Evaluation of certain plant extracts for the control of parasitic bee mites, *Varroa jacobsoni*

By

Ahmed A. Zaitoon

Dept. of Economic.Entomology, Faculty of Agriculture, El-Shatby, Alexandria University.

Received 15/7/2001, Accepted 13/8/2001

ABSTRACT

Toxicity of aqueous, methanolic and acetonic extracts of three plants, Rhazya stricta (Decaisne) Azadirachta indica (A. Juss) and Heliotropium bacciferun (Forsk) to parasitic bee mite, Varroa jacobsoni (Oudemans) was evaluated in the field and laboratory conditions. All extracts of the plants demonstrated remarkable toxicity to Varroa mite with varying degree. The greatest effect being due to acetone extracts followed by aqueous extract. Of the three plants, the acetonic extract from R. stricta has shown more toxic effect than others with LC₅₀ of 123.4 ppm after 48 hours compared to 169.3 and 150.8 ppm for A. indica and H. bacciferum, respectively. Mortality percentage was 100 % for acetonic extract of R. stricta after 48 hours of treatment with LC₅₀ of 500 ppm, while it was 90 and 93% for A. indica and H. bacciferum, respectively. Acetonic extract of R. stricta reduced infestation to 0.59 % under field conditions with 500 ppm after 12 days of treatment. These findings suggested that, the application of acetonic extracts of the used plants, specially extract of R. stricta may have a promising practical application against *Varroa* mites.

INTRODUCTION

The use of synthetic acaricides against *Varroa* mites at bee colonies raises the possibility of contamination of hives products (Ruijter 1995 and Wallner, 1995). There are considerable interests in the use of natural products for control of parasitic bee mites. There is a great awareness for a need for new pesticides with a new or different mode of action and/or improved effectiveness and safety over those currently in use.

Several trials of the use of natural products suggest this material may be useful in maintaining mite infestation rates below economic injury levels (Calderone et al., 1997). Lactic acid is toxic to Varroa (Kraus and Bery 1994) and formic acid kills Varroa mites and another bee mites (Liu and Nasr 1993). Colin, 1990 revealed that essential oils of thyme and sage were effective against Varroa. Calderone and Spivak (1995) reported high efficacy of thymol based control strategies when there was little brood in the colonies. Many plant extracts have been shown to be effective against insects. Among these are extracts of neem tree, Azadirachta indica (Xie et. al., 1995 and Jacobson 1983). Rhazya stricta and Heliotropium bacciferum are known to possess some biological activity against insects (Elhag. et al., 1996) and rats (Adam, 1998), besides medical values as being used by local folk medicine practitioners (Al -Yahia et. al.,1990).

The objectives of this study were to evaluate the toxic effect of three extracts from three plants as possible sources of botanical pesticides against parasitic bee mite *Varroa jcobsoni* under laboratory and field conditions.

MATERIAL AND METHODS

Colonies: Evaluation of compounds for control of *Varroa* mites was conducted at the apiary of Faculty of Agriculture, Alexandia University. Colonies of *Apis mellifera* L. of carniolan hybrids were used in this study. Each colony consisted of 9 full depth combs of worker bees and each had sufficient amount of brood.

Extracts: Test materials were collected from the central parts of Saudi Arabia. Aerial parts of *Rhazya stricta* and *Heliotropium bacciferum*, neem seed kernels were air dried in the laboratory, ground to a fine powder and extracted by warm distilled water, methanol or acetone at ambient temperatures. A gentle warming to $35-40\,^{\circ}$ c was sometimes found necessary especially when the solvents were taken directly from the refrigerator. The powderd materials were mechanically stirred for $2-3\,\mathrm{hr}$. with the appropriate solvent and filtered. Solvents used in the extraction process were obtained from Winlab ltd. and BDH.

Test procedure: Stock solutions of the three plant material extracts were prepared by redissolving the extract in warm distilled water (0.5 g / 100 ml). Different concentrations of 100, 200, 400 and 500 ppm were prepared from the stock solutions. Spraying method was used in this study. Ten bees infested with *Varroa* were placed inside glass cups (200cc) coverded with muslin and sprayed with hand sprayer for each concentration of the tested extracts. Each concentration was replicated three times. Sugar syrup (30%) was supplied for each glass cup and changed every day to prevent fermentation. Control glass cups sprayed with water only. The mortality percentages were recorded 24 and 48 hr after treatment. Values of LC₅₀ were calculated according to Finney (1971). Abbott's formula (1925) was used when necessary. All tests were carried out under laboratory conditions (temperature 25 °c \pm 2, R.H 60 \pm 5).

Field application: Colonies of honey bees infested with *Varroa* mites were used in this study. Treatments were carried out using plastic sprayer (500 ml). Solutions of all extract's concentrations were sprinkled over the bees inside the colonies. Each treatment was replicated three times for different concentrations. Treatment and recording rate of infestation were done at intervals of four days and repeated three times for all extracts. For determining the degree of infestation, adult workers (about 150 bees) were obtained from brood nest area of each experimental colony. Samples were transferred to a beaker (250 cc) containing soap water. The mites were collected and counted.

RESULTS AND DISCUSSION

The mortality percentages of Varroa mites following different plant extracts treatment at 24 and 48 hours were listed in Table 1.The results showed that all test extracts from the three plants were toxic to Varroa mites in a dose dependent manner. Data indicated that the toxic action of extracts from R. stricta specially acetonic extract was higher against Varroa than and H. bacciferum. Its 500 ppm aqueous extracts of A. indica and acetonic extracts caused 90 and 100 % mortality after 48 hours, respectively. Aqueous and acetonic fractions of A. indica and H. baeciferum gave 80, 86, 90 and 93 % mortalities at 500 ppm after 48 hours respectively. Table (2) summarizes the LC₅₀ values and 95 % confidence limits of the extracts of the three tested plants against Varroa mites, 24 and 48 hours following application. The results showed that acetonic extracts of the three were generally more toxic than their aqueous or Both aqueous and acetonic extracts methanolic extracts. of R. stricta (48 hr) were 148.9 and 123.4 ppm, respectively. Its values were 195.5, 180.6, 169.3 and 150.8 for

Table 1. Percentage of mortalities of Varroa mites after applicatiam with extracts of three plants.

Plant	Conc. (ppm)	Aqueous extract		Methanolic extract		Acetonic extract	
		Mortality % after			<u> </u>	1	
		12 hr	48 hr	12 hr	48 hr	12 hr	48 hr
Rhazya	100	16.7	36.7	16.7	26.3	23.3	43.3
stricta a	200	33.3	56.7	30.0	40.0	43.3	66.7
	400	63.3	86.7	46.7	53.3	73.3	96.7
	500	76.7	90.00	53.3	63.3	83.3	100.0
	control	0.0	0.0	0.0	0.0	0.0	0.0
Azadirachta a	100	13.3	26.7	13.3	23.3	16.7	30.0
i <i>ndica</i>	200	30.0	50.0	20.0	33.3	33.3	53.3
	400	60.0	76.7	40.0	46.7	63.3	83.3
	500	66.7	80.0	46.7	53.3	70.0	90.0
	control	0.0	0.0	0.0	3.3	0.0	0.0
Heliotropium	100	16.7	30.0	16.7	26.7	20.0	33.3
bacciferum	200	30.0	46.7	26.7	36.7	40.0	60.0
	400	63.3	83.3	43.3	50.0	66.7	86.7
	500	70.0	86.7	50.0	60.0	73.3	93.3
	control	0.0	3.3	0.0	0.0	0.0	0.0

A. indica and H. bacciferum, respectively, indicating that the acetonic extracts were more toxic than either aqueous or methanolic extracts. It seems logical to conclude that the acetonic extract of R. stricta is good candidate as botanical acaricide against Varroa mites , where it can serve as biodegradable natural plant product.

Field application results of extracts from the three tested plants are shown in Tables 3, 4 and 5. The average degree of infestation and reduction of infestation after treatment with different extracts from the above mentioned plants are given in

Table 2. Response of Varroa jacobsoni to three plants extracts

			LC 50 (95% confidence limits)	(s
Plant	(hours)	Aqueous extract	Methanolic extract	Acetonic extract
Rhazya stricta	24	274.43 (217.6 –346.1) (Y = -5.8 + 2.4X)*	447.0 (279.3 – 718.2) (Y = -3.9 + 1.5X)	214.6 (168.8 – 272.7) (Y = -5.6 + 2.4X)
	48	148.9 (111.4 – 198.9) (Y = -5.2 + 2.3X)	307.2 (202.0 - 468.0) (Y = -3.3 + 1.3X)	123.4 (97.0 - 156.8) (Y = -7.0 + 3.4X)
Azadirachta indica	24	320.7 (249.2 - 413.0) (Y = -5.7 + 2.3X)	592.7 (331.1 - 1067.4) (Y = -4.3 + 1.5X)	290.0 (225.2 – 373.5) (Y = -5.4 +2.2X)
	48	195.5 (148.7 - 256.6) (Y = -4.9 + 2.2X)	450.5 (243.5 - 839.6) (Y = -3.0 + 1.1X)	169.3 (131.6 - 217.5) (Y = -5.7 + 2.5X)
Heliotropium bacciferum	24	296.8 (231.4 - 381.0) (Y = -5.6 + 2.3X)	519.9 (293.8 - 925.7) (Y = -3.8 + 1.4X)	254.6 (196.6 - 329.8) (Y = -5.1 + 2.1X)
	48	180.6 (140.4 - 232.2) (Y = -5.6 + 2.4X)	354.3 (216.6 – 581.5) (Y = -3.1 +1.2X)	150.8 (116.3 - 195.2) (Y = -5.8 + 2.7X)
Regression of equation normal		equivalent devides of response (Y) on log dose (X) lines.	(Y) on log dose (X) lines.	

Table 3. Average rate of infestation (%) in adult worker bees after treatment with aqueous extract from three plants.

Plant	Conc. (ppm)	Before treatment	Day	ays after treatment			
			4	8	12		
Rhazya stricta a	100	17.61	14.79	10.59	8.45		
	200	18.75	13.13	8.75	6.88		
	400	18.71	10.47	5.61	3.22		
	500	19.56	7.25	2.90	1.45		
Azadirachta a	100	19.22	15.97	12.24	10.11		
indica	200	16.71	13.17	10.05	8.26		
	400	17.94	13.07	8.19	5.44		
	500	17.82	10.27	5.33	3.41		
Heliotropium	100	19.35	15.48	11.61	4.03		
bacciferum	200	18.79	14.09	9.39	7.38		
-	400	16.55	12.31	7.97	4.34		
	500	17.93	9.65	4.13	2.51		
	Control	19.11	18.59	19. 88	20.21		

these Tables. The results in Table (5) indicated that the infestation percentage in the colonies treated with 500 ppm acetonic extract of R. stricta was reduced to 0.59 % after 12 days. While it was 1.45 Table (3) and 3.89 % Table (4) for aqueous and methanolic extracts, respectively. The infestation percentages of acetonic, aqueous and methanolic extracts of A. indica and H. bacciferum were reduced to 2.64, 3.41, 6.34, 1.95, 2.51 and 5.16 % after 12 days of treatment, respectively. It means that the acetonic extract of R. stricta is more toxic to Varroa inside colonies of honeybees than other extracts. The effect of extracts of the plants on worker bees indicated that all test extracts were less or no effect on honeybee at different tested

A.A.Zaitoon

Table 4. Average rate of infestation (%) in adult worker bees after treatment with methanolic extract from three plants.

Plant	Conc.	Before	Days after treatment				
	(ppm)	treatment	4	8	12		
Rhazya stricta	100	19.85	15.44	12.50	8.8		
May's stricts	200	15.89	11.92	9.93	7.94		
	400	17.72	12.65	8.86	5.06		
	500	17.53	4.74	5.84	3.89		
Azadirachta indica	100	18.51	17.01	14.25	10.93		
713,000	200	17.47	14.81	12.14	9.89		
	400	18.72	13.99	10.76	8.14		
	500	17.66	12.10	8.20	6.34		
	100	10.02	16.90	13.92	10.83		
Heliotropium	100	18.93	16.90	11.73	4.31		
bacciferum	200	17.08	13.74	10.11	7.66		
•	400	17.69	11.04	7.92	5.16		
	500 Control	19.22	18.74	19.57	19.36		

concentrations. R. stricta was previously reported to be toxic to mosquito larvae (Elhag et al., 1996) and rats (Adam, 1998). Elhag et al. (1996) reported that R. stricta have alkaloids and flavonoids as major constituents. Also, aerial parts of H. bacciferum contain alkaloids, flavoniods, tannins and volatile oils (Al – Yahya et. al., 1990). Finally it can be concluded that the materials investigated in this study may have a practical application in protection of bees against Varroa mites. Also, acetonic extract of R. stricta and other plant extracts may considered promising as natural botanical products against Varroa mites.

Table 5. Average rate of infestation (%) in adult worker bees after treatment with acetonic extract from three plants.

Plant	Conc. (ppm)	Before	Days after treatment		
	(ррш)	treatment 4		8	12
Rhazya stricta	100	16.02	12.17	10.25	7.05
	200	16.55	10.07	7.19	4.31
	400	15.60	8.51	4.97	2.12
	500	18.75	7.64	2.08	0.59
Azadirachta indica	100	17.19	13.85	10.99	8.32
	200	18.35	11.94	9.23	6.48
	400	17.44	10.55	6.96	4.48
	500	16.63	4.26	4.81	2.64
Heliotropium	100	17.35	13.18	11.38	8.44
bacciferum	200	17.42	10.87	8.26	5.61
	400	18.07	4.46	5.88	3.33
	500	18.19	8.71	3.41	1.95
	Control	189.56	17.39	18.41	18.76

REFERENCES

- Abbott, W.S. (1925). A method of comparing the effectiveness of an insecticide. J. Econ. Entomol., 18: 265 267.
- Adam, S. E. I. (1998). toxicity to sheep of *Rhazya stricta*. Vet. Hum. Toxical., 40: 68 –70.
- AL-Yahia, M.A.; I.A. Meshal; J.S. Mossa; A.A AL Badr and T. Mohammed (1990). Saudi plants. A phytochemical and biological approach. KASCT No. 39 King Saud University Press.

A.A.Zaitoon

- Calderone, N.W. and M. spivak (1995). Plant extracts for control of the parasitic mite *Varroa jacobsoni* (Acari: Varroidae) in colonics of the western honey bee (Hymenoptera: Apidae). J. Econ. Entomol., 88: 1211-1215.
- Calderone, N.W., W.T. Wilson and M.A. Spivak (1997). Plant extracts used for control of parasitic mites *Varroa. jacobsoni* (Acari: Varroidae) and *Acarapis woodi* (Acari:Tarsonemidae) in colonies of *Apis mellifera* (Hymenoptera: Apidae). J. Econ. Entomol., **90** (5): 1080 1086.
- Colin, M. E. (1990). Essential oils of Labiatae for controlling honeybee varroasis. J. Appl. Entomol., 110: 19 25.
- Elhag, E.A; F.m. Harraz; A. A. Zaitoon and A. K. Salam (1996) Evaluation of some wild herb extracts for control of mosquitoes (Diptera: Culicidae). J. King Saud University, Agric. Sci., 8: 135 145.
- Finney, D. J.(1971). probit analysis. 3 rd ed. Cambridge University press Cambridge, England.
- Jacobson, M.(1983). Control of stored product insects with phytochemicals. In proceedings, 3 rd International working Conference Stored Product Entomology, eds, R. B. Mills. V. F. Wright and J. R. Pedersen, pp .183 195. Manhattan, USA.
- Kraus, B. and S. Berg (1994). Effect of lactic acid treatment during winter in temperate climate upon *Varroa jacobsoni* Oud. and the bee (*Apis mellifera* L.) colony. Exp. Appl. Acarol., **18:** 454 468.

- J.Pest Cont. & Environ. Sci. 9(3): 77-88 (2001)
- Liu, T. P. and M. Nasr (1993). Effect of formic acid treatment on the infestation of tracheal mites, *Acarapis woodi* (Rennie), in the hony bee, *Apis mellifera*. Am. Bee J., 132: 666 668.
- Ruijter, A.de. (1995). Issues in the control of *Varroa* infestation, pp. 22-26. In A. Matheson (ed.), New perspectives on *Varroa*. IBRA, Cardif, U.K.
- Wallner, K.(1995). The use of varroacides and their influence on the quality of bee products. Am. Bee J., 135: 817-821
- Xie, Y. S.; P. G. Fields and M. B. Isman (1995). Repellency and toxicity of Azadirachtin and neem concentrates to three stored product beetles. J. Econ. Entomol., 88: 1024 1031.

الملخص العربي

تقييم كفاءة بعض المستخلصات النباتية في مكافحة طفيل الفاروا الذي يصيب نحل العسل

أحمد على زيتون قسم الحشرات الاقتصادية – كلية الزراعة – (الشاطبي) – جامعة الإسكندرية .

R .stricta من الحرمل المستخلصات النباتية لكل من الحرمل A . indica والنيم A . indica والرمر الم المحدوث المستخلصات هي المائي والميثانولي و المستخلص الاسيتوني وذلك لمكافحة طفيل الفاروا الذي يصيب نحل العسل وذلك تحت الظروف المعملية والحقلية . وقد وجد من النتائج أن جميع هذه المستخلصات كانت ذات سميه على الاكاروس بدرجات مختلفة .

وكان التأثير الأكبر للمستخلص الأسيتونى لكل النباتات مقارنة مع المستخلص المائى و الميثانولى لكل النباتات. وظهر أن المستخلص الأسيتونى لنبات الحرمل له سميه عالية فى مكافحة الفاروا عن المستخلصات الاخرى . كانت قيم الحرمل له سميه عالية من المعاملة بتركيز 0.0 جزء فى المليون هى 0.0 بعد 0.0 بعد 0.0 بعد 0.0 بعد 0.0 الكل من المستخلص الأسيتونى لنبات النيم والحرمل على التوالى . كانت نسبة الموت 0.0 الكل من المستخلص الأسيتونى لنبات الحرمل بعد 0.0 ساعة من المعاملة بتركيز 0.0 جزء فى المليون وهذا أعلى من النتائج المتحصل عليها لكل من النيم والرمرام حيث كانت 0.0 به 0.0 بالمستخلص الأسيتونى للحرمل قلل من الإصابة بالفاروا عند المعاملة الحقلية وجد أن المستخلص الأسيتونى للحرمل قلل من الإصابة بالفاروا إلى 0.0 بعد 0.0 بعد 0.0 المعاملة مقارنة بجميع المستخلصات الاخرى .

ويمكن القول أن هذه المستخلصات خصوصا المستخلص الأسيتونى للحرمل أو المستخلص الأسيتونى للرمرام أو النيم يمكن إستخدامها كبديل آمن في مكافحة الفاروا في نحل العسل يليها المستخلص المائي ثم المستخلص الميثانولي