# Comparative toxicity of four pyrethroid insecticides against red palm weevil, *Rhynchophorus ferrugineus* (Olivier) under laboratory conditions

By

### M. M. Abo-El-Saad, A.M. Ajlan, M.S. Shawir, K.S. Abdulsalam and M. A. Rezk

Plant Protection Dept., College of Agricultural and Food Sciences, King Faisal University.

Received 25/6/2001, Accepted 25/7/2001

#### **ABSTRACT**

Field strain of different stages of Rhynchophorus ferrugineus were collected from Al-Hassa, in Eastern Province, Saudi Arabia. Four different pyrethroid insecticides were evaluated against larval and adult (male & female) stages of R. ferrugineus (Olivier) under laboratory conditions. All stages 'were exposed to the treated sugarcane pieces in different concentrations of the following synthetic pyrethroids; permethrin (Type I), cypermethrin, deltamethrin and fenvalerate (Type II). Percent mortality of each stage was recorded after 24 and 48 hr of insecticide exposure. The data showed that cypermethrin was more potent after 24 hr when compared to the other insecticides against males and females in the order of cypermethrin > permethrin > deltamethrin > fenvalerate. By increasing exposure time for the insecticides up to 48 hr, permethrin exhibited knockdown effect on both male and female adults, since the LC<sub>50</sub> value was increased from 52.4 ppm at 24 hr to 175.3 at 48 hr for males and from 85.1 ppm to 147.7 ppm for females. In conclusion, values of LC<sub>50</sub> revealed that cypermethrin were the most effective synthetic pyrethroid on male and female adults

after 24 hr when compared to the other compounds. Moreover, the results were discussed in view of structure-activity relationship of these compounds and their insecticidal activity against red palm weevil.

#### INTRODUCTION

Red palm weevil, Rhynchophorus ferrugineus (Olivier), invaded Qatif in Estern region of Saudi Arabia in the mid-1980's. The weevil has expanded its range very rapidly (Gush, 1997; Abraham et al., 1998 and Ajlan et al., 2000). It causes severe damage to date palms and threat the date palm which affect the dates industry. The control management of red palm weevil was found to be very difficult due to living nature of the larvae, effective methods and critical time to discover the beginning of infestation. Current tactics employed to manage the weevil are largely based on insecticide applications. Insecticides are applied as preventive and curative to limit the spread of weevils (Abuzuhairah et al., 1996). The recent researches have focused on integrated pest management (IPM) involving surveillance, pheromone lures, cultural control and chemical treatments for the management of R. ferrugineus (Abraham et al., 1998). Other techniques such as sanitation, baited traps of red palm weevils have been applied in infested areas and where proved by using in combination with chemical pesticides in field (Abraham et al., 1989; Moural et al., 1995). The choice of the chemical pesticides regularly being used in the field after laboratory test on promising compounds. For example, Abraham et al. (1975) evaluated seven insecticides for controling of red palm weevil. They reported that dichlorvos at 0.25%, methyl-Odemeton, phosphamidon and arprocarb at 0.5%, trichlorphon and malathion at 1.0% and parathion at 2.0% gave 100% mortality Abraham and Vidyasagar (1992), seventh day.

teported that insecticides such as chlorpyrifos, endosulfan and methiothion at 0.1% are recommended for red palm weevil control. In addition, Cabello et al. (1997), concluded that imidacloprid (Confidor) may be used to control all instars of R. ferrugineus larvae. Furthermore, Ajlan et al. (2000) suggested that a mixture of pirimiphos-methyl and either oxydemeton-methyl or trichlorphon is suitable to control the larval and adult stages of R. ferrugineus.

The aim of the present work is to evaluate certain synthetic insecticides against *R. ferrugineus* stages as an attempt to find out a promising insecticide to be used in the field as one angle of integrated pest management.

#### MATERIALS AND METHODS

**Insect:** Different stages of *R. ferrugineus* were collected from the highly infested palm trees in AL-Hassa Eastern Province fields of Saudi Arabia.

Chemicals: Sumicidin (fenvalerate) 20% EC {(RS)- α-cyano-3-phenoxybenzyl (RS) -2 - (4-chlorophenyl) - 3-methylbutyrate}; Ambush (permethrin)10%EC {3-phenoxybenzyl (1RS)-cis,trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclo- propane-carboxylate}; Decis (deltamethrin) 10% EC {(S)- α-cyano-3-phenoxybenzyl (1R,3R)- 3- (2,2-dibromovinyl) - 2, 2 - dimethyl-cyclopropane-carboxylate}; Alpha-cide (cypermethrin) 50 EC } (±)α-cyano-3-phenoxybenzyl (±)- cis,trans-3- (2,2-dichlorovinyl) -2,2-dimethylcyclo-propanecarboxylate}. All the insecticides were purchased locally from Alwaha Co. and used for the susceptibility test.

Susceptibility test: Laboratory trials against adults (male & female) and larval instars of R. ferrugineus were conducted in glass jars (500 cc) to determine the toxicity parameters according

to Ajlan et al. 2000. Small pieces of sugarcane stem with equal sizes (5cm long X 0.75 cm in diameters) were soaked for 1 min in different dilution of the insecticides. Five larvae ~ 4-5 weeks old (5 cm long) and/or adults (male & female) were exposed to the treated sugarcane pieces in the glass jars, covered with perforated plastic cap. Similar pieces of sugarcane stem were soaked in distilled water and served as control. In order to assess the effect of insecticides, the insects were examined after 24 and 48 hours from exposure and the percentages of mortality were recorded. An insect was considered dead if it neither moved nor responded by reflex movement, when touched. Every insecticide concentration was replicated three times. Normal Equivalent Deviates; Chi Squares; 50% and 95% lethal concentrations, and their Fiducial limits, were calculated according to Finney (1971).

#### RESULTS AND DISCUSSION

Comparative Toxicity: Toxicity of certain synthetic pyrethroid insecticides against different stages of R. ferrugineus was determined as shown in Tables (1 and 2) represented by  $LC_{50}$  values. The data showed that cypermethrin was more toxic compared to the other tested pyrethroids in the following order; cypermethrin > permethrin > deltamethrin > fenvalerate after 24 hr of insecticide exposure on both insect males and females. However, deltamethrin was more potent than cypermethrin and other compounds against larvae. The  $LC_{50}$  values for larvae were 71 ppm and 139.1 ppm for deltamethrin and cypermethrin, respectively, while it was more than 1600 ppm for both permethrin and fenvalerate. The  $LC_{50}$  value of deltamethrin for larvae was 24.6 ppm after 48 hr whereas the values for cypermethrin, fenvalerate and permethrin were 31.85, 291.9 and 517.5 ppm, respectively.

On the other hand, the LC<sub>95</sub> values of the tested insecticides against R. ferrugineus are plotted as shown in Fig. (1,2 and 3). The LC<sub>95</sub> values were observed to depend on the type of insecticide, insect stage, sex and exposure time of insecticide. Thus, tested insecticides against males showed their effect in the following order; cypermethrin> fenvalerate > permethrin > deltamethrin after 24 hr of insecticide exposure, where the LC<sub>95</sub> values were 177.2, 497.3, 1656 and 3687 ppm, respectively. After 48 hr, the order of insecticide toxicities were cypermethrin > permethrin > deltamethrin > fenvalerate. While after 72 hr, the order was changed by cypermethrin > permethrin = deltamethrin > fenvalerate . Furthermore, the same manner could be observed by effecting of these insecticides against females and larvae. In general, the results clearly showed that cypermethrin was a better synthetic pyrethroids against all stages of R. ferrugineus. Suggesting, cypermethrin could be a useful insecticide in implication with tactic strategy of integrated pest management.

In addition, the data revealed a knockdown effect of some of these insecticides against R. ferrugineus by increasing exposure time of insect to these insecticides (Tables 1 and 2). In the case of cypermethrin against females, the data showed that LC<sub>50</sub> after 24 hr was 25.1 ppm and it was increased to 55.19 ppm after 48 hr. These data could be explained by the phenomenon so-called knockdown in which the insect could get recovery by increasing the activity of detoxificating enzymes such as mixted function oxidases and cytochrome P450 monooxygenases (Feyereisen, 1999). However, cypermethrin showed effect knockdown on larva. Furthermore, permethrin dramatically showed knockdown effect as shown in Tables (1) and 2) against males and females since, the value of LC<sub>50</sub> increased from 52.4 to 175.3 ppm for adult males and from 85.1 to 147.7 ppm for females.

#### Abo El-Saad et. al.

Table (1): Effect of some pyrethroid insecticides on R. ferrugineus

after 24 hr of exposure.

| afte          | er 24 hr o      | i exposure.            |                                               |      |
|---------------|-----------------|------------------------|-----------------------------------------------|------|
| Insecticide   | Life<br>Stage   | LC <sub>50</sub> (ppm) | Regression of<br>N.E.D (Y)<br>on log dose (X) | P**  |
|               | 34.1.           | 41.5 (36.1-47.7)*      | Y = -4.2 + 2.6x                               | 0.43 |
| Cypermethrin  | Male            | 25.1 (2.6-196.7)       | Y = -2.5 + 1.8x                               | 0.67 |
|               | Female<br>Larva | 139.1 (26.6-460.3)     | Y = -3.2 + 1.5x                               | 0.01 |
| D. It attacks | Male            | 85.6 (64.0-114.9)      | Y = -1.9 + 1.0x                               | 0.23 |
| Deltamethrin  | Female          | 192.3 (114.2-263.0)    | Y = -3.3 + 1.5x                               | 0.63 |
|               | Larva           | 71.0 (54.8-91.8)       | Y = -1.9 + 1.1x                               | 0.01 |
| Fenvalerate   | Male            | 135.8 (118.8-155.2)    | Y = -6.2 + 2.9x                               | 0.65 |
| relivaterate  | Female          | 238.1 (32.7-1953.7)    | Y = -1.9 + 0.6x                               | 0.91 |
|               | Larva           | >1600                  |                                               |      |
| Permethrin    | Male            | 52.4 (39.1-70.5)       | Y = 1.9 + 1.1x                                | 0.29 |
| Cincum        | Female          | 85.1(70.3-103.2)       | Y = -4.4 + 2.3x                               | 0.72 |
|               | Larva           | >1600                  |                                               |      |

<sup>\*95%</sup> Fiducial Limits

Table (2): Effect of some pyrethroid insecticides on R. ferrugineus after 48 hr of exposure.

| 48 nr 01 | exposure.                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Life     | LC <sub>50</sub> (ppm)                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | _                                                                       | * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5.45-    |                                                                         | on log dose (X)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Male     | 21.7 (3.2-138.5)*                                                       | Y = -3.0 + 2.3x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| _        |                                                                         | Y = -5.5 + 3.1x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          | 31.85 (2.7-344.9)                                                       | Y = -2.5 + 1.6x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |                                                                         | Y = -1.3 + 1.0x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1 - ·    |                                                                         | 1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Male     |                                                                         | 1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Female   |                                                                         | 1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Larva    |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Male     |                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Female   |                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1        | 517.5 (440.4-608.3)                                                     | Y = -4.8 + 1.8x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          | Male Female Larva Male Female Larva Male Female Larva Male Female Larva | Life         LC <sub>50</sub> (ppm)           Stage         LC <sub>50</sub> (ppm)           Male         21.7 (3.2-138.5)*           Female         55.19 (12.6-240.3)           Larva         31.85 (2.7-344.9)           Male         46.9 (33.2-66.5)           Female         199.9 (147.8-272.1)           Larva         24.6 (17.8-33.7)           Male         54.7 (44.5-67.3)           Female         125.8 (99.7-158.9)           Larva         291.9 (200.2-425.2)           Male         175.3 (78.5-408.9)           Female         147.7(102.6-214.0)           127.5 (440.4 608.3) | StageN.E.D (Y)<br>on log dose (X)Male $21.7 (3.2-138.5)^*$<br>Female $Y = -3.0 + 2.3x$<br>$25.19 (12.6-240.3)$<br>$25.19 (12.6-240.3)$<br>$25.19 (12.6-240.3)$<br>$25.19 (12.6-240.3)$<br>$25.19 (12.6-240.3)$<br>$25.19 (12.6-240.3)$<br>$25.19 (12.6-240.3)$<br>$25.19 (12.6-240.3)$<br>$25.19 (12.6-25)$<br>$25.19 (12.6-25)$<br> |

<sup>\* 95%</sup> Fiducial Limits

<sup>\*\*</sup>Probability

<sup>\*\*</sup> Probability

A unique characterestic of pyrethroid insecticides is the process of konckdown, which can be defined as rapid immobilization of insect after exposure to the insecticide and often recover occurred after knockdown. Different structural and physical requirements appear to determine the knockdown and killing potency of pyrethroids (i.e. some compounds are effective knockdown agents and relatively poor toxin while other are ineffective knockdown but highly toxic). Therefore, it has been hypothesized that knockdown results from the excessive stimulatory effect of pyrethroids on sensory nerves and sense organs located close to the surface disruptin the normal information flow towards the central nervous system (Leahey, 1985).

Structure-activity relationship: Table (3) summarized the structure-activity relationship between permethrin, cypermethrin, dletamethrin and fenvalerate against R. ferrugineus. The data showed significantly different susceptibility toward males, females and larvae. Cypermethrin was more toxic against males when compared to the other compounds in the following order; cypermethrin > permethrin > deltamethrin > fenvalerate as expressed by LC<sub>95</sub> after 48 hr of insecticide exposure. It seems that the major achievement was the enhanced activity accompanying incorporation of a cyano group on the alpha carbon of the 3-phenoxybenzyl alcohol esters as seen in cypermethrin, however, the activity was decreased by replacing cyno group by hydrogen atom in the same position to give permethrin compound. Moreover, by replacing the dichorovinyl group in cypermethrin by dibromovinyl group resulted in deltamethrin, the insecticidal activity was decreased after 48 hr. The presence of a cyclopropane ring next to the ester linkage was not essential for high insecticidal activity as in fenvalerate. Furthermore, the insecticidal activity of such insecticides on female insects was found to have the following order of toxicity;

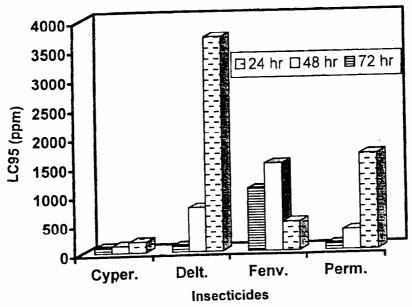



Fig. (1): Lethal concentration to 95% of different synthetic pyrethroids against males of R. ferrugineus at different exposure time.

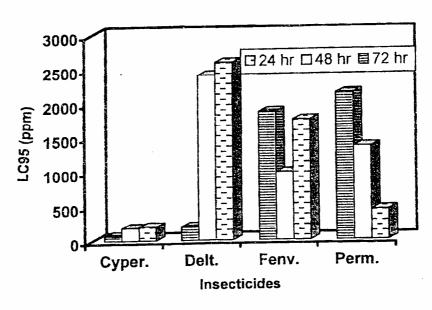



Fig. (2): Lethal concentration to 95% of different synthetic pyrethroids against females of *R. ferrugineus* at different exposure time.

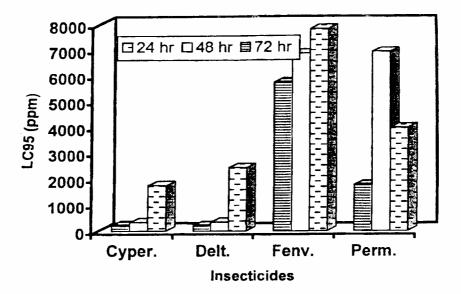
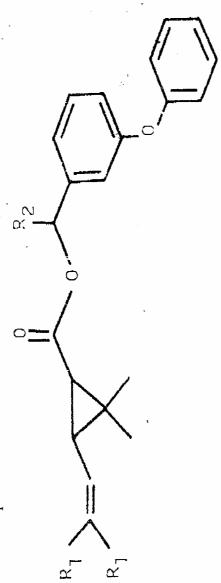




Fig. (3): Lethal concentration to 95% of different synthetic pyrethroids against larvae of R. ferrugineus at different exposure time.

cypermethrin > fenvalerate > permethrin > deltamethrin, whereas the insecticidal activity on larvae was cypermethrin > deltamethrin> fenvalerate > permethrin. It could be concluded that cypermethrin was the most effective one against all stages of *R. ferrugineus*.

The synthetic pyrethroids might play an important role in control *R. ferrugineus*. The success of the synthetic pyrethroids which representative the major class of insecticides for crop protection, is due to their high potency and selectivity as nerve poisons. Moreover, all pyrethroids are lipophilic compounds and almost insoluble in water. Because of high lipophilicity, cuticular peneteration in such insect is favored and retention on the cuticle of plant surfaces minimizes systemic movement. Their strong lipophilic character suggests that they would be strongly adsorbed in most soils and not leached readily from the point of application. Therefore, ground and surface water will receive contamination only by direct application and/or by the

Table (3): Structure-activity relationship of certain synthetic pyrethroids against red palm weevil after 48 hr of insecticide exposure.



 $R_1 = C1$  or Br  $R_2 = CN$ 

|              |          | Cyno group | Dichlorvinyl   dibromviny | dibromvinyl |      | LC95 (ppm) |       |
|--------------|----------|------------|---------------------------|-------------|------|------------|-------|
|              | 4        |            | •                         |             | Male | Female     | Larva |
| Permethrin   |          | •          | +                         | 1           |      | 1361 691   | 6918  |
| Cypermethrin | · =      | +          | +                         | ı           | 116  | 184        | 317   |
| Deltamethrin | <b>=</b> | +          | ı                         | +           |      | 2409       | 323   |
| Fenvalerate  | I II     | +          | 1                         | ı           |      | 586        | 6855  |
|              |          |            |                           |             |      |            |       |
|              |          |            |                           |             |      |            |       |

erosion of treated soil and by diffusion or leaching (Leahey, 1985). For above reasons it may be possible to suggest that pyrethroids are suitable insecticides in control *R. ferrugineus* in palm trees.

#### ACKNOWLEDGEMENT

The authors would like to thank the Ministry of Agriculture and Water, Kingdom of Saudi Arabia, for providing the facilities to carry out the present study.

#### REFERENCES

- Abraham, V.A.; K.M. Abdulla koya and C. Kurian. (1975). Evaluation of seven insecticides for control of red palm weevil, *Rhynchophorus ferrugineus*. J. Plant Crops. **3:**71-72.
- Abraham, V.A.; K.M. Abdulla koya and C. Kurian. (1989). Integrated management of red palm weevil *Rhynchophorus ferrugineus*. In coconut gardens. Paper presented at the 7 th Symbosium on Plantation Crops, Coonoor, India, 16-19 October 1986. Journal of Plantation Crops 16, supplement, 159-162.
- Abraham, V.A., M.A. Alshnaibi; J.R. Faleiro; R.A. Abozuhairah and P.S.P.V. Vidyasagar. (1998). An Integrated management approach for red palm weevil *Rhynchophorus ferrugineus* Oliv. A key pest of date palm in the Middle East Journal of Agriculture Sciences Sultan Qaboos University, 3: 77-83.

- Abraham, V.A. and P.S. Vidyasagar. (1992). Strategy for control of red palm weevil of date palm in the Kingdom of Saudi Arabia. Consultancy report submitted to the Ministry of Agriculture and water, Kingdom of Saudi Arabia.pp 36.
- Abuzuhairah, R. A.; Vidyasagar, P. S.; V. A. Abraham (1996).

  Integrated pest management of red palm weevil
  Rhynchophorus ferrugineus (Olivier). In date palm
  plantations of the kingdome of Saudi Arabia.
  Proceedings, XX International Congress of
  Entomology, Firenze, Italy, 25-31 August, 541 pp.
- Ajlan, A. M.; M. S. Shawir; M. M. Abo-El-saad; M. A. Rezk and K.S. Abdulsalam (2000). Laboratory evaluation of certain organophosphorus insecticides against the red palm weevil, *Rhynchophorus ferrugineus* (Olivier). Scientific Journal of King Faisal University, Basic and Applied Sciences 1 (1): 15-26.
- Cabello, T.; J.de La Pena; P.Barranco and J. Belda.(1997).

  Laboratory evaluation of imidacloprid and oxamyl against Rhynchophorus ferrugineus. Tests of Agrochemicals and cultivars, U.K. No. 18, 6-7.
- Feyereisen, R.(1999). Insect P450 enzymes. Annu Rev. Entomol. 44: 507-533.
- Finney, D.J. (1971). Probit analysis. Cambridge University, press, London  $3^{\frac{rd}{2}}$  ed. pp .318.
- Gush, H. (1997). Date with disaster. The Gulf Today, September 29, p.16.

- J.Pest Cont. & Environ. Sci. 9(3): 63-76 (2001)
- Leahey, J. (1985). The pyrethroid insecticides. Francis and London pp. 1-41.
- Moural, J. L. J.; Resende, M. L. B.; Vilela, E. F. (1995). Integrated pest management of *Rhynchophorus palmarum* (L.) (Curculionidae: Coleoptera). In oil palm in Bahia. Anais da Sociedade Entomologica do Brazil **24:** 501-506.

#### الملخص العربي

## مقارنة سمية أربعة مبيدات بيرثرويدية على سوسة النخيل الحمراء تحت الظروف المعملية

محمود أبوالسعد ، عبدالعزيز العجلان ، محمد شعوير ، خالد عبد السلام ، محمد رزق قسم وقاية النبات - كلية العلوم الزراعية والأغذية - جامعة الملك فيصل

تم تجميع الأطوار المختلفة لحشرة سوسة النخيل الحمراء من الأحساء المنطقة الشرقية بالمملكة العربية السعودية وذلك لدر اسة كفاءة بعض مبيدات البير شرويدات معملياً. حيث تم إختيار أربعة مبيدات من هذه المجموعة هي بيرمشرين ، سيبرمشرين ، دلتاميشرين ، فينف اليريت لدر اسة كفاءتها معملياً على كل من يرقات و ذكور و إناث حشرة سوسة النخيل الحمراء وذلك بتعريضها إلى قطع من قصب السكر الذي سبق معاملته بسلسلة من تركيزات هذه المبيدات.

لقد أوضحت النتانج بعد ٢٤ ساعة من التعريض إختلاف في سميتها بالترتيب التالى سيبرميثرين > بيرمثرين > دلتاميثرين > فينف اليريت . كما بينت النتانج أنه بزيادة زمن التعريض لمبيد البيرمثرين إلى ٤٨ ساعة قد اظهر مبيد البيرمثيرين صدمة عصبية (knockdown) للذكور و الإناث حيث از دادت قيم الـ  $LC_{50}$  من ٥٢ جزء في المليون بعد ٢٤ ساعة علي الذكور إلى ١٧٥ جزء في المليون بعد ٢٨ ساعة علي الذكور إلى ١٧٥ جزء في المليون بعد ٤٨ ساعة ، بينما على الإناث از دادت من ٨٥ جزء في المليون إلى ١٤٧ جزء في المليون بعد ٤٨ ساعة .