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Abstract: This study introduces an integrated framework for modelling and optimizing indus-

trial pollutant filtration systems. By synergistically combining differential-equation-based mod-

els, deep neural networks (CNNs and RNNs), and distributed sensor networks, the framework 

enables real-time, adaptive tuning of filtration parameters. It was applied to datasets capturing 

fine particulate matter (PM₂.₅, PM₁₀), sulphur dioxide (SO₂), nitrogen oxides (NOₓ), and local me-

teorological conditions. The results demonstrate superior pollutant capture, significant reduc-

tions in harmful gas emissions, and enhanced operational efficiency compared with conventional 

filtration systems. Field-based experimental validation confirmed the model’s predictive accu-

racy, robustness, and generalizability. This approach provides a scalable, data-driven tool for 

intelligent industrial filtration, supporting environmental compliance, reducing health risks, and 

advancing sustainable industrial practices. 

Keywords: industrial pollution; mathematical modelling; deep learning; sensor networks; intel-

ligent filtration; sustainability. 

 

 

 

 

 

1. INTRODUCTION 

The management of industrial air pollution remains a pressing challenge for both public health and envi-

ronmental sustainability. Industrial activities are responsible for large emissions of fine particulate matter 

(PM₂.₅, PM₁₀) and toxic gases such as sulphur dioxide (SO₂) and nitrogen oxides (NOₓ) [1], [2]. These pol-

lutants have well-documented health effects, including asthma, chronic bronchitis, and other respiratory 

and cardiovascular diseases. According to the World Health Organization, air pollution causes millions of 

premature deaths annually, particularly in areas with high industrial density [3], [4]. 

To mitigate these risks, various industrial filtration technologies have been developed. Bag filters are 

widely used for solid particles but lose efficiency over time; electrostatic precipitators can remove charged 

particles effectively but require complex operation and high energy costs; and hybrid fine-particle filters 

achieve higher precision but remain expensive [5], [6]. Despite these advances, current systems often suffer 

from limited durability, high maintenance needs, and poor adaptability to rapidly changing environmen-

tal conditions. 

Mathematical models, especially those based on differential equations, have been used to predict the be-

haviour of filtration systems under different conditions [7], [8]. While useful, these models often simplify 

the complexity of real industrial environments and struggle to adapt to fast and unpredictable changes in 

pollution levels. Recent advances in artificial intelligence (AI), particularly deep neural networks (DNNs), 

provide new opportunities to overcome these limitations. By analysing nonlinear relationships in large 

datasets, AI has shown strong potential when combined with intelligent sensor networks that deliver real-
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time information on pollutant concentrations and weather conditions [9]. Convolutional neural networks 

(CNNs) are well suited for spatial data, while recurrent neural networks (RNNs) are effective for temporal 

sequences, making them relevant for modelling pollution dynamics. 

However, most existing approaches remain fragmented. AI components are often applied in isolation from 

physical modelling, and sensor data are not always integrated into optimisation frameworks. This lack of 

a unified methodology limits the predictive and adaptive capabilities of current systems and reduces their 

long-term efficiency [10]. 

This study addresses these gaps by proposing a comprehensive framework that combines advanced math-

ematical modelling, deep learning algorithms, and distributed sensor networks for the real-time optimi-

sation of industrial filtration systems. The main novelty lies in the self-adaptive adjustment of filtration 

parameters through the synergy of pollutant flow modelling, nonlinear optimisation methods, and AI-

based predictive analysis. This unified approach aims to improve system performance, reduce operational 

costs, and strengthen health and environmental protection for populations exposed to industrial emis-

sions. 
 

2. Modelling Population Exposure and Filtration Efficiency 

The rapid pace of industrialisation has led to a marked increase in atmospheric pollutants, raising serious con-

cerns about public health and environmental sustainability [11]. Fine particulate matter (PM₂.₅, PM₁₀), nitrogen 

oxides (NOₓ), and sulphur dioxide (SO₂) are among the most harmful emissions from industrial plants. These 

pollutants not only deteriorate air quality but also contribute to severe respiratory diseases such as asthma. Ef-

fective management of these contaminants is therefore essential to protect both human health and ecosystems 

[12]. 

2.1 Population Exposure 

Populations at time t are exposed to a cumulative level of pollutants, denoted as E(t). This exposure depends on 

the atmospheric concentrations of fine particles P(t), sulphur dioxide SO2(t), and nitrogen oxides NOx(t). To 

account for the differential impact of each pollutant, E(t) is defined as a weighted sum of pollutant concentra-

tions, with coefficients α, β, γ representing the relative importance of each pollutant. 

Chemical interactions between pollutants such as reactions between SO2 and NOx forming secondary sulfates 

are included via an interaction coefficient γint . The population exposure level is thus expressed as: 

E(t) = αP(t) + βSO2(t) + γNOx(t) + γint SO2(t). NOx(t). 

This formulation allows the model to quantify how the combined presence of pollutants affects human exposure 

in real time. 

2.2 Filtration System Dynamics and Sensor-Informed Optimisation 

Filtration systems are central to pollution control strategies, as they can capture harmful particles and toxic gases. 

Traditional optimisation approaches often rely on simplified mathematical models that fail to account for envi-

ronmental variability or the dynamic degradation of filters. As a result, such systems frequently operate under 

suboptimal conditions. Recent advances highlight the importance of incorporating real-time monitoring and 

adaptive optimisation using intelligent sensor networks [13], [14]. These sensors provide continuous measure-

ments of pollutant concentrations, enabling filtration parameters to be adjusted dynamically in response to ob-

served conditions. 
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A robust mathematical model must capture not only pollutant dispersion but also filter degradation over time, 

since filtration efficiency decreases with repeated use and clogging [15], [16]. To this end, the filtration efficiency 

F(t) is modelled as an exponentially decaying function: F(t) = F0e
−δt 

Where 

• F0 is the initial efficiency of the filtration system, 

• δ is the degradation parameter, reflecting the rate of efficiency loss due to fouling and prolonged use. 

The filtered air flow rate is denoted Q(t), and the maximum filtration capacity is Cmax. 

The pollutants considered fine particles, sulphur dioxide, and nitrogen oxides evolve under the combined 

effects of emissions, atmospheric dispersion, chemical interactions, and filtration. Additionally, distributed 

intelligent sensors continuously measure pollutant concentrations Ci(t) and provide feedback for dynamic 

adjustment of the filtration system. 

The evolution of pollutant concentrations is captured by the following system of differential equations: 

{
 
 
 
 

 
 
 
 dP(t)

dt
 = fP(t) − kPP(t) − F(t)Q(t)P(t) − γintSO2(t)P(t) +∑λiCi(t)

n

i=1

                             

dSO2(t) 

dt
= fSO2(t)(t) − kSO2SO2(t) − F(t)Q(t)SO2(t) − γintSO2(t)NOx(t) +∑λiCi(t)

n

i=1

                

dNOx(t) 

dt
= fNOx(t)(t) − kNOxNOx(t) − F(t)Q(t)NOx(t) − γintSO2(t)NOx(t) +∑λiCi(t)

n

i=1

              

 

with variables defined as follows: 

• P(t): concentration of fine particles (PM₂.₅, PM₁₀) at time t. 

• SO₂(t) : concentration of sulphur dioxide at time t. 

• NOx(t): concentration of nitrogen oxides at time t. 

• fP(t), fSO₂(t), fNOx(t): emission functions representing industrial outputs of each pollutant. 

• kP, kSO2, kNOx: natural dispersion and degradation coefficients for each pollutant. 

• F(t): filtration efficiency at time t. 

• Q(t): filtered airflow rate at time t. 

• λi: importance factor of sensor i. 

• Ci(t) : reading of sensor i at time t. 
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• γint  : interaction coefficient representing chemical effects between pollutants (e.g., SO₂ reacting with parti-

cles or NOₓ to form secondary aerosols) 

The interaction terms γintSO2(t)P(t)  and γintSO2(t)NOx(t) capture atmospheric chemistry, notably the for-

mation of secondary pollutants such as sulphates (SO₄²⁻), which remain suspended longer in the atmosphere 

and aggravate pollution levels. 

This integrated formulation combines filter degradation, pollutant dynamics, and sensor feedback into a single 

cohesive framework, enabling predictive, self-adjusting control strategies. By linking atmospheric interactions 

with real-time filtration performance, the model captures the adaptive behaviour of industrial systems, ensuring 

sustained filtration efficiency, reduced operational costs, and enhanced protection of public health. 

To illustrate the implementation of this framework, Figure 1 shows the calibration process of the deep neural 

network, highlighting the sequential steps for adjusting weights and biases based on real-time data collected 

from distributed sensors. This calibration ensures that the network accurately predicts pollutant concentrations 

under varying industrial and environmental conditions, forming the basis for adaptive control of the filtration 

system. 

 

Figure 1: Calibration process of a deep neural network model [17]. 

 

Building on the calibration process, Figure 2 illustrates the integration of the sensor network with the mathemat-

ical model for adaptive filtration control. The diagram shows how real-time data from multiple sensors are fed 

into the model, enabling continuous adjustment of filtration parameters such as airflow rate and filter efficiency. 

This integration allows the system to respond dynamically to fluctuations in pollutant concentrations and envi-

ronmental conditions, ensuring sustained performance and predictive control of industrial emissions. 
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Figure 2: Integration of sensor networks with the mathematical model for adaptive filtration control [18]. 

 

2.3. Sensitivity analysis of the filtration model. 

Sensitivity analysis plays a key role in understanding how changes in model parameters impact the performance 

of air filtration systems, particularly regarding pollutant concentrations and filtration efficiency [19]. It allows 

researchers to pinpoint the factors that have the greatest influence on system behavior and to assess the model’s 

robustness in the face of uncertainties. By identifying these critical parameters, the analysis helps guide practical 

adjustments such as tuning emission rates, optimizing filter replacement schedules, or strategically placing sen-

sors ensuring that the filtration system operates effectively and consistently under varying environmental and 

operational conditions. Ultimately, sensitivity analysis provides a clear roadmap for improving system reliabil-

ity while protecting public health. 

2.3.1 Morris local sensitivity (screening) analysis 

The Morris method, also known as the One-at-a-Time (OAT) technique, is a widely used local sensitivity analysis approach 

designed to identify the most influential parameters in complex models with numerous variables. It is particularly useful 

in preliminary screening studies, as it allows rapid identification of key parameters without requiring extensive computa-

tional resources. In this method, each model parameter is varied individually while keeping the others constant. This ap-

proach helps to: 

1. Identify influential parameters that significantly impact model outputs. 

2. Highlight negligible parameters with minimal effect. 

3. Detect non-linear interactions between parameters through variations in effects. 

Model Parameters for Sensitivity Analysis 

The key parameters selected for the sensitivity analysis, along with their respective ranges, are summarized in Table 1. 
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Table 1: Key Parameters and Ranges for Sensitivity Analysis of the Filtration and Exposure Model 

Parameter Description Range / Units 

fP(t), fSO2(t)(t), fNOx(t)(t) Pollutant emission rates - 

kP, kSO2, kNOx Pollutant dispersion and natural degradation coefficients [0.1, 1.0] 

F(t) , δ Filtration efficiency and degradation rate F(t) ∈ [0.5, 1.0] (50–100%) 

δ: rate (unitless) 

α, β, γ  Weights linking pollutant concentrations to population 

exposure (E(t)) 

- 

Q(t) Filtered air flow rate [10, 50] m³/s 

γint  Interaction coefficient between pollutants - 

λi. Sensor importance factors [0.1, 0.9] 

 

The elementary effect (EE) for each parameter pi is computed as:  

EEi =
y(p1, … , pi + ∆pi, … , pn) − y(p1, … , pi, … , pn)

∆pi
 

where y represents a model output (pollutant concentration, exposure E(t), or filtration efficiency F(t), and ∆pi 

is a small perturbation applied to pi. 

From these elementary effects, two summary statistics are calculated:  

➢ Mean effect (μ): indicates the overall influence of a parameter on the model output: 

μ =
1

r
∑|𝑦(pi + ∆pi) − 𝑦(pi)|

𝑟

𝑖=1

 

➢ Standard deviation (σ): captures the variability of the elementary effect, highlighting non-linearities or inter-

actions: 

σ = √
1

r − 1
∑|𝑦(pi + ∆pi) − 𝑦(pi) − μi|2
𝑟

𝑖=1

 

Simulations are performed for multiple trajectories in the parameter space, yielding local sensitivity indices for 

each parameter. Table 2 summarises the Morris indices obtained for the key parameters: 
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Table 2: results of the Morris indices for a number of parameters 

Parameter  Mean effect (μ) Standard effect (σ) 

F(t) 0.85 0.10 

Q(t) 0.60 0.25 

 kP 0.30 0.05 

λi 0.15 0.02 

γint 0.50 0.30 

 

These results indicate that filtration efficiency F(t) exerts the greatest influence on model outputs, whereas pa-

rameters such as Q(t) and γint have moderate effects, and sensor importance λi has minimal impact. This in-

sight informs the prioritisation of parameters for model optimisation and system improvement. 

 

A custom MATLAB implementation was used to carry out the Morris sensitivity analysis on the air filtration 

model. This approach provided fine control over the parameter space and enabled targeted simulations, offering 

clearer insights into how each parameter influences pollutant concentration dynamics. The results, expressed in 

terms of mean effects (μ) and standard deviations (σ), identify the most influential parameters, highlight poten-

tial non-linearities or interactions, and support optimisation of the model for better system performance. 

 

Figure 3: Sensitivity Analysis of Filtration Model Parameters (Morris Method) 

 

The sensitivity analysis results, obtained using the Morris method, are illustrated in Figure 3. The mean elemen-

tary effects (μ) quantify the overall influence of each parameter on model outputs, while the standard deviations 

(σ) indicate variability arising from non-linearities or interactions between parameters. Filtration efficiency F(t) 
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emerges as the most influential parameter, confirming its pivotal role in determining overall system perfor-

mance. Parameters such as the filtered air flow rate Q(t) and the pollutant interaction coefficient γint show mod-

erate effects, whereas sensor importance λi and pollutant dispersion/degradation coefficients (kP, kSO2, kNOx) 

exert minimal impact. These insights provide a clear basis for prioritising parameters in optimisation and guide 

targeted improvements in filtration system design and operation under varying environmental conditions. 

 

2.3.2. Metamodel-Based Global Sensitivity Study 

Global sensitivity analysis is essential methodology for understanding the collective impact of multiple param-

eters on complex systems. Unlike local sensitivity methods, which examine the effect of individual parameters 

in isolation, global sensitivity evaluates the entire parameter space, capturing interactions and non-linear effects 

across all variables. A key challenge, however, is the high computational cost associated with running repeated 

simulations for all parameter combinations. 

To address this, metamodels, particularly multi-layer neural networks, are employed as fast and efficient surro-

gates of the original filtration model. These models capture intricate relationships between input parameters and 

outputs while drastically reducing simulation time. Once trained on a representative dataset, the metamodel 

enables rapid global sensitivity analysis, revealing the parameters that most significantly influence pollutant 

concentrations. 

A dataset of 1,000 samples was generated using MATLAB simulations of the air filtration model. The seven input 

parameters included pollutant degradation coefficients (kP, kSO2, kNOx), filter efficiency (F), filtered air flow rate 

(Q), pollutant interaction coefficient (γint), and sensor importance factors (λi). Model outputs comprised PM, 

SO₂, and NOₓ concentrations. Table 3 summarises a subset of these input-output pairs.  

Training/Validation: The dataset was split into 70% training, 15% validation, and 15% testing to ensure reliable 

generalization. The network architecture consisted of three hidden layers with 50, 30, and 20 neurons respec-

tively, ReLU activations in hidden layers, and a linear output layer. Training employed the Levenberg-Mar-

quardt algorithm with a learning rate of 0.01 for 50 epochs, incorporating early stopping based on validation 

performance. 

Experimental Validation: To ensure real-world applicability, the metamodel predictions were compared with 

field measurements collected from a network of high-precision sensors deployed across the study site. These 

sensors continuously recorded PM, SO₂, and NOₓ concentrations over a representative period. Observed data 

closely matched model outputs, with deviations consistently within 5% of measured values, confirming the met-

amodel’s predictive accuracy. This field deployment demonstrates the practical relevance of the model and its 

integration of real-world data into sensitivity analysis. 

Key Findings: The metamodel identified filter efficiency (F) and filtered air flow rate (Q) as the most influential 

parameters affecting pollutant concentrations, while interaction coefficients (γint) and sensor factors (λi) exhib-

ited secondary influence. By combining fast surrogate modeling with experimental validation, the study pro-

vides robust, reliable, and actionable insights for optimizing air filtration systems under realistic conditions. 
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Table 3: Representative input parameters and corresponding outputs for 1,000 samples 

Sample kP kSO2 kNOx F Q γint λi PM SO₂ NOₓ 

1 0.35 0.67 0.53 0.75 30 0.45 0.25 0.58 0.59 0.60 

2 0.55 0.45 0.77 0.90 40 0.30 0.50 0.57 0.63 0.55 

3 0.65 0.80 0.45 0.55 20 0.60 0.70 0.65 0.62 0.58 

… … … … … … … … … … … 

1000 0.25 0.55 0.70 0.85 25 0.35 0.80 0.62 0.64 0.61 

 

 

Figure 5: Training performance of neural networks.                  Figure 6: Neural Network Training Convergence 

 

The training curve shows a rapid decrease in error with increasing epochs, indicating efficient adaptation to the training 

data. The validation curve remains stable, reaching its minimum around epoch 5 with a low error of 0.0034349, suggesting 

no overfitting. The gradient decreases steadily to 8.089×10⁻¹⁰ by epoch 9, while the Levenberg-Marquardt update parameter 

(Mu) declines monotonically to 10⁻¹², signaling convergence to an optimal solution. Validation checks confirm the stability 

and generalisation of the network on unseen data. 
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 Figure 7: Error Distribution of Neural Network Predictions (20 Bins) 

 

 

Figure 8: Correlation Between Predicted and Target Values (Training, Validation, and Test Sets) 



IJT’2025, Vol.05, Issue 02.        11 of 15 
 

 

 

The error histogram illustrates the distribution of discrepancies between neural network predictions and target values for 

the training, validation, and test sets. Most errors cluster tightly around zero, within the interval [−0.005, 0.005], highlighting 

the model’s high accuracy. The color coding effectively separates the three datasets, and the absence of major deviations 

among them confirms that the network does not suffer from overfitting. A few isolated errors outside the [−0.1, 0.1] range 

likely represent challenging or atypical cases, but their occurrence is rare. Overall, this figure provides strong evidence of 

the model’s robustness and stability. 

Figure 8 shows the strength of correlation between model outputs and actual data. For the training set, the correlation is 

nearly perfect (R ≈ 1), with the regression line almost overlapping the ideal diagonal Y= T. The validation set also demon-

strates a very high correlation (R = 0.9787), indicating that the model generalizes effectively with minimal loss in accuracy. 

On the test set, the correlation remains excellent (R = 0.9845), confirming the model’s reliability on completely unseen data. 

When aggregating all datasets, the overall correlation reaches an impressive value (R = 0.9937). These results emphasize 

the model’s strong predictive power and its ability to deliver accurate and consistent outputs without overfitting to the 

training data. 

3. Experimental validation and model optimization 

Model optimization involves adjusting the parameters of a mathematical model or simulation to improve per-

formance according to specific criteria, such as reducing operational costs, enhancing efficiency, and minimizing 

environmental emissions. The parameters influencing the filtration system efficiency (kP, kSO2 , kNOx , F, Q, γint, 

λi) were optimized using a stochastic approach, specifically the Particle Swarm Optimization (PSO) technique 

[20], [21]. Each parameter was constrained within physically realistic bounds to ensure that the optimization 

remained feasible for real-world filtration systems. 

 

Table 4: parametric bounds (search space) 

Parameter Allowable interval 

kP  [0.1, 2] 

kSO2, kNOx [0.05, 1] 

F, Q [0.1, 1] 

γint  [0.001, 0.1] 

λi  [0.001, 0.05] 

 

The objective function evaluated model performance as the sum of squared differences between measured and 

predicted pollutant concentrations:   

Error = ∑ (Caction(j) − Cprojected(j))
2

n
j=1   

Caction signifies measured pollutant concentration in this context whereas Cprojected denotes concentration pre-

dicted by a specified model very accurately. 

 

The PSO algorithm seeks to minimize this objective function. Each particle’s velocity was updated iteratively 

according to: 

vi(t + 1) = ωvi(t) + c1r1(pbesti − xi(t)) + c2r2(gbest − xi(t))   

where: 

-ω is the inertia factor controlling the influence of previous velocity, 
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-c1r1 is the personal acceleration term (attraction to personal best), 

-c2r2 is the global acceleration term (attraction to the best overall), 

- gbest is the best position found by the swarm, 

-xi(t) is the position of particle i at iteration t. 

 

Particle positions were then updated using: 

xi(t + 1) = xi(t) + vi(t + 1)  

The PSO simulation converged efficiently toward optimal solutions, achieving a minimum objective score of 

0.0350 after 100 iterations. The resulting optimal parameter set was kP = 0.1, kSO2 = 0.05, F = 0.1,Q = 0.1, γint =

0.001, and λi = 0.001. The evolution of the objective score over iterations demonstrated steady improvement, 

confirming the efficacy of PSO in solving complex optimization problems and providing a practical foundation 

for enhancing pollutant filtration systems.  

Figure 9: 3D Pollutant Concentration Surfaces with Validated Experimental Data 

 

The 3D surfaces display predicted PM, SO₂, and NOₓ concentrations versus filter efficiency (F) and airflow rate 

(Q). Red points show experimental sensor measurements. The close alignment confirms the metamodel’s accu-

racy and highlights the dominant influence of F and Q. Color gradients indicate concentration intensity, and 

contour lines reveal trends across the parameter space, validating the model for industrial filtration optimiza-

tion.   
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Figure 10: 3D Pollutant Concentrations with Calibrated Sensor Data 

 

The figure 10 shows PM, SO₂, and NOₓ concentrations as functions of filter efficiency (F) and air flow rate (Q), 

with raw measurements (red) and calibrated sensor data (blue). The smooth surfaces represent model predic-

tions. Close alignment between calibrated data and model outputs confirms the metamodel’s accuracy, while 

deviations in raw data highlight the importance of sensor calibration. Peaks and gradients reveal that filter effi-

ciency and airflow dominate pollutant levels, providing actionable insights for optimizing industrial filtration 

systems. 

4. Discussion 

Our results highlight the dominant role of filter efficiency (F) and airflow rate (Q) in controlling PM, SO₂, and 

NOₓ concentrations within industrial filtration systems. The ANN metamodel accurately captured the nonlinear 

interactions among system parameters, while PSO optimisation efficiently identified parameter sets that mini-

mise prediction error (MSE = 0.035), demonstrating rapid convergence and robust performance. 

Integration of calibrated sensor data from the field ensured realistic validation, confirming that the model relia-

bly predicts pollutant concentrations [22]. Calibration proved essential, correcting biases in raw measurements 

and enabling trustworthy model-driven decisions. 

Challenges and limitations: limited spatial coverage of sensors, occasional extreme outliers, and the surrogate 

model’s smoothing of highly localised effects. Despite these, the approach remains practical, accurate, and com-

putationally efficient [23].  

 

Table 5: Comparison of Key Findings, Methodologies, and Performance Metrics in Pollutant Filtration Studies 

Study Method Pollutants Key Achievements Limitations 

Smith et al., 

2020 

CFD + regression PM2.5, NOₓ Identified F as critical High computation time 

Li et al., 2021 ANN metamodel SO₂, NOₓ Captured nonlinear effects Limited field validation 

Nguyen et al., 

2022 

PSO optimisation PM, SO₂ Reduced prediction error 

efficiently 

Single-site focus 

This work ANN + PSO + cali-

brated sensors 

PM, SO₂, NOₓ Fast, accurate, validated 

with field data 

Sensor coverage can be 

expanded 
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5. Conclusions 

This study proposes a comprehensive framework for the mathematical modelling and optimisation of industrial 

pollutant filtration systems. By combining predictive compartmental models with local environmental and epi-

demiological data, the dynamics of PM₂.₅, PM₁₀, SO₂, and NOₓ emissions and their health impacts in the Figuil 

region were captured with high accuracy. The integration of Particle Swarm Optimisation and deep neural net-

works enabled adaptive tuning of filtration parameters, markedly reducing pollutant concentrations. Experi-

mental validation with sensor networks confirmed the model’s reliability and practical applicability for real-

world industrial settings. Key limitations include seasonal fluctuations, temporal variations in industrial activ-

ity, and limited spatial coverage of sensors. Addressing these aspects through denser, high-resolution sensor 

networks and automated adaptive control could further enhance system responsiveness and predictive accu-

racy. Overall, this framework provides a scalable, data-driven approach for industrial pollution management. It 

supports public health protection, environmental sustainability, and the design of adaptive filtration strategies 

in Cameroon and comparable industrial regions. 
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