Mean ± SD
Normal	33 (55%)	0.04 ± 0.22
Inflammation	4 (6.7%)	0.15 ± 0.02
Tendinopathy	10 (16.7%)	0.69 ± 0.06
Partial tendon tear	7 (11.7%)	1.29 ± 0.02
Complete tear	6 (10%)	1.57 ± 0.03
P value		<0.001

^{*}One way ANOVA test, Non-significant: P > 0.05, Significant: $P \le 0.05$

Table (4): ROC curve analysis of ADC value in differentiating healthy controls from patients

Variables	Cut	Sensitivity	Specificity	PPV	NPV	AUC	P
	point	(%)	(%)	(%)	(%)	(%)	Value
ADC value	0.063	100%	96.67%	96.77%	100%	1.00	< 0.001

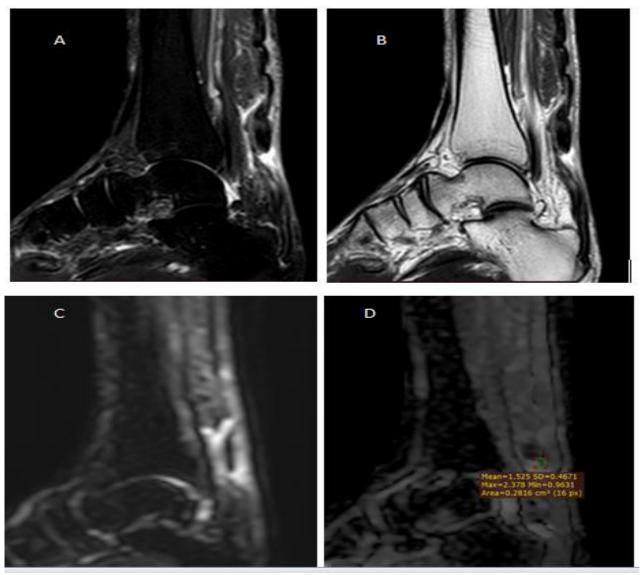

Elsheikh, et al 5764 | Page

Figure (1): 40-year-old male patient presented with posterior ankle pain associated with difficult walking. Image A (Sagittal PD fat-sat) and B (Sagittal T2WI) showing intrasubstance abnormal high signal intensity with mild thickening affecting the Achilles tendon, Intact fibrillar continuity of Achilles tendon along its length, no joint effusion, preserved bone marrow signal of the insertion site at calcaneus bone, normal bone marrow signal

of other tendons and ligaments. Image C: (Sagittal DWI) showing intra-substance abnormal high signal intensity and thickening of Achilles tendon. Image D (Sagittal ADC) showing intra-substance abnormal high signal intensity and thickening of Achilles tendon with ADC value of 0.67 x10-3 mm2/sec. Conclusion: Achilles tendinopathy, no associated DWI restriction.

Elsheikh, et al 5765 | Page

Figure (2): 48-year-old male patient presented with post traumatic posterior ankle pain and limitation of movement. Image A (Sagittal STIR) and B (SagittalT2WI) showing complete loss of the continuity of tendon Achilles fibers with fluid filled gap and fibers retraction. Image C (Sagittal DWI) showing abnormal high signal intensity with complete loss of the continuity of tendon

Achilles fibers and fluid filled gap and fibers retraction. Image D (Sagittal ADC) showing abnormal high signal intensity with complete loss of the continuity of tendon Achilles fibers and fluid filled gap and fibers retraction with ADC value of 1.525 x10⁻³ mm²/sec. Conclusion: complete tendon Achilles tear, No DWI restriction.

Elsheikh, et al 5766 | Page

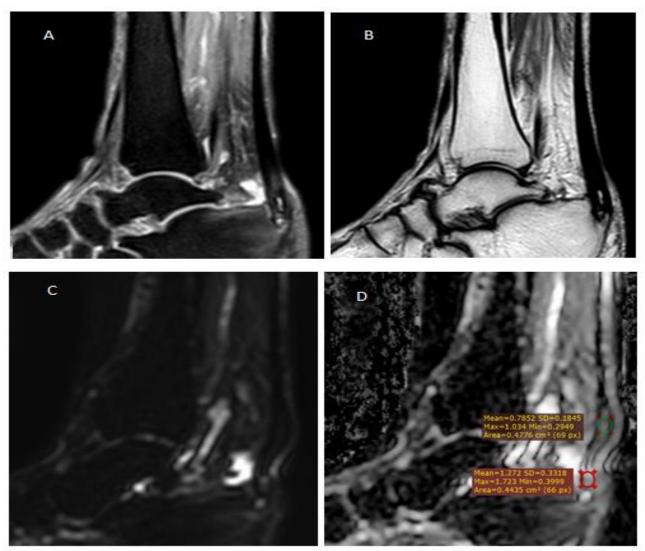


Figure (3): 29 year old male patient presented with posterior ankle pain associated with swelling and difficult walking, Image A (Sagittal PDWI fat-sat) and B (Sagittal T2WI) showing thickening and abnormal intrasubstance high signal intensity along its length along with another focal area of abnormal increased signal intensity at its insertion site displaying high SI at PDWI and T2WI, with partial loss of the fibrillar continuity, associated retro-calcaneal bursitis and postero-superior calcaneal exostosis. Image C (Sagittal DWI) showing thickening

DISCUSSION

Diffusion-weighted magnetic resonances imaging (DWI) and apparent diffusion coefficient (ADC) mapping, relatively recent additions to musculoskeletal MRI sequences, are being increasingly employed to enhance clinical diagnosis and decision-making. DWI and ADC are rapid, noninvasive and contrast-

and abnormal intra-substance high signal intensity along its length along with another focal area of abnormal increased signal intensity at its insertion site. Image D (Sagittal ADC) showing thickening and abnormal intra-substance high signal intensity along its length with ADC value of 0.78 x10⁻³ mm²/sec with another focal area of abnormal increased signal intensity at its insertion site with ADC value of 1.27 x10⁻³ mm²/sec. Conclusion: Haglund's syndrome is complicated by partial thickness tear, no DWI restriction.

free imaging techniques that provide both qualitative and quantitative information by analyzing the motion of water molecules within tissues. These methods offer insights into cell density, tissue microstructure, and organization, aiding in the differentiation between normal and pathological tissues [10]. DWI has gained popularity in musculoskeletal

Elsheikh, et al 5767 | Page

radiological imaging because its undeniable role in diagnosis and assessment of therapeutic response [11]. This study demonstrates that diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) mapping can effectively differentiate between healthy and pathological Achilles tendons (AT). The findings show significantly higher ADC values in pathological tendons compared to healthy controls, with ADC values correlating with the severity of tendon pathology. DWI and ADC mapping exhibited high diagnostic performance, with sensitivity and specificity values of 100% and 75%, respectively, suggesting that these imaging modalities may serve as valuable adjuncts to conventional MRI. In our study, gold standard findings revealed that 45% of the participants had Achilles tendon (AT) pathology. Tears (partial and complete) were the most common (40%), followed by tendinopathy (33.3%), inflammation (13.3%)and Haglund's syndrome (3.3%). Haglund's is a deformity accompanied by degeneration of the tissue of the Achilles tendon due to friction against the exostosis [12]. Non-insertional tendinopathy was the most frequent location of injury (63.3%), consistent with previous study [13]. The most common MRI features of injured tendons were thickened tendons with intratendinous high signal intensity on T2W images, tendon discontinuity with irregular or wavy contours, and fluid accumulation within the tendon sheath [9]. Routine MRI remains gold standard for assessment and diagnosis of musculoskeletal disorders, DWI can provide complementary information, improve lesion characterization, and guide earlier treatment decisions [15, 16]. In the present study, all patients demonstrated abnormal high signal intensity on DWI and ADC. When correlated DWI & ADC findings with the gold standard diagnosis, DWI can detect presence of pathology regardless of its nature in AT in cases of inflammation, tendinopathy and partial tear but correctly identified cases with complete tears (4 cases). Regarding the quantitative measurement of ADC values, we found that ADC values calculated for the healthy AT group were presented as mean and SD of 0.05 ± 0.009 $(\times 10^{-3}$ mm2/s). Our findings agreed with Al

Mulla et al. [2], who reported that the mean ADC value and SD of 0.091 \pm 0.116 (×10⁻¹ ³mm2/s) in healthy AT. We found a statistically significant higher ADC value between AT pathology and the healthy controls $0.93 \pm 0.51 \text{ (}\times 10^{-3} \text{mm2/s)}$ more over the ADC values were significantly associated with the type of pathology; lower values were normal observed in tendons inflammation, while higher values were associated with partial and complete tears, these was in agreement with Al Mulla et al. [2], they reported a significant correlation between ADC value and type of lesion that showed increased ADC value in patients with complete or partial AT tear in comparison to patients with inflammation or tendinopathy. Also, Khedr et al. [14] reported that higherpathologies are associated increased water molecule diffusion. In our study, DWI alone showed a good agreement with the gold standard among the studied patients in detecting AT pathologies, with a value that is highly significant (p value <0.001). When adding the ADC value, we reported sensitivity (100%) and specificity (96.67%) in discriminating healthy controls from patients and in discriminating types of AT pathology. Our findings were supported by Aydın et al. [9], who demonstrated that DWI and ADC provided higher sensitivity than routine MRI in detecting Achilles tendon rupture and partial tears. Similarly, Arora et al. [17] & Sharkas et al. [18] & Refaat et al. [19] reported that DWI and ADC mapping improved diagnostic performance evaluating ligament and tendon injuries. Conversely, Park et al. [20] found no significant diagnostic improvement with the addition of DWI, suggesting some controversy remains regarding its musculoskeletal applications. Only few papers were found covering this subject which led to lack of satisfactory comparison of our results with other studies. The current study has several strengths including its focus on the application of DWI and ADC mapping in Achilles tendon pathologies. The study provided quantitative reference values for ADC in both healthy and pathological AT that provided an objective measure that may reduce reliance on subjective visual

Elsheikh, et al 5768 | Page

assessment alone. Additionally, the study employed both qualitative and quantitative imaging analyses, increasing diagnostic confidence. Despite promising results, several questions remained. The reproducibility of ADC measurements across different MRI platforms and field strengths needs further investigations. Furthermore, the diagnostic accuracy of DWI in differentiating between overlapping conditions such as inflammation, tendinopathy, and partial tears remains to be fully clarified. Regarding the overall results of the current study, we recommend conducting future multicenter studies with larger sample sizes to validate these findings. Additionally, comparative studies using 3T MRI may provide further insights into the role of higher-resolution diffusion imaging musculoskeletal applications. Also, future research should evaluate whether DWI can detection of subclinical tendinopathy, especially in at-risk populations such as athletes or diabetic patients.

CONCLUSIONS

Our study demonstrated that DWI alone contributed limited value, its integration with ADC mapping significantly improved the detection and characterization of Achilles tendon pathology, particularly ADC can distinguish between normal tendons, inflammation, tendinopathy, partial tears, and complete tears. Both techniques showed excellent sensitivity, specificity, and accuracy compared with the gold standard diagnosis. We recommend incorporating DWI and ADC mapping into routine MRI protocols for Achilles tendon evaluation complementary tool to conventional imaging, enabling earlier and more accurate diagnosis and guiding better management strategies.

Limitations

This study had several limitations. First, it included a relatively small sample size from a single institution. Second, image quality was limited by the relatively low spatial resolution of DWI sequences. Finally, the study was conducted using a 1.5 Tesla MRI scanner; higher field strength (3T) could potentially improve spatial resolution and diagnostic performance.

Data Availability

The data supporting the findings of this study are available from the corresponding author upon reasonable request.

Supplementary files

Tables S1& S2 & S3

Author contribution

We acknowledge that all authors have contributed to the model and design, scrutiny and explanation of information, drafting or revising of the manuscript, and that they have permitted the manuscript as submitted.

Conflict of interest

None

Financial disclosure

None

REFERENCES

- 1. Elsheikh AM, Fouad SEM, Ibrahim SA, Alsowey AM. The added value of shear wave elastography in evaluation of the Achilles tendon in patients with type 2 diabetes mellitus. ZUMJ. 2025;31(5):2145–59.
- 2. AlMulla M, McGee A, Eustace S, & Rainford, L. Diffusion weighted magnetic resonance imaging of the Achilles tendon and related pathology: qualitative & quantitative investigation. Int J Foot Ankle, 2019; 3: 025.
- 3. Traweger A, Scott A, Kjaer M, Wezenbeek E, Scattone Silva R, Kennedy JG, et al. Achilles tendinopathy. Nat Rev Dis Primers 2025; 11(1): 20.
- 4. Vo TP, Ho GW, & Andrea J. Achilles tendinopathy, a brief review and update of current literature. Curr Sports Med Rep 2021; 20(9): 453-61.
- 5. Kuwada GT. Surgical correlation of preoperative MRI findings of trauma to tendons and ligaments of the foot and ankle. J Am Pediatr Med Assoc 2008; 98(5): 370-3.
- 6. Hodgson RJ, O'Connor PJ & Grainger AJ. Tendon and ligament imaging. Br J Radiol 2012; 85(1016): 1157-72.
- 7. Sarman H, Atmaca H, Cakir O, Muezzinoglu U, Anik Y, et al. Assessment of postoperative tendon quality in patients with Achilles tendon rupture using diffusion tensor imaging and tendon fiber tracking. J Foot Ankle Surg. 2015; 54:782-6.
- 8. Raya JG, Duarte A, Wang N, Mazzoli V, Jaramillo D, Blamire AM & Dietrich O. Applications of diffusion-weighted MRI to the musculoskeletal system. J Mag Reson Imaging 2024; 59(2): 376-96.
- 9. Aydin H, Kizilgoz V and Hekimoglu B. Is the quantitative diffusion-weighted MR imaging and ADC mapping with b-values of 50, 400, and 800sec/mm2 a reliable method for evaluation of

Elsheikh, et al 5769 | Page

- meniscal tears in the knee? Pol J Radiol 2011; 76:1-20.
- 10. Khoo M, Tyler P, Saifuddin A and Padhani A. Diffusion weighted imaging (DWI) in musculoskeletal MRI: A critical review. Skeletal Radiol. 2011; 40: 665-81.
- 11.Guirguis M, Sharan G, Wang J, & Chhabra A. Diffusion-weighted MR imaging of musculoskeletal tissues: incremental role over conventional MR imaging in bone, soft tissue, and nerve lesions. BJR Open, 2022; 4(1): 20210077.
- 12. Bakr HMA, Abdelfattah IS, Ali SIS. Functional outcome of 3 years follow up after mini-open tendo-Achilles splitting technique for excision of Haglund's deformity in non-athletes. ZUMJ. 2025;31(1):464–72.
- 13. Ibrahim NMA, & Elsaeed HH. Lesions of the Achilles tendon: evaluation with ultrasonography and magnetic resonance imaging. Egypt J of Radiol Nucl Med 2013; 44(3), 581-7.
- 14. Khedr SA, Hassaan M A, Abdelrazek NM, & yehia Sakr A. Diagnostic impact of echo planar diffusion-weighted magnetic resonance imaging (DWI) in musculoskeletal neoplastic masses using apparent diffusion coefficient (ADC) mapping as a quantitative assessment tool. Egypt JRadiol Nucl Med 2012; 43(2): 219-26.

- 15. Kumar Y, Khaleel M, Boothe E, Awdeh H, Wadhwa V, & Chhabra, A. Role of diffusion weighted imaging in musculoskeletal infections: current perspectives. Eur Radiol 2017; 27(1): 414-23
- 16. Ahmed MB, NASSEF HH & MAHA A. Role of diffusion weighted mri in characterization of musculoskeletal soft tissue tumors. Med J Cairo Univ 2021; 89(September): 1525-32.
- 17. Arora V, Malik S, Singh K. The role of diffusion- weighted magnetic resonance imaging in the evaluation of anterior cruciate and posterior cruciate ligament tears. Indian J Musculoskelet Radiol 2019;1(2):97-100.
- 18. Sharkas HG, Youssef Ekladious ME, Habib LA, & Sakr HM. Role of diffusion weighted imaging in assessment of anterior cruciate ligament pathology. Rom Med J 2024; 71(3).
- 19. Refaat MM, Farouk HM, El Refaei MA & Ibrahim El Hady A T. Diagnostic value of diffusion weighted MRI versus conventional MRI in the diagnosis of rotator cuff tears. Benha Med J 2024; 41(7): 135-44.
- 20. Park HJ, Lee S Y, Rho M H, Kim MS, Kwon HJ & Chung EC. Usefulness of the quantitative evaluation of diffusion-weighted MRI in the diagnosis of anterior cruciate ligament tears. J Magn Reson Imaging 2016; 44(5): 1116-22.

Table (S1): Site of the injury that detected by DWI among the patients group.

Var	Patients group		
		(n=30)	
Site	Non-Insertional	19 (63.3%)	
	Insertional	11 (36.7%)	

Table (S2): Final gold standard diagnosis among the patients group.

Variables (n. %)	Gold standard		
Normal	3 (10%)		
Tendinopathy	10 (33.3%)		
Partial tear	6 (20%)		
Complete tear	6 (20%)		
Inflammation	4 (13.3%)		
Haglund syndrome	1 (3.3%)		

Table (S3): Diagnostic accuracy of DWI and ADC in detecting total AT pathology

Sensitivity (%)	Specificity (%)	PPV (%)	NPV (%)	Accuracy
				(%)
100%	75%	78%	100%	95%

Citation

Elsheikh, A., Mohamed, L., khater, M. F., Zaiton, F., Assy, M. Added Value of Qualitative and Quantitative Diffusion Weighted Magnetic Resonance Imaging (DWI-MRI) in Assessment of Non neoplastic Achilles tendon Related Pathologies.. *Zagazig University Medical Journal*, 2025; (5761-5770): -. doi: 10.21608/zumj.2025.421930.4173

Elsheikh, et al 5770 | Page