Genotoxic effects of three different tested pesticides coumatetralyl, ivermectin and imidacloprid at sublethal dose on albino rats *Rattus norvegicus albinus*.

By

Rabieh K. Abou El Khear*, Ibrahim M. Ammar**, Amal A. Eisa**, Ragaa A. Eissa** and Nema M. El- Abd*

*Etay El- Baroud Agric. Research Station, A.R.C. **Faculty of Agric. Menofiya University

Received 1/7/2001, Accepted 27/7/2001

ABSTRACT

Three pesticides from three different chemical groups; coumatetralyl, imidacloprid and ivermectin were used at sublethal doses of 0.1 and 0.25 LD₅₀ to perform the genototoxic effects on albino rats Rattus norvegicus albinus by determining the total protein and nucleic acids (RNA and DNA) in brain, kidney, liver, heart and spleen. coumatetralyl (0.1 LD₅₀) caused significant increase in DNA quantity in all tested tissues except in spleen. Whereas 0.25 LD₅₀ caused highly significant increase in DNA quantity in brain and heart tissues and significant only in spleen. There were parallel results concerning RNA quantities with DNA obtained data especially upon using 0.25 LD₅₀ coumatetralyl caused genotoxic effect in treated rats. This was pronounced in highly significant values for protein content that was obtained upon treatment by 0.1 and 0.25 LD₅₀ in most compounds tested. The imidacloprid caused significant increase in DNA content in all tested tissues, except in the heart where it showed highly significant increase over the control value. Regarding RNA content estimated in various tissues upon

imidaclopid treatment, it showed severe reduction at both used doses, being significant in the liver, and highly significant in spleen and kidney. Total protein level showed highly significant decrease in all tested tissues under the two used concentrations. Ivermectin exerted its genotoxic effect on liver tissue, as it caused highly significant increase in DNA content under both concentrations. Whereas, RNA content showed highly significant changes being positive (increase) in heart tissue and negative (decrease) in kidney and spleen tissues upon using 0.1 LD₅₀ while 0.25 LD₅₀ caused highly significant decrease of RNA value in all tested tissues except liver tissue, where it showed highly significant increase in quantity.

INTRODUCTION

Pesticides are used extensively allover the world in plant protection. Egypt consumes 1-2% of the world production, as it was reported by Amr (1990). Those pesticides as pollutants reach the human body in daily diet along food chains, deposited and accumulated in adipose tissues (Morita et al, 1975) and (Mori et al, 1983). Anticoagulants cause death by internal haemorrehage. In general, all the anticoagulant rodenticides currently available are of the two chemical types, hydroxy coumarine or indane-dione derivatives (Meehan, 1984). The toxic effect of the anticoagulant results from their commutative effect. Besides they do not include symptoms that inhibit feeding on poisons bait until a lethal dose has been ingested (Rennison, 1974). Enan (1976) reported that Warfarin caused anemia and reduced prothrombin activity. Moreover, (Park et. al, 1980) cleared that anticoagulants, difenacoum and brodifacoum inhibited clotting factor synthesis. Besides, sub lethal doses of warfarin and coumatetralyl lead to development of microcytic anemia early at 24 hr of treatment and followed by macrocytosis and again by the reoccurrence of microcytosis with recovery of the treated rats (Shimaila, 1989). Confidor has a new mode ofaction. It has a flat aromatic molecule as shown in acariddine, which intercalates in the DNA base pair stack. Therefore, it could stabilize a shifted pairing in repetition sequence of bases, giving rise to genotoxic effects (Streisinger et al, 1966). Those genotoxic effects reconsidered among the most serous effects include heritable genetic disease, carcinogenicity and birth defects (Sherif et. al, 1990). Vertemic, the natural product produced by soil fungi fermentation and its mode of action in mammals is attributed to its effect on gamma amino buteric acid (GABA) receptors. Although, the most parsimonious explanation for how ivermectin works is that it specially increase membrane chloride ion permeability, there clearly other sites of action at which ivermectin affects either the host or target organism Lanakas and Gordon (1988).

The aim of this study is to assess the effect of sublethal doses of three pesticides, *Racoumin* coumatetralyl, *Vertimec* ivermectin and *Confidor* imidacloprid on total protein, RNA and DNA in different organs, liver, kidney, spleen, heart and brain in treated albino rats at sublethal doses.

MATERIALS AND METHODS

Tested pesticides: Three pesticides belonging to different groups and having different mode of action were tested. These are commatetrally as rodenticides, imidacloprid as insecticides and ivermectin as acaricides. They represent the main three chemical groups in large-scale use in the Egyptian environment at least for the last ten years. Sublethel dose (1/10 and $\frac{1}{4}$ LD₅₀) of these pesticides were used.

Tested animals: The male white albino rats (*Rattus norvegicus albinus*) each weighing 100 - 175 g were used in this study. They were obtained from the animal house of the High Institute of Public Health, Alex.Univ.The animals were fed on a diet, which consisted of bread, milk and crushed maize.

Methods of testing: The animals were divided into 7 groups, each group was 4 rats. The first and second groups were treated with 0.1 and 0.25 LD₅₀ of coumatetralyl, respectively. The third and fourth groups treated with 0.1 and 0.25 LD₅₀ of imidaeloprid. The fifth and sixth groups were treated with 0.1 and 0.25 LD₅₀ of ivermectin. The last group was treated with corn oil only as control. The control and the treated animals were sacrificed, then the brain, liver, kidney, heart and spleen were removed rapidly and cleaned. The tissues were homogenized in cold distilled water to a 20%(w/v) and frozen at -4° C. One milliliter of the homogenate was added to 8 ml of tetrachloroacetic acid (TCA), 10% solution. Precipitate formed was separated from the supernatant fluid by centrifugation at 2000 rpm for 5 min. The supernatant was used for protein, RNA and DNA determination. The protein content of the tissue hydrolyzates was determined using Behring Institute Clinical Reagent kit Weichselbaum (1946). The concentration of RNA in the prepared tissue hydrolyzate was measured as described by Clowick and Kaplan (1957). The concentration of deoxyribonucleic acid (DNA) of the prepared sample was determined by using the biphenyl amine method (Chris et. al, 1997).

Statistical analysis: All the data were calculated as means \pm SD and comparison between two groups was performed by student's t-test according to Motulsky (1987).

RESULTS AND DISCUSSION

Data presented in Table (1) clearly show the deleterious effect of coumatetralyl on nucleic acids (DNA & RNA) contents and total protein in liver, kidney, brain, heart and spleen of treated male albino rat at two doses (0.1 and 0.25 LD₅₀). Deoxyribonucleic acid content in liver tissues at 0.1 LD₅₀ treatment (0.960 µg / g tissue) showed an increase in quantity over the control value (0.610 μ g / g tissue). While, the concentration (0.25 LD₅₀) did not cause noticeable change compared to the untreated value (0.661 and 0.610 µg/g tissue). respectively. Despite the previous data concerning DNA content, the used rodenticide has execrated its inhibitory effects on male rat, due to its action on protein biosynthesis. Obvious values of total protein in liver tissues showed a highly significant increase over the control value. These results are direct indicator for liver function disturbance due to coumatetralyl treatment. This finding is in coherence with several previous reports (Eisa and Seleim, 1992) and (El-Sheikh et. al, 1993). Estimation of RNA contents in kidney, brain, heart and spleen tissues after two tested coumatetralyl doses showed significant decrease in spleen tissue at 0.1 LD₅₀ and highly significant at 0.25 LD₅₀ in liver, kidney and spleen tissues.

Toxic effects of ivermectin on nucleic acids and total protein in male albino rat are pronounced in all tested tissues as presented in Table (2). It is clear that DNA content in liver tissues showed higher values upon ivermectin treatment. The value is twice as much (1.26 μ g /g tissue) in rat treated with 0.1 LD₅₀ compared to 0.61 μ g / g tissue in untreated rats. This compound may act on DNA repair system and /or stimulate DNA replication. The other tissues at the above-mentioned concentrations did not show any significant variations over the control values. Higher concentrations that used (0.25 LD₅₀) did not have an impact on DNA quantity in all tested tissues except

Table (2): Genotoxic effect of ivermectin on nucleic acids (DNA & RNA) content (μg /g tissue) and total protein (mg/g tissue) in male albino rats different organs.

Significant at $p \le 0.05$ Highly significant at $p \le 0.01$

Table (2): Genotoxic effect of ivermectin on nucleic acids (DNA & RNA) content (μg /g tissue) and total protein (mg/g tissue) in male albino rats different organs.

Treatment	Parameters		Or	Organ		
		Liver	Kidney	Brain	Heart	Spleen
0.1 LD ₅₀	DNA	1.26±0.42**	0.67±0.045	0.62±0,160	0.88±0.070	0.93±0.02
	RNA	9.01±2.79**	6.25±0.262**	3.07±0.550	7.36±0.79**	3.15±0.20*
	Total protein	39.2±7.85**	41.41±3.88**	47.04±12.8**	58.85±3.28**	55.2±6.20**
0.25 LD ₅₀	DNA	0.96±0.05*	0.80±0.02	0.32±0.046	0.46±0.026	0.59±0.330
	RNA	14.38±0.33**	6.06±0.24**	1.20±0.390**	4.23 ±0.87	3.95±0.74**
	Total protein	53.37±1.27**	66.73±16.6**	55.68±4.80**	85.19±13.7**	121.27±1.1**
Control	DNA	0.61±0.04	0.55±0.03	0.644 ±0.13	0.76 ±0.14	1.092±0.42
	RNA	4.56±0.75	12.15±0.98	3.55±0.490	3.37 ±0.62	9.070±1.35
	Total protein	130.65±5.6	155.5±13.5	152.76±6.33	108.8±8.9	111.6±1.10

* Significant at $p \le 0.05$ ** Highly significant at $p \le 0.01$

in liver. It showed a significant increase over the control value (0.61µg/g tissue) as it was 0.96 µg/g tissue. This increase in DNA content could be due to arrested and /or polyploidyin chromosomal set, especially when the quantity of estimated DNA equal twice the quantity of its correspondent in control. This conclusion was put forth as several investigations that used different pesticides to detect their influences on chromosomal aberrations (Abd El-Baset and El-Nahas, 1985 and Fayed et. al. 1989). Regarding the effect of ivermectin on RNA quantity of different tissues showed an overall reduction, as its synthesis is a DNA dependent process. Therefore, significant decrease in RNA followed ivermictin treatment is expected due to the decrease of DNA synthesis. Similar results for nucleic acids reduction upon pesticides treatments in different organs were recorded by EL – Elaimy and Abd El-Nabi (1990). They attributed this finding to the inhibition of the de-novo purine synthesis. Moreover, this reduction in nucleic acids content could be due to higher levels of nucleases activity as this reflects the intercede for nucleic acids catabolism. Estimated total protein in all tested tissues whether upon using 0.1 or 0.25 LD₅₀ of Ivermictin came to be inhibited as it is presented in Table (2). In fact this finding is in a good agreement with Abd El-Baset and El – Nahas (1985), Eisa and Eissa, (1992) and Eissa & El – Sheikh, (1993). Severe reduction of total protein in treated tissues was in parallel with significant reduction in total estimated RNA. This finding would indicate that, Ivermictin exerts its action on RNA synthesis rather than protein biosynthesis system. These results were supported by Kim et al (1998).

Data presented in Table (3) clearly show the deleterious effects of Imidacloprid on nucleic acids (DNA& RNA) contents in the tested tissues at the above two doses. Estimation of DNA showed increase in all tested tissues over the control values. This increment appeared to be significant in liver, kidney and heart

Table (3): Genotoxic effect of imidacloprid on nucleic acids (DNA & RNA) content (µg /g tissue) and total protein (mg/g tissue) in male albino rat different organs.

Treatment			Organ	u		
	Farameters	Liver	Kidney	Brain	Heart	Spleen
0.1 LD ₅₀	DNA	1.09 ±0.050	1.45±0.024*	1.15±0.270	2.10±0.6 70*	2.80±1.380
	RNA	2.49±0.200*	6.12 ±0.6 6**	2.93±0.22 0*	6.81±2.830**	2.62±0.740* *
	Total protein	37.19±10.1**	36.89±6.64**	38.19±3.43**	38.59±5.53**	104.4±7.90**
0.25 LD ₅₀	DNA	1.07±0.099*	1.066±0.02*	1.3±0.460	2.05±0.010**	2.600±0.98
	RNA	2.92±0.09 0*	9.460±0.58 *	1.4 ±0.03**	5.52±0.080**	4.580±1.07**
	Total protein	52.52±9.27**	55.00±16.6*	48.0±840**	69.59±6.14**	60.66±4.33**
Control	DNA	0.61±0.040	0.55±0.030	0.644 ±0.13	0.76 ±0.140	1.090±0.42
	RNA	4.56±0.750	12.15±0.98	3.550±0.490	3.37 ±0.620	9.070±1.35
	Total protein	130.65±5.6	155.5±13.5	152.76±6.33	108.8±8.90	111.6±1.10

* Significant at $p \le 0.05$ ** Highly significant at $p \le 0.01$

tissues. DNA values in treated rats appeared to be twice as much as those in their respective untreated rats. Regarding RNA values presented in the same Table, Imidacloprid caused highly significant decrease in RNA content in Kidney and spleen tissues when used at 0.1 LD₅₀. However, highly significant increase appeared in heart tissue. On the contrary these were significant decrease in RNA content in the rest of tested tissues. Total protein quantity in all tested tissues exposed to 0.1 LD₅₀ appeared to be at the same low value of 36.9, 37.18, 38.19 and 38.59 mg/g tissue in Kidney, liver, brain and heart tissues, respectively. They all showed highly significant decrease despite higher value in spleen tissue (104.4 mg/g tissue). Higher concentration of 0.25 LD₅₀ showed the same deleterious effect on protein biosynthesis hence was scoring lower level than that in control. This observation is in good agreement with Eisa and Eissa, (1992), Eissa and El - Sheikh, (1993), El Sheikh et al, (1993) and Chris et al, (1997). Lower level of RNA in treated tissues could be due to either DNA damage or toxic effects of the Imidacloprid exerted on transcripitonal enzymes. In fact, it has been reported before by Eisa and Eissa (1992) that Imidacloprid cause damage to genetic material to non-target, worm blooded animals.

REFERENCES

- Abd El Baset, S. and S. El Nahas (1985): Effect of zomepirac sodium after acute and subacute treatments on male laboratory rats: Effects on Nucleic acids. Egypt J. Genet. Cytol., 14:21 –26.
- Amr, N.M. (1990): Project of pesticide intoxication, Egypt Kasr El- Aini Faculty of Medicine, Cairo Univ., Egypt.

- J.Pest Cont. & Environ. Sci. 9(3): 13-26 (2001)
- Chris, C.;S. Ralph and M. Petras (1997): Genotoxicity of selected herbicides in *Rana catesbiana tadpoles* using the alkaline single cell gel DNA electrophoresis (COMET) assay. Envi. And Mole. Muta., 29 (3): 277-288.
- Clowick, S.P. and N.O. Kaplan (1957): Method in Enzymology. Clowick and kaplan Eds., Vol. III, Academic Press, New York p.73.
- Eisa, A.A. and R.A. Eissa (1992): Genotoxic effects of cyanophos treatment on albino mice *Mus musculus* L.parents and their progenies. J. Egypt, Soc. Toxicol., 9: 17-21.
- Eisa, A.A. and Z.M. Seleim (1992): Effect of alphamethrin on hepato-renal function in male albino mice *Mus musculus*. J. Egypt. Soc. Toxicol., 9: 23-27.
- Eissa, R.A. and A.E, El Sheikh (1993): Genotoxicity of the systemic insecticides confidor in male albino mice: a Nuclic acids and protiens in liver, brain and kidney as an index. Menofia, Agric. Res., 18 (3) 1637 –1650.
- El- Elaimy, I.A. and S.E. Abd El- Nabi (1990): Influence of thiolo pesticide induced intoxication IV. Effect on nuclic acids metabolism. J. Egypt. Soci. Toxicol., 5: 15-20.
- El- Sheikh, A.E.A.; I.M.A. Ammar and R.A. Eissa (1993): Genotoxicity of systemic pesticides confidour in male albino mice. b.blood serum enzymes as an index. J. Pest Control., 5 (2): 75 89.

- Enan , E.E. (1976): The chemical control of rodents with certain rodenticides. M Sc. Thesis. Pesicide Chem.Dept. Fac. Agric., Alex. Univ., Egypt.
- Fayed, A.N.; A. S. Mandour; R.M. Sherif and A. S. Shawky (1989): Genotoxic effect of the amitraz and deltamethrin (Rup 987) insecticides on root-tip cells of vicia faba. Egypt. J. Genet. Cytol., 18: 107 119.
- Kim, S. G.; J.Y. Cho; Y.S. Chung; E.T. Ahn; K.Y. Lee and Y. B. Han(1998): Suppression of xenobiotic metabolizing enzyme expression in rats by acriflavine, a protein kinase C inhibitor, effects on epoxide hydrolase glutathione S- transferase, and cytochrome p. 450 Drug Metabolism and Disposition, 26: 66-72.
- Lanakas, G.R. and L.R. Gordon (1988): Toxicity of Ivermectin c.f. William, C.C. (1989). Ivermectin and Abamictin 1st Ed .pp: 101-112.
- Meehan, A.P. (1984): Rats and Mice, Their biology and control. Rent. Kil. Lim. Felcourt, East Grinstead, W. Sussex, R.H19 STY. pp: 383.
- Mori, Y.; K. Masanori; O. Ercuko and O. Toshihiro (1983):

 Levels of PCBs and organochlorine pesticides in
 human adipose tissue collected in Enime prefecture.

 Bull. Environm. Contam. Toxicol., 30: 74-79.

- Morita, M.; S. Minura and G. Oni, Yagyu (1975): A systemic determination of chlorinated benzenes in human adipose tissue. Environ. Pollut. 9: 175-179.
- Motulsky, H.I. (1987): T. eas e, (tm) T- tests with ease, ISI. Software. Institute for Scientific Information.
- Park, K.B.; J.B. Leck and A. M. Breckenridge (1980): The dose-dependent effect of warfarin on vitamin K metabolism and cloting factor synthesis in the rabbit. Biochem. Pharmcol., 29: 1601-1602.
- Rennison, B.D. (1974): Field trials of calciferol against warfarin resistant infestations of norway rat *Rattus norvegicus berki* J. Hyg. (Camb)., 73:361-367.
- Sherif, R. M.; A. M. Fayed; A.S. Mandour and A.A. El Feshawi (1990): Mutagenic and teratogenic activity of amitraz and deltamethrin on albino rats *Rattus norvegicus*. Egypt J.Appl. Sci., **5:** 81-93.
- Shimaila, A.M.A. (1989): Effect of some additives on the toxicity of certain rodenticides against white albino rats fed on different diets. Ph.D.Thesis High Inst. Pub. Health, Alex. Univ.
- Streisinger, G.Y.; J. Emrich; A. Neuton; E. Tsugita and M. Inouye (1966): Cold Spring Harbor Symp. Quant. Biol., 31: 77-84.
- Weichselbaum, C.T.E. (1946): An accurate and rapid method for the determination of protiens in small amounts of blood serum and plasma. Amer, J. Clin. Path. Technical Section, 10 (2): 40-9.

الملخص العربي

التأثيرات السامة و الوراثية لبعض مبيدات الآفات على الفأر الألبينو

ربيع كامل أبو الخير* إبراهيم محمود عمار ** آمال عبد العزيز عيسى ** رجاء عبد العزيز عيسى ** نعمة محمد العبد * معهد وقاية النباتات - محطة البحوث الزراعية إيتاى البارود ** كلية الزراعة شبين الكوم - قسم مبيدات الأفات

تتواجد بقايا مبيدات الأفات في غذاء الحيوان والإنسان سواء كان عبر سلسلة الغذاء أو بطرق أخرى. ولقد ثبت تأثيراتها الضارة على صحة الإنسان والحيوان. تم اختبار ثلاثة مبيدات من ثلاثية مجموعات مختلفة - كوماتتراليل (هيدروكسيد الكومارين) ، اميداكلوبرايد (نيتروميتلين) و الإفيرمكتين عبارة عن أحد المشابهات للأبامكتين وهو في الأصمل مركب طبيعي (ماكروسيكليك) منتج بواسطة الإستربتوميسيس. أستخدم الفار الأبيض لدراسة التأثيرات الضارة على الأحماض النووية RNA, RNA وكمية البروتين الكلى في عدة أعضاء مختلفة هي المخ - القلب - الكبد - الكلى والطحال. وكانت النتائج كما لأنسجة المختبرة فيما عدا الطحال. أدى استخدام ٢٥ ر ، الجرعة النصف مميتة إلى إحداث نقصا في أنسجة القلب والمخ والطحال. مما يجدر الإشارة إليه توجد علاقة طردية بين كمية الحمض النووي الديوكسي ريبوز والحمض النووي الريبوزي خاصة عند استخدام ٢٥ ر ، الجرعة النصف مميتة سبب المبيد كوماتتراليل ضرر للمادة الوراثية في الفئران المعاملة به الجرعة النصف مميتة المعنوية في محتوى البروتين الكلى عند التركيزين المستخدمين والتي أدت إلى قيم عالية المعنوية في محتوى البروتين الكلى عند التركيزين المستخدمين (ار ، ٢٠ ٢ ،) الجرعة النصف مميتة في معظم الإنسجة.

ظهرت زيادة معنوية في محتوى ال DNA في جميع الأعضاء المختبرة ، وكانت أعلاها في الطحال وذلك عند استخدام ١٠ أو ٢٥ ، الجرعة النصف مميتة من الإميداكلوبرايد كما أن أنسجة القلب أظهرت زيادة عالية المعنوية. أدت المعاملة بمبيد الإميداكلوبرايد إلى انخفاض شديد في محتوى RNA في جميع الأعضاء المدروسة خاصة في الكبد والطحال وكذا أدى النخفاض كبير في كمية البروتين الكلي. أدى استخدام المبيد إفر مكتين إلى زيادة معنوية جدا في محتوى الحمض النووي الريبوزي سجل جدا في محتوى الحمض النووي الريبوزي سجل زيادة في نسيج القلب وانخفاض في نسيج أنسجة الكلي و الطحال بعد استخدام ١١ ، الجرعة النصف المميتة إلى انخفاض معنوي في قيمة الحمض النووي الريبوزي فيما عدا أنسجة الكبد التي سجلت زيادة معنوية جدا . ظهر انخفاض معنوي جدا في كمية البروتين الكلي في جميع الأعضاء المختبرة عند التركيزين المستخدمين للافر ميكتين فيما عدا أنسجة الطحال بعد معاملة الفار ب ٢٥ ، ٥ ر ، الجرعة النصف مميتة .