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Abstract

This study investigates the extraction, purification, stability, and applications of anthocyanins, which are natural pigments
known for their strong antioxidant properties. Anthocyanins are widely used in the food, cosmetic, and pharmaceutical
industries due to their health benefits and vibrant coloration. The research examines different extraction and purification
methods, including solvent extraction, ultrasound-assisted extraction, and chromatography, aiming to enhance both yield and
stability. Additionally, it analyzes key environmental factors such as pH, temperature, and light exposure that impact
anthocyanin stability. The findings highlight anthocyanins' potential in disease prevention, particularly their cardiovascular and
anti-cancer properties. Their role as natural, safer alternatives to synthetic colorants in food packaging and cosmetics is also
emphasized. However, challenges related to their stability and large-scale industrial application persist. Future research should
focus on optimizing processing techniques, improving encapsulation methods, and expanding their commercial viability. The
study contributes to the development of sustainable, health-focused products across multiple industries.
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1. Introduction

The term "anthocyanin" comes from the Greek words
"flower" and "blue." Natural pigments that belong to the
flavonoid family are called anthocyanins. The most
significant pigments found in vascular plants are
anthocyanins. They are safe and simple to incorporate into
aqueous media, which makes them appealing for usage as
naturally occurring water-soluble colorants. These pigments
are what give some plants' flowers and fruits their glossy
orange, pink, red, violet, and blue hues (Ozen & Eksi, 2017,
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2456-1878; Cisowska & Hendrich, 2011, 1-158; Teresa et
al., 2013, 1804-1816; Landi et al., 2015, 0098-8472). The
aglycon forms of anthocyanins, sometimes referred to as
anthocyanidins, are made up of hydroxyl and methoxy
groups arranged in different locations and have as their
structural base the flavylium ion or 2-phenylbenzopyrilium.
The number and configuration of hydroxyl and methoxy
moieties have allowed for the identification of over 635
anthocyanins. The six most widely known anthocyanidins in
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plants are malvidin, cyanidin, peonidin, delphinidin,
petunidin, and pelargonidin (Fig. 1) (Wrolstad et al., 2005,
423-428; Yan et al., 2023, 59).
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Fig. 1: Types of Anthocyanins and Their Natural Sources

Plants can be red, magenta, or blue due to the presence of
anthocyanins, which are naturally occurring water-soluble
pigments of flavonoids, in the vacuoles of their flowers,
fruits, stems, and leaves. The stability and safety of natural
pigments are higher than those of manufactured ones.
Among these, anthocyanins are among the greatest natural
alternatives to synthetic pigments and have been utilized
extensively because to their safe and beneficial biological
properties (Kaur et al., 2021, 1-14; Xue et al., 2024, 2815).
These pigments also give some plants their vivid orange,
pink red, violet, and blue colors in their fruits and flowers.
The flavylium cation is frequently used to represent
anthocyanins in a mildly acidic aqueous solution (pH 2).
(Fig. 2) Through acid-base, water addition-elimination, and
isomerization events, anthocyanins achieve equilibrium and
change into a range of colorful and colorless forms at the pH
levels found in food, plants, and the digestive system
(between pH =2 and pH = 8) (Le et al., 2019, 468; (Verma
et al., 2023, 1366-1373). Anthocyanins give flowers, fruits,
and vegetables their vibrant appearance and aid in attracting
animals, which promotes pollination and seed distribution.
revealed that anthocyanins may also play a role in shielding
plants from UV-induced harm. Additionally, they protect
DNA and the photosynthetic system from strong radiation
fluxes and act as antioxidants. Other potential roles of
anthocyanins, such resistance to drought or protection from
cold stress, are linked to actions specific to certain plant
classes (Ranaet al., 2023, 280-286; Janeiro & Brett, 2007,
1779-1786). However, the potential medical benefits of
plant anthoacyanins have been extensively researched. For
example, preventing cardiovascular diseases (CVDs) and
having anti-inflammatory, anti-cancer, anti-obesity,
antimicrobial, and antidiabetic properties. Additionally,
given their influence on the food sector, the usage of ACNs

2

Basic Sciences Sector, The Department of Chemistry 33

as natural colorants, preservatives, and functional additives
is examined. Additionally, it is said that they are used in the
cosmetic industry because of their anti-aging and skin-
protective qualities, which makes them desirable for
skincare formulas (Cardoso et al., 2015, 702-709; Teng et
al., 2020, 339-346).

Flavylium cation

Fig. 2: Flavylium Cation Structure of Anthocyanins.

Environmental factors such pH, temperature, light,
antioxidants,and metal ions can particularly affect
anthocyanins, changing their chemical structure and
resulting in color changes as well as a reduction in their
biological activity and utilization (Le et al., 2019, 468; Nile
et al., 2015, 60-68).

2. Methods of Research and the tools used
2.1. Extraction of Anthocyanins from Red Cabbage

Materials and Reagents

Red cabbage — 50 g

Ethanol (96%) — diluted to 70% with distilled water
Citric acid (Lemon salt) — used to adjust Ph
Distilled water

Extraction Procedure

Preparation of the Extraction Solvent: Ethanol (96%) was
diluted with distilled water to achieve a final concentration
of 70%. The volume ratio was calculated using the dilution
formula:

Where: C; V1= C, V2

C1=96% (initial ethanol concentration)

V1 = volume of 96% ethanol (to be determined)
C. = (desired ethanol concentration)

V. = final total volume of solution

o O O O

Assuming a total final volume of 100 mL, the required
ethanol volume is: V1= (70 x 100) / 96

Thus, 72.9 mL of ethanol (96%) was mixed with 27.1 mL
of distilled water to obtain 100 mL of 70% ethanol.
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Extraction Process:

o The 50 g of finely chopped red cabbage was submerged
in the prepared 70% ethanol solution.

o Citric acid was added to adjust the pH to approximately
3-4, enhancing anthocyanin stability and solubility.

o  The mixture was allowed to soak for 24 hours at room
temperature in a sealed container, ensuring complete
extraction.

o After the extraction period, the solution was filtered to
remove solid residues.

o The ethanol was evaporated using mild heat to
concentrate the anthocyanins.

o  After evaporation, 13.4 mL of anthocyanin-rich extract
was obtained.

2.2. Qualitative Identification of Anthocyanins

To confirm the presence of anthocyanins, a simple pH-based

test was conducted:

e A small portion of the extracted solution was divided
into test samples.

e The samples were exposed to different pH conditions
using acidic (lemon juice) and alkaline (baking soda)
solutions.

e Avisible color change was observed: red-pink in acidic
conditions and green-blue in alkaline conditions,
confirming the presence of anthocyanins.

2.3. Formulation of Anthocyanin-Infused Lip Balm

Materials and Ingredients

Shea butter — 16 mL

Beeswax — 10 mL

Coconut oil — 8 mL

Lanolin —4 mL

Anthocyanin extract — 1.2 mL
Berry flavoring — 0.8 mL

Preparation Procedure

1. Melting Phase: Shea butter, beeswax, coconut oil, and
lanolin were combined and melted together in a double
boiler at 60—70°C to ensure homogeneity.

2. Incorporation of Anthocyanins: Once the mixture was
fully melted, the anthocyanin extract was carefully
added. Lanolin was crucial for stabilizing the
anthocyanins in the oil-based formula, as it has
ampbhiphilic properties that aid in dispersing water-
soluble compounds into lipophilic bases.

3. Flavor Addition: Berry flavoring was added to enhance
the sensory appeal of the lip balm.

4. Molding and Solidification: The liquid mixture was
poured into 8 small lip balm molds (each
approximately 5 mL in capacity). The molds were left
at room temperature until the lip balm solidified.
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Observations and Final Product Evaluation

e The lip balm had a smooth, uniform texture with a
slight pinkish hue due to the anthocyanin infusion.

e Stability tests showed no phase separation, indicating
proper emulsification of the anthocyanins within the
formulation.

The product exhibited a pleasant berry aroma and
provided a moisturizing effect upon application.

3. Discussion
3.1. Chemical structure and types

Even though anthocyanins' chemical structure plays a
significant role in determining their potential function,
because of their unique chemical makeup, anthocyanins are
characterized by an electron deficit and are highly reactive
to ROS (reactive oxygen species), also known as free
radicals; as a result, they are regarded as powerful natural
antioxidants (Janeiro & Brett, 2007, 1779-1786; Pervaiz
etal., 2017, 2).

) conew
Anthocyanidin
R,
|
=~ __-OH
HO L; |
o i | 3 [ T "Ry
bo - ~ O
-0;-), j OH
g e
i J"{ < L3 "2 Anthocyanidn
[+ ” " " Palargonchin
y o oM " Cyanidin
o oM oM Dolphinidin
oM OCH3  Petunisin
OCH3I MW Poonidin
QCHI  OCH3  Malvigin

Fig. 3: Chemical structure of Anthocyanidin

In nature, anthocyanins are mostly found as heterosides. A
flavonoid skeleton with a C6-C3-C6 configuration, also
referred to as a flavilium ion or 2-phenylbenzopyrilium
cation, is the structural basis of the aglycon form of
anthocyanins, also known as anthocyanidin. This skeleton is
made up of two aromatic rings, A and B, joined by a caring
with two double bonds, which gives the C-ring a positive
charge and displays hydroxyl and methoxyl groups in
different positions (Camaraetal., 2022, 5133; Enaru et al.,
2021, 1967). Both synthetic and naturally occurring
anthocyanins range from yellow to purple, depending on the
complexation in the B-ring, the limiting pH, the phase of
anthocyanin accumulation, especially in organic molecules,
and Nature contains large amounts of the six primary
anthocyanidin types: malvidin (Mv), pelargonidin (Pg),
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petunidin (Pt), delphinidin (Dp), cyaniding (Cy), and
peonidin (Pn) (Celli et al., 2017, 20; Salimi et al., 2021,
246). Fruits and vegetables that contain anthocyanidins are
connected to one or more glycosidic units. Additionally,
sugars can be acylated with various organic acids and
connected as mono, di, or triglycosides.Position 3 of the
aglycon is always where the glycosidic units are connected
to the anthocy-anidin by either aor B linkage (Liu et al.,
2018, 52; Landi, 2015, 170-177). Positions 5 and 7 are
associated with extra sugars in the anthocyanin molecule,
and less often, positions 30 and 50. The most prevalent
sugars that create anthocyanins are glucose and galactose in
hexoses and rhamnose, arabinose, and xylose in pentoses.
Common acylating agents include ferulic and sinapic acids,
as well as cinnamic acids, often p-cinnamic or caffeic acid.
Aliphatic acids include oxalic, succinic, malic, malonic, and
acetic acids (Bahreini et al., 2024, e31795; Bonerz et al.,
2007, 355-364). An enormous range of anthocyanins can be
found in nature.the amount of hydroxylated groups, the kind
and quantity of attached sugars to their structure, the
aliphatic or aromatic carboxylates bonded to the sugar in the
molecule, and the location of these bonds are the primary
distinctions between them. Their biological potential is
directly influenced by the quantity of hydroxyl groups, the
degree of acylation and glycosylation, the catechol residue
on the B ring, and the oxonium ion on the C ring (Fig. 3)
(Vermaetal., 2023, 1366-1373; Castafieda-Ovando et al.,
2009, 859-871). The six more prevalent anthocyanidins
found in fruits and vegetables are as follows: Cy 50%, Dp
12%, Pg 12%, Pn 12%, Pt 7%, and Mv 7%. The glycoside
derivatives that are more prevalent in nature are 3-
monosides, 3-biosides, 3,5-, and 3,7-diglucosides; the
presence of the 3-glucoside derivatives is 2.5 times more
common than that of the 3,5-diglucosides; and the most
prevalent anthocyanin is Cy-3-glucoside (Silva et al., 2007,
374-382; Constantin & Istrati, 2022, 1084).

3.2. Sources

ACN-rich fruit include red or violet grapes, cranberries
blackberries, raspberries, blueberries, strawberries, and
cherries. These substances are also found in considerable
amounts in vegetables like red cabbage, eggplant, and red
onions, particularly those that have a reddish or purplish
color (Fig. 4) (Khoo et al, 2017, 779;
Mohammadalinejhad & Kurek, 2021, 3936).

Flowers like roses and hibiscus, as well as legumes like black
soybeans, are noteworthy for their detectable ACN
concentration. ACN levels are known to be higher in herbal
and spice ingredients such as black elderberry, bilberry, and
blackcurrant. Furthermore, the amount of ACNs is
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influenced by some varieties of maize, such purple corn, and
cereals like black rice (Castafieda-Ovando et al., 2009,

859-871; Kalschne et al., 2019, 30-35).
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Fig. 4: Food sources Rlchest in Anthocyanlns

The natural acidity of berries, which include glycosides of
cyanidin, is the reason for the diversity in anthocyanin
(ACN) content among varieties. The stability and
composition of ACNs are impacted by the acidic
environment, resulting in a variety of profiles among berries.
Interestingly, cyanidin-derived glycosides are more
frequently discovered in berries than malvidin, peonidin, and
petunidin. This could be because some fruit varieties have
fewer biosynthetic routes or are more susceptible to
degradation (Nile et al., 2015, 60-68; Guo et al., 2022,
7573-7591). This variance emphasizes how intricately
genetic  predispositions, metabolic  processes, and
environmental factors interact to shape the ACN
composition of berries. The primary ACN found in mulberry
fruit is C3G, which is followed by cyanidin-3-rutinoside
(C3R). Five ACNSs, including C3RG, C3RGa, C3G, C3Ga,
and C7G, were found in mulberry fruit using high-speed
counter-current chromatography. Pomegranates (Punica
granatum) are known for having a high amount of ACN, and
its antioxidant qualities are attributed to delphinidin-3,5-
diglucoside, cyanidin-3,5-diglucoside, and pelargonidin-
3,5-diglucoside (Enaru et al., 2021, 1967; Awika et al.,
2004, 293-301).

Because it manifests as a reddish-purple pigment that
resembles magenta, cyanidin is primarily found in berries
and other red vegetables in nature. Pelargonidin is a red
pigment that is freely present but gives fruits their red color
and flowers their orange tint (Liu et al., 2018, 52; Silva et
al., 2017, 3072-3083). Delphinidin gives flowers their blue
hue by appearing as a blue, reddish, or purple pigment in the
plant. Petunidin, a dark red or purple water-soluble
methylated anthocyanin, is frequently found in purple
flowers and blackcurrants (Celli et al., 2017, 20; Anggraini
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et al., 2020, 5893-5900). The magenta pigment known as
peonidin is another methylated anthocyanin that is widely
present in red wines, berries, and grapes. A purple pigment,
malvidin is an O-methylated anthocyanin that gives some
flowers their blue hue. It is the primary pigment in red wines.
Delphinidin, cyanidin, and pelargonidin are therefore
frequently found in fruits, but peonidin and petunidin are the
most common anthocyanins in flowers (Mozos et al., 2021,
811; Gongalves et al., 2022, 2272).

3.3. Factors
3.3.1. PH

An indication of pH is anthocyanin. Red flavylium cations,
which are extremely stable, are the predominate form of
anthocyanins at low pH values (<3). The distinctive brilliant
red hue seen in acidic conditions is provided by this type (He
etal., 2016, 132-145). These pigments change into colorless
pseudobases when the pH reaches moderate values (4-5).
Anthocyanins exhibit a violet or purple hue at neutral pH.
They convert to blue quinoidal bases at higher pH values (8-
9), which causes noticeable color changes and decreased
stability. Under normal circumstances, these structural
changes may be reversible, but exposure to high
temperatures may cause them to become irreversible
(Fossen et al., 1998, 435-440).

3.3.2. Temperature

Another element that contributes to the destabilization of the
anthocyanin molecular structure is temperature; when the
temperature rises, the degree of anthocyanin degradation
increases. We hypothesize that the hydrolysis of the 3-
glycoside structure, which provides protection for unstable
anthocyanin, may be the cause of the rapid degradation of
anthocyanin at higher temperatures (Laleh et al., 2006, 90-
92; Bakhshayeshi et al., 2006, 428-433). Heat processing is
frequently used to preserve and extend the shelf life of food
while also ensuring food safety. The application of high
temperatures for particular processing times might result in
noticeable changes like color, anthocyanin levels, and
antioxidant capacity, depending on the intended shelf life
and the food's functional properties (Oancea, 2021, 1337).

3.3.3. Light

Another element that influences anthocyanin stability is
light. Light has two effects: first, it speeds up their
decomposition; second, it is essential for their synthesis in
living tissues, encouraging the buildup of pigments (Verma
et al., 2023, 1366-1373; Khayyat et al., 2020, 955-968).
Interestingly, the greatest loss of anthocyanins occurs when
exposed to fluorescent light. These substances give many
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plants, including berries and grapes, their vivid hues because
anthocyanins have an excellent ability to absorb visible light
(Junior et al., 2023, 565).

3.3.4. Co-pigmentation

The chemical relationships between pigments and other
(often colorless) organic molecules in the solution—often
referred to as cofactors—cause the phenomena of co-
pigmentation. It stabilizes the anthocyanins' colorful
structural forms and intensifies their hue (Sari, 2016, 422-
430).

When combined with anthocyanins, the co-pigments
stabilize the anthocyanin pigments by either a bathochromic
shift in the absorption spectra (UV-Vis region) or a
hyperchromic action, depending on the acidity of the
solutions. Through their delocalized n-electron systems, the
co-pigments may attach to the structural forms of
anthocyanins that lack electrons (Amongne et al., 2020, 23).
Numerous substances are being studied as co-pigments,
including as flavonoids, alkaloids, amino acids, organic
acids, nucleotides, polysaccharides, metallic ions, and
anthocyanins themselves (self-association). According to
researchers, depending on the type of co-pigments, the co-
pigmentation reactions needed to intensify and change the
color of anthocyanin pigments may take place through intra-
or intermolecular interactions (Bimpilas et al., 2016, 39-46).

3.3.5. Metallic interaction

Metal co-pigmentation is a technique used in the food
industry. Co-pigmentation with positively charged alkaline
earth metals or with poor metals (+2, +3) produces most
powerful color effects. Only molecules generated from
cyanidin, delphinidin, and petunidin among anthocyanins
may chelate metals because of the free hydroxyl groups in
the B ring. The most prevalent metals that can combine with
anthocyanins are potassium (K), tin (Sn), magnesium (Mg),
copper (Cu), and iron (Fe) (Pramananda et al., 2021,
012104).

3.3.6. Self - Association

Anthocyanins have the ability to bond with one another; this
interaction is known as self-association. Because a greater
concentration of anthocyanins is required to develop and
detect this phenomenon, the resultant complex does not
exhibit a degree of connection as strong as co-pigmentation.
In the case of neutral species, some self-association contacts
are stronger than others, but they can be destabilized because
of the rejection between negatively charged anionic bases
and positively charged flavylium cations (Gen¢dag™ et al.,
2022, 100238).
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3.3.7. Effect of the solvent

Antioxidants have been extracted from plant materials,
including fruits, vegetables, and other foods, using a variety
of solvent combinations in the literature. Water, ethanol,
methanol, acetone, and their water mixes are the most
commonly used solvents for phenolic chemical extraction
(Boeing et al., 2014, 48). For the extraction of phenolics,
moderately polar solvents (ethanol) are better than highly
polar solvents (deionized water) or less polar solvents (ethyl
acetate, acetone, etc.). Organic solvents (such as methanol,
ethanol, or acetone) and water-based solvents (such as pH
differential buffers) are the two primary solvents utilized for
anthocyanin extraction. In an acidic environment, both
extract anthocyanins (Taghavi et al., 2023, 1833).

3.3.8. Metal complexation

Complexes with divalent or trivalent cations can be formed
by anthocyanins that have two or more vicinal hydroxyl
functionalities (mostly cyanidin, delphinidin, and petunidin
glycosides). This complex formation is linked to both
anthocyanin stabilization and a significant bathochromic
shift in the absorption spectrum. The most common metals
present in anthocyanin complexes are tin, copper, iron,
aluminum, magnesium, and potassium (Jackman et al.,
1987, 201-247). Color diversity is also influenced by certain
metalloanthocyanin complexes; it has been observed that a
number of metals complex with anthocyanins can change the
color of pigments, particularly toward blue tones (Bahreini
et al., 2024, e31795).

3.3.9. Ascorbic Acid

As an antioxidant, ascorbic acid is important for human
health. Additionally, because vitamin C levels show how
food deteriorates during and after processing, it is essential
for food processing and storage. According to certain
studies, anthocyanins break down more quickly and lose
color when ascorbic acid is present. Electrophilic substances
such ascorbic acid, hydrogen peroxide, and bisulfites are
thought to target the nucleophilic sites of anthocyanins
(Enaru et al., 2021, 1967; Farr & Giusti, 2018, 744).

3.3.10. Oxygen

An important aspect influencing anthocyanins' strength is
their unsaturated chemical structure, which makes them
extremely sensitive to oxygen. The breakdown of
anthocyanins is accelerated by oxygen exposure, which
causes color loss or the development of brown compounds.
In order to stop heat degradation, oxygen molecules must be
eliminated. High temperatures and oxygen are especially
detrimental to anthocyanin stability, as several investigations

6

Basic Sciences Sector, The Department of Chemistry 37

have shown (Kim et al., 2022, 102065; Cavalcanti et al.,
2011, 499-509).

3.4. Methods of extraction
3.4.1. Solvent extraction method (SEM)

The most popular technique for extracting anthocyanins is
SEM. It can be divided into water extraction and organic
solvent extraction, as well as cold and hot extraction,
depending on the temperature at which it is extracted.
According to studies, anthocyanins can be successfully
collected in the following circumstances: Time spent
extracting: 5 minutes to 4.2 hours. Temperature range: 34.7—
52.03°C (Xue et al., 2024, 2815).
Methanol, ethanol, and acidified water are common solvent

s used in anthocyanin extraction. However, there are toxicol
ogical issues with the usage of ethanol and methanol. On th

e other hand, subcritical water extraction is said to be a mor
e ecologically friendly technique that uses acidified water a

t high temperatures (110-

160°C) and pressures (40 bars). This method improves anth
ocyanin stability and solubility (Khoo et al., 2017,
779). Solubility, effectiveness, and environmental impact ar
e all important considerations when choosing a solvent (Ijo

d et al., 2022, 17255). Notwithstanding SEM’s simplicity
and convenience of use, its practical applications are limited
by a number of serious drawbacks, including long extraction
durations, high solvent consumption, and low efficiency
(Tan et al., 2022, 100306).

3.4.2. Ultrasound assisted extraction (UAE)

An eco-friendly technique that improves the extraction of
bioactive components while using fewer organic solvents is
ultrasound-assisted extraction (UAE). UAE breaks down
cell walls with sound waves, which helps release bioactive
components and enhances the effectiveness and quality of
extraction (Shen et al., 2023, 106646). The efficiency of the
extraction procedure is greatly impacted by variables
including temperature, pressure, and ultrasonic intensity
(Dias et al., 2021, 105584). UAE uses frequencies between
20 and 2000 kHz for operation. This method is easy to use,
economical, and appropriate for extraction operations of all
sizes (Soumya et al., 2019, 280-285). In order to boost
production and lessen its negative effects on the
environment, UAE can be used in conjunction with methods
including enzyme-assisted extraction, microwave heating,
and green solvents (Fu ef al., 2020, 104726).

3.4.3. Supercritical fluid extraction (SFE)

The supercritical fluid extraction (SFE) method consists of
two main stages: extracting the target compound with a
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supercritical fluid and then rapidly removing the fluid by
adjusting temperature or pressure (Tena & Asuero, 2022,
286). SFE is recognized as an environmentally friendly and
sustainable extraction technique. Supercritical carbon
dioxide (CO2) is widely used as the primary solvent due to
its non-toxic nature, cost-effectiveness, and ability to protect
extracts from oxidation. To facilitate the extraction of polar
compounds like anthocyanins, ethanol is often utilized as a
co-solvent (Jiao & Pour, 2018, 237-244). SFE outperforms
traditional extraction methods in terms of efficiency and
reduced solvent usage. Studies have identified that the
optimal conditions for extracting anthocyanins from Indian
blackberries are 50°C and moderate pressure exceeding 100
bar. Adding 10% ethanol as a co-solvent significantly
enhances the process’s efficiency and selectivity (Wang et
al., 2021, 101394). Innovations in SFE include hybrid
techniques such as enzyme-assisted and ultrasound-assisted
SFE, which boost efficiency, lower costs, and reduce
extraction time. Another advancement is subcritical CO2
extraction, which combines supercritical CO2 with ethanol
for improved results (Pazir et al., 2020, 14950). Despite the
high initial costs of SFE, refining parameters like pressure,
extraction duration, and co-solvent integration can make the
process suitable for industrial applications. Further research
should prioritize optimizing operational conditions and
evaluating the economic viability of large-scale production
(Wozniak et al., 2017, 322).

3.4.4. Microwave assisted extraction (MAE)

In the Microwave-Assisted Extraction (MAE) process, polar
molecules in the food and solvent absorb electromagnetic
energy in the microwave range, which results in ion
migration and dipolar rotation. Plant cells are selectively
affected by microwaves, which cause the water within the
cell to evaporate and the cell wall to experience high
pressure. The cell wall is ruptured and heated as a result of
this process, which facilitates the solvent’s penetration and
the movement of materials from the cell to the solvent
(Orcid et al., 2023, 2255). Anthocyanins from a variety of
plants, including lavender and blueberries, have been
extracted using MAE. According to studies, boosting
microwave power elevates the temperature, which improves
the extraction of anthocyanins but may also cause heat

sensitive chemicals to degrade. Low-pressure circumstances
or innovations such as nitrogen-protected and vacuum MAE
have been used to improve the technique and lessen the
adverse effects of heating (Putra et al., 2023, 88-98). Other
methods have also been proposed, including Pressurized
Microwave-Assisted Extraction (PMAE) and Solvent-Free
Microwave Extraction (SFME). These techniques increase
yields, decrease solvent use, and speed up extraction times.
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Anthocyanin extraction also employs other pressure fluid
extraction methods, such as Pressurized Liquid Extraction
(PLE) and Supercritical Fluid Extraction (SFE) (Yigit ef al.,
2021, 16120). Even though MAE is more efficient than
traditional techniques at increasing yields and using less
solvent, issues with anthocyanins’ thermal stability and the
requirement for extractor design optimization for large-scale
applications still exist (Grigoras et al., 2012, 51-58).

3.5. Methods of purification
3.5.1. Column chromatography method

One popular technique for isolating and purifying
anthocyanins is column chromatography. It operates by
taking advantage of variations in anthocyanin distribution
coefficients between the solid and mobile phases. Common
adsorbents include polyamide resins, Sephadex-100, and
macroporous resins. Because of their high adsorption
capacity, quick pace, affordability, and reusability,
macroporous resins are very useful. Despite its efficacy,
column chromatography's small-scale capacity limits its use
in industrial settings (Shen et al., 2023, 106646).

3.5.2. Membranes Separation method

Membrane separation is a physical procedure that separates
and purifies target substances, such as anthocyanins, using
selective permeable membranes. Membranes for micro-
filtration (MF), ultra-filtration (UF), and nano-filtration (NF)
are frequently utilized. This technology's broad range of
applications, low energy consumption, resilience to acids
and alkalis, and environmental friendliness make it useful.
Although membrane separation can improve the purity of
anthocyanins, its widespread use for natural anthocyanins is
limited by issues such as expensive costs and low
purification efficiency (Xue et al., 2024, 2815).

3.6. Applications of anthocyanin
3.6.1. Applications in medical field

eSS
S 9.

Fig. 5: Applications of anthocyanin in medical field

3.6.2. Antioxidant activity
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Food items that are wrapped in various food films may be
exposed to oxidation processes brought on by high
temperatures and UV radiation, which can denaturize
proteins and produce lipid peroxides. Since PVA-based
bioplastics lack antioxidant activity on their own,
functionalization with varying percentages of anthocyanins
was helpful in giving them antioxidant activity (Pantene et
al., 2024, 9922).

Anthocyanin is an antioxidant. The antioxidant properties of
anthocyanins can be explained by two distinct mechanisms:
single-electron transfer (SET) and hydrogen atom donor
(HAT). By removing a hydrogen atom from the antioxidant
(AH+), the free radical Re transforms into a more stable
product in the HAT process. The antioxidant (AH+) reduces
the oxidized intermediates into the stable form in the SET
process by giving the free radical an electron (Tena et al.,
2020, 451).

3.6.3. Anticancer activity

Anthocyanin inhibits tumors in a variety of ways, including
by altering signal transduction pathways, stopping the cell
cycle, and causing cancer cells to undergo autophagy or
death. The generation of oxidative DNA adducts is
decreased, Phase Il detoxification enzymes are stimulated,
and anthocyanins increase the cellular capacity to absorb
oxygen radicals (Lakshmikanthan et al., 2024, 101245;
Pausescu et al., 2022, 8103).

3.6.4. Antidiabetic activity

A disorder linked to insulin resistance, type-2 diabetes, is
less common when anthocyanin is present. Insulin
insufficiently promotes the transfer of glucose in skeletal
muscle and fat and insufficiently inhibits the generation of
glucose in the liver, a condition known as insulin resistance.
The mechanisms that hinder the pancreatic B-cell from
secreting enough insulin to overcome insulin resistance
(Ghosh et al., 2007, 200-208).

3.6.5. Protection from Urinary tract diseases

The health benefits of anthocyanins, such as their ability to
fight against urinary tract infections (UTIs), have been well
investigated. UTIs are a prevalent medical issue that
necessitates outpatient treatment. One major pathogen
implicated in UTIs is Escherichia coli (Pausescu et al.,
2022, 8103; Cerezo et al., 2020, 478).

3.6.6. Effects on cardiovascular diseases

CVD has an impact on anthocyanin. Anthocyanin has been
demonstrated to have positive benefits in human trials that
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evaluated risk factors for CVD following anthocyanin-
containing treatments. Supplementing with anthocyanins
enhanced the ability to efflux cholesterol (Sapian et al.,
2022, 1344; Tena et al., 2020, 451).

3.6.7. Applications in Cosmetics

As customers' interest in natural materials and organic
extracts grows due to worries about sustainability and health,
the cosmetics sector has seen substantial development.
Deodorants, hair colours, makeup, sunscreens, and skin and
hair care products are just a few of the goods that include
these substances (Camara et al., 2022, 5133; Rose et al.,
2018, 6790-6798). Anthocyanins (ACNSs), which are natural
pigments derived from plant-based sources such as
blackcurrants, red grapes, and berries, are among the most
promising ingredients in this field. They are used in a variety
of products, such as sunscreens, hair colours, and anti-aging
treatments (Camara et al., 2022, 5133). Because ACNs are
well-known for their capacity to prevent UV damage, lessen
oxidative stress, and accelerate wound healing, they are a
perfect fit for bio-based cosmetics. Nevertheless, these
compounds have stability issues when exposed to heat and
pH variations, which has led researchers to devise ways to
improve their stability, such as mixing them with clay
minerals or utilising them in novel emulsion systems (Table
1) (Camara et al., 2022, 5133; Stefinescu et al., 2023).
According to recent studies, they have a significant role in
improving skin health by blocking enzymes that damage the
skin and slowing the growth of skin cancer cells without
harming good cells. Because of these benefits, a lot of
companies have begun adding ACNSs to their goods in order
to offer skincare and environmental protection solutions.
These products demonstrate a move towards safer and more
efficient treatments by providing both photoprotection and
anti-aging effects (Table 1) [17] (Camara et al., 2022,
5133).

3.6.8. Anthocyanins as anti-aging

The main pigments found in pomegranate arils are
antioxidant substances called anthocyanins. Because oxidant
exposure has a significant role in ageing and skin
degeneration, anthocyanins may be able to protect the aged
skin (Table 1) (Stefanescu et al., 2023; Abdellatif et al.,
2019, 2020).

A Method for preparing a cream containing anthocyanin as
an anti-aging agent

Approach Using acidified methanol, anthocyanins were

extracted from fresh pomegranate arils and purified using
Sephadex LH-20 gel-column chromatography. Additionally,

Volume 2, July 2025



cold cream containing pomegranate anthocyanins was made
using the fusion process. Compatibility, irritation,
homogeneity, drug content, drug release, and stability tests
were all performed on the prepared cream. Additionally,
both human and abdominal rabbit permeation studies were
conducted (Table 1) (Abdellatif et al., 2019, 2020).

3.6.9. Anthocyanin as a hair dye

Because the anthocyanin profile from batch-to-batch
extraction of the raw material was consistent, extracted
anthocyanins from blackcurrant skin were tested as colours
for human hair in the initial tests (Table 1) (Rose et al., 2018,
6790-6798). A dye base formulation was created using the
extracted colourants in order to convert them into a practical
hair dye system. Reflectance colour measurement was used
to analyse the visible colour of the resulting hair dyeing, as
the dye base technology did not permit direct examination
by UV-vis or HPLC. Blackcurrant anthocyanin extract was
discovered to be capable of producing vivid blue colouring
on hair with high colour strength (Table 1) (Camara et al.,
2022, 5133).

3.6.10. Anthocyanin as a lipstick

A popular cosmetic item, lipstick has therapeutic,
psychological, and social advantages. However, because
certain formulations include high quantities of lead, it may
be harmful to your health. Antioxidants may be able to
mitigate the harmful effects of lead, according to research.
Cultivated in Myanmar, Hylocereus polyrhizus (red dragon
fruit) is a fruit high in anthocyanins and the antioxidant
pigment betacyanin, which may help lessen oxidative stress
brought on by lead. Because of this, it shows promise as a
natural lipstick colourant ingredient (Table 1) (Lourith et
al., 2023, 101005; Hoang et al., 2021, 106). Effective
formulations provided a healthier substitute by exhibiting
colour stability, antioxidant capacity, UV protection,
melanin suppression, and skin penetration. With a wide
range of colours and more than two years of shelf stability
under accelerated testing, the utilisation of ACN sources
with documented stability and health advantages proved
successful (Table 1) (Lakshmikanthan et al, 2024,
101245; Oliveira et al., 2020, 7464).

3.6.11. Properties of blackberries, grapes, apples in skin
care

In addition to being used in hair and fabric colours,
blackberries also contain bioactive chemicals that have been
shown to have anti-aging and skin-whitening properties.
Apple ACNs have demonstrated promise in treating skin
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disorders such inflammation and acne and lowering sebum
production (Table 1) (Oliveira et al., 2020, 7464).

In support of natural skinprotection, grape ACNs help
prevent and lessen UV-induced skin damage. In addition,
they support skin cell viability and whitening, prevent UVA
damage, block enzymes that break down skin, and fight
oxidative stress (Table 1) (Petrov et al., 2024, 1209).

3.6.12. Anthocyanin as natural sun protection agent

Anthocyanins offer a number of biological qualities that
help  preserve skin, including anti-inflammatory,
bacteriostatic, and antioxidant actions. Since anthocyanins
have UV absorption bands in the 280-320 nm range they can
physically block UV radiation directly (Table 1) (Camara et
al., 2022, 5133). In addition, anthocyanins can lessen
melanoma by influencing aberrant melanogenesis, which is
the process by which cells make melanin. Along with its
strong antioxidant qualities, anthocyanin's antibacterial
behaviour makes it more significant in a range of industries
by preventing the colonisation of microorganisms including
bacteria, fungus, and yeasts (Hoang et al., 2021, 106).

Table 1. Some plants containing anthocyanin and their
cosmetics uses

Plant Uses
Blackberries The skin creams, skin repairing
. sun protection factor , uv-A
Blueberries p
protection

Prevent premature skin aging and
wrinkling, moisture agents, UV
filters

Protect human

dermal fibroblasts against UV-A
induced Damage

Skin care, anti- aging properties
dehydration  wrinkle reduction,
Anti-aging, UV irradiation, or as a
cream of beauty (e.g., body care,
soap, face lifting creams), and later
a prescribed product can be
developed against eczema and
various dermatitis

skin whitening agents

collagen synthesis strengthens skin
tissues, reduction in pigmentation
loss, and improved growth and
health activities as a face cream
hair growth promoting activity, skin
whitening, anti-aging

Chokeberries

Strawberry

Mulberry

Sour cherry

Sweet cherry

Red cabbage

Hibiscus
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3.7. Applications in food and nutrition field
3.7.1. Food industry

Natural ingredients have a wide range of uses in the food
industry, as demonstrated by the use of cranberries in
beverages and dairy products and blackberries in desserts
and beverages, such as fruit-flavored drinks, isotonic drinks,
ready-to-drink  iced tea, and vitamin  waters
(Lakshmikanthan et al., 2024, 101245).

3.7.2. Food bio preservation

In the food industry, food safety and preservation are crucial
concerns. In order to keep harmful and rotting bacteria out
of food, preservatives are crucial. Anthocyanin has
antibacterial activity. The microcapsules demonstrated
antibacterial activity that anthocyanin microcapsules as a bio
preservative to extend the shelf life of baked food products
(Da Silva et al., 2025, 110901).

3.7.3. Anthocyanins for active and intelligent food
packaging

Food is shielded by food packaging from environmental
contaminants and other factors like dust, shocks, scents,
temperature, physical harm, light, microbes, and humidity.
Applying natural pigments based on anthocyanins to food
packaging materials can help to speed up commercial
adoption by serving as a shelf-life indicator (Singh et al.,
2018, 167-180).

3.7.4. Anthocyanin as natural pigment

Anthocyanin pigments as food additives and colorants in
order to increase customer acceptability of processed foods
and beverages, natural colorants and additives are used.
Among the pigments that are naturally produced from plants
and have a pleasing hue are anthocyanins (Khoo et al., 2017,
799; Cortez et al., 2017).

4. Conclusion

This research has provided an in-depth analysis of
anthocyanins, their chemical structure, stability, extraction
and purification methods, and their various applications
across medical, cosmetic, and food industries. The results
highlight anthocyanins’ significant role as natural pigments
and bioactive compounds with antioxidant, anti-
inflammatory, and therapeutic properties. The study also
emphasizes the challenges in maintaining anthocyanin
stability due to environmental factors like pH, temperature,
and light exposure. Based on the findings, it is recommended
that future research focuses on enhancing anthocyanin
stability using advanced extraction and encapsulation
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techniques. Additionally, further studies should explore their
potential as functional ingredients in pharmaceuticals,
nutraceuticals, and  sustainable food packaging.
Policymakers and industry professionals can utilize these
insights to promote the use of natural colorants, reducing
reliance on synthetic additives. By integrating these results
into practical applications, anthocyanins can contribute to
safer, more sustainable solutions in medicine, cosmetics, and
food production. Future studies should also consider
interdisciplinary approaches to explore new applications and
optimize their industrial use.
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