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Abstract

The ZnO/CuO/ZnFe;O4 nanocomposite was successfully synthesized using the co-precipitation
method and subjected to calcination at 800°C for 3 hours. The formation of the nanocomposite was
confirmed through X-ray powder diffraction (XRD), while its optical properties were evaluated using
UV-Vis diffuse reflectance spectroscopy. XRD analysis identified the presence of ZnO, ZnFe;Os, and
CuO phases, which correspond to JCPDS cards 36—1451, 22-1012, and 45—0937, respectively, with an
estimated crystal size of 30.58 nm. The UV-Vis diftfuse reflectance spectrum demonstrated that the
synthesized nanocomposite effectively absorbed both ultraviolet and visible light, exhibiting band gap
energy of 1.87 eV. Furthermore, 0.1 g of the co-precipitated ZnO/CuO/ZnFe>O4 nanocomposite was
applied in the photo-Fenton catalytic decolorization of a 50 mL remazol red solution (1.6 x 1075 M) in the
presence of 3% H,Ox, achieving an apparent rate constant of 0.005 min~ and a decolorization efficiency of
79.5%.
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1. Introduction: other organic compounds. Since water is essential
) ) for human life, its pollution is a major problem

One of the serious global challenges facing _ _ _ .
that requires urgent action and effective solutions
(Abdel-Raouf et al., 2019, 018-034). Photo-

oxidation technologies are among the most

humanity in this era is providing a sustainable
source of clean water. Many factors affect water
quality, such as industrial and agricultural waste,

] o _ _ promising and effective methods for water
which contain highly toxic pollutants like dyes and
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purification. They rely on the power of ultraviolet
light from sunlight to oxidize and reduce
pollutants in different environments (Iyyappan et
al., 2024, 100599-100615).

The essence of these methods lies in the
sunlight or UV light by
contaminated water in the presence of an oxidant
which  helps

oxidizing species that break down pollutants into

absorption  of

and catalyst, generate reactive

non-toxic molecules such as water, carbon
dioxide, and inorganic salts. Examples of these
oxidants include hydrogen peroxide, ozone, and
persulfate, which in turn produce reactive
oxidizing species under the influence of various
solar radiation components.

These methods offer several advantages, such as
easy process control, harmless byproducts, no need
for oft-gas treatment, and no requirement for
multiple treatment stages, in addition to the
complete removal of pollutants (Iyyappan et al.,
2024, 100599-100615; Khader et al., 2024,
100384-100398).

The eftectiveness of the photo-oxidation
process depends on the oxidizing agent involved.
One of the important oxidants is the hydroxyl
radical due to its characteristics, such as high
reactivity,  strong  oxidizing power,  easy
generation, short lifespan, and harmless nature
2020, 221-255).

through

(Sharma et al., They are

produced various  processes  such

hydrogen peroxide/ultraviolet photolysis

(H2O,/UV) that involves photolysis and oxidation
simultaneous reactions. UV light cleaves H,O, to
form of hydroxyl radicals. H;O, + huy — 2 "OH.
These radicals interact with organic compounds in

water,  generating  organic  radicals  that

subsequently react with dissolved oxygen to form

hydroperoxyl radicals. These newly formed
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radicals then trigger oxidation reactions, breaking

smaller, harmless

fragments (Khader et al., 2024, 100384-100398).
Another

down contaminants into

process 1s ozonation

(UV/Os3), where O3 i1s a powerful oxidant for

photolytic

organic and inorganic pollutants that produce
hydroxyl radicals and others through several
reactions (Khader et al., 2024, 100384-100398).
Photocatalysis 1s another technique used to treat
contaminant water through producing radicals. In
which a photocatalyst (such as TiO5) is illuminated
with energy exceeding its optical band gap, its
molecules absorb the energy, causing an electron
to move to the conduction band and leaving a
hole in the valence band. This electron can either
transfer to an acceptor in the solution or be
replaced by a donor transferring electrons to the
valence band at the solid—liquid interface. Without
effective electron and hole trappers, the stored
energy disperses due to recombination. The holes
in the valence band act as strong oxidants that
interact with H,O to produce 'OH hydroxyl
radical, while the conduction band electrons serve
as effective reductants which interact with surface
adsorbed O, to give O, “superoxide radical anions.
Those radicals contribute to the breakdown of
organic contaminants (Chakravorty & Roy, 2024,
100155-100173; Ikram et al., 2021, e00343-
e00385).

Additionally, "OH radicals can be produced
through the homogeneous Fenton reaction —
based process in which Fe”* salts react with H,O,
(Fenton process; Fe2+/H202; Fe?' + H,O, — Fe’* +
OH + "OH) or through Fenton-like process when
M™ compounds interact with HyO, (M"'= Fe*
Co™, Mn™, and Cu®/ H,O5) (Das & Adak, 2022,
100282-100302; Machado et al., 2023, 13995—
14032; Vorontsov, 2019, 103-112).
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Also, there 1is heterogeneous Fenton-like
reaction that involves the interaction of hydrogen
peroxide (H2O,) with solid compounds containing
iron, such as iron oxides, and others. The
heterogeneous nature of this reaction allows it to
occur at any pH level, in addition to being easy to
handle with the possibility of recycling. To
maximize the benefit of pollutant degradation
through exposure to UV and visible light and the
Fenton reaction, the photo-Fenton technique
emerges to be effective than Fenton process.
Through this reaction hydroxyl radical and others
are formed and undergo to degrade the water
contaminate according to the following steps
(Figure 1): (Machado et al., 2023, 13995-14032;
Ribeiro et al., 2024, 591-609; Vorontsov, 2019,
103-112)

Fe’* + hu — Fe*'+ "'OH

H,O; + hu — 2 'OH

RH + 'OH — H,O + R’

R’ + H,O, - ROH +'OH

R+ O, » ROO’

The target of our study is to discard remazole
red dye from textile waste water through photo-
Fenton process wusing ternary composite
photocatalyst. The removal of this dye using
ZnO/CuO/ZnFe,Oy4

photo-Fenton technology is not recorded yet.

nanocomposite  through

2. The Theoretical Framework

Semiconductor  photocatalysts have been
widely applied in photo-Fenton process due to
their optical and catalytic properties. Zinc oxide is
considered to be one of those photocatalysts that
has high photocatalytic activity in spite of its
limiting application in visible light due to its broad
Combing ZnO  with

band  gap. other
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semiconductors can enhance its photocatalytic
activity based on the charge transfer between them
that effectively separate the photogenerated
electrons and holes. Zinc ferrite (ZnFe,O.) and
copper oxide (CuQO) are semiconductors can be
used to expand the ability of ZnO to absorb visible
light rang due to their narrow band gaps. The
ternary ZnO/CuO/ZnFe,O4 nanocomposite has a
great photocatalytic activity compared to the
physical mixed of three oxides due to the
formation of 'OH radicals (Bi et al., 2024,
111066-111075).

Synthesizing the ternary nanocomposite from
ZnO, CuO, and ZnFe,O4 is limited in the
literature, and the following presents a review of
the existing studies.

Li et al.,
ZnO/CuO/ZnFe, O,

precipitating Zn**, Cu*and Fe™ from their salts

2018,

nanocomposite

prepared the
by co-

and tested different the calcination temperature to

reach the suitable temperature for ternary

composite preparation. Then they characterized
tools. The
photocatalytic activity of the ZnO/CuO/ZnFe,O,

the composite with different
nanocomposite as a photoFenton-like catalyt was
examined under ultraviolet (UV), visible (Vis) and
near-infrared  (NIR) for methyl orange
degradation.

Al-Gaashani et al., 2019, used a one-step
thermal decomposition method to prepare ZnO-
CuO-ZnFe,O4 nanocomposite from salts of Zn,
Cu and Fe as precursors at two different
temperatures (400 and 500 ©°C). The crystal
structure, the elemental compositions, the
morphology, the thermal stability and the light
absorption of prepared nanocomposites were
examined by diffraction,

X-ray X-ray

photoelectron spectroscopy, scanning electron
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microscope with  energy dispersive X-ray
spectroscopy, thermogravimetric analysis and UV—
Vis diffuse reflectance spectroscopy, respectively.
Bi et al.,, 2024, synthesized photo-Fenton
nanofiber of ZnFe,O4/ZnO/CuO composite by
electrospinning technique and characterized by X-
ray diffraction, X-ray photoelectron spectroscopy,
transmission electron microscopy, electron spin
resonance, ultraviolet-visible diffuse reflectance
spectroscopy and fluorescence spectroscopy. The

photocatalytic of the ZnFe,O4/ZnO/CuO photo-

Fenton like catalyst was evaluated by the
degradation of Rhodamine B.

Our study  focuses on  synthesizing
ZnO/CuO/ZnFe,O4 nanocomposite using co-
precipitation method, characterizing its chemical
structure and optical properties by XRD and UV-
Vis diffuse reflectance to employ it as a photo-

Fenton like catalyst for remazole red decolorizing.

Step1 Photolysis of Fe?*  €—
(a) Fe (II) production y
(b) "OH production
l Fe?!
Fed
Step I1 Fenton’s reaction
(a) "OH production
‘OH ~ Radical
> Combination
StepI ‘OH Oxidation of Organic
(a) Mineralization compounds
CO,+H,0+......

Figure (1): Schematic representation of photo—Fenton pathway (Sharma et al., 2020, 221-255)

3. Methods of Research and the tools

used

3.1. Chemicals and equipment
The chemicals utilized in this work include zinc
(Zn(NO3),.6H,O)  from

nitrate

nitrate  hexahydrate

WINLAB, cupric
(Cu(NO3),.3H,0) from Oxford and Ferric nitrate
(Fe(NO3);.9H,O) from LOBA

CHEMIE; nitrate salts were stored in a desiccator.

trihydrate

nonahydrate

4
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Remazol Red RB-133 with molecular structure
illustrated in Figure 2 was obtained from DyeStar.
(ALPHA AROMATIC),
(Biotech), 3%

hydrogen peroxide (from a local market) and

Sodium hydroxide

sodium carbonate anhydrous
deionized water were also used. The equipment
used for nanocomposite preparation is listed in

Table 1.
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3.2. PhotoFenton-like ZnO/ CuO/ ZnFe,0,
nanocomposite’s synthesis

The ZnO/ CuO/ ZnFe,O4 nanocomposite was
synthesized using co-precipitation method (Li et
al., 2018, 557-569). 1.34 g of zinc nitrate
hexahydrate (0.045 M), 0.36 g of cupric nitrate
trihydrate (0.015 M) and 0.81 g of ferric nitrate
nonahydrate (0.02 M) were homogeneously
mixed together in a total volume of 100 mL
deionized water. In 100 mL deionized water; 1.40
g of sodium carbonate (0.35 M) was mixed with
0.53 g of sodium hydroxide (0.05 M) to prepare a
mixed alkali aqueous solution. The mixed alkali
solution was gradually added to the previously
prepared mixed nitrate salt solution under
vigorous stirring until the pH of that solution
reached 10.5. The

continuously stirred for half an hour and then aged

for three hours (3 h) at 65°C. The slurry was

resultant  slurry  was

centrifugally separated and washed repeatedly with
deionized water. After that it was dried in a
furnace at 80°C for 24 hours. Finally the dried
solid was ground and calcined at 800°C for three
hours to obtain a black powder. A schematic
of ZnO/ CuO/ ZnFe,Oy4

nanocomposite’s synthesis process is shown in

representation

Figure 3.

3.3. Monitoring of PhotoFenton-like
Catalytic activity

The photofenton-like catalytic activity of ZnO/
CuO/ ZnFe,O4 nanocomposite was examined by
evaluating its effect on the decolourization of an
aqueous remazol red solution in the presence of
H,0O, under simulated solar light source using a
500 W Xe lamp. Approximately 0.1 g of ZnO/
CuO/ ZnFe,O4 nanocomposite was vigorously
stirred with 50 mL of 3% H,O, containing
remazol red (1.6x10°M) in darkness for 30
minutes to

reach  adsorption/desorption

equilibrium. Under continuous stirring, the
solution was exposed to light source and every 20
minutes, a small portion the sample was taken and
centrifuged at 7000 rpm for 30 minutes to remove
the fine particles of catalyst while the UV-vis
absorption of the dye was measured using a UV—

vis spectrophotometer.

3.4. Characterization of prepared photo-
Fenton like catalyst

The ZnO/ CuO/ ZnFe,O, nanocomposite's
chemical structure and optical properties were
examined through X- ray powder diffraction and
UV-vis diffuse
respectively. The used equipment model were
listed in Table 2

reflectance techniques,

Table 1: Preparation equipment.

Equipment

Model

Magnetic stirrer with hot plate

JENWAY 1000 magnetic stirrer (100-1000 r/min) with hot

plate
pH Meter JANWAY 3505 ion analyzer
_ Centrifuge model ECCO-LABOR-1 of a maximum speed
Centrifuge
9000 RPM
5
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Equipment Model

Oven HST 5020

Mutftle furnace VULCAN® A-550 Ney® mulftle furnace

Table 2: Characterization equipment.

Measured technique Equipment model

X-ray powder diffraction (XRD) radiation at 10 KV and 10 A

Bruker D8 Advance X-ray diftractometer with Cu Ka

Q=

O S
HN SO3Na
NaQ;S SO3Na

UV—vis diffuse reflectance (DR) JASCO V-530" spectrometer with BaSO, reference.
Ll
=
a5 O OH N
pNas O O_\\_‘IS:IJ H—{N N

Figure (2). Ramazol Red structure (Pavithra, 2017, 247-255)

Na,CO; o ntdf“gation
NaOH

Zn(NO,),.6H,0
Cu(NO,),.3H,0
B XFe(NO,)..9H,0

Calcination at
800°C for 3h

Figure (3). ZnO/ CuO/ ZnFe,O,nanocomposite’s synthesis
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4. Results of Research

4.1. XRD

The crystallographic structure and crystallite
size of the prepared photoFenton-like ZnO/
CuO/ ZnFe,Oy catalyst were examined using X-
ray diffraction (XRD) analysis. Figure 4 explores
its XRD pattern. At the calcination temperature
800 °C, the diftraction peaks belongs to hexagonal
ZnO phase, monoclinic CuO phase and the spinel
cubic ZnFe,O,4 phase are appeared and matched
with JCPDS cards no. 36—1451, 45-0937 and 22—
1012, respectively. For hexagonal ZnO, the
diffraction peaks are found at 31.87°, 34.65°,
36.70°, 47.81°, 56.89°, 63.02°,66.35°, 68.21° and
69.33° (20) angles. While CuO phase appears at 20
= 35.40°, 39.11° and 48.92°. The diftraction peaks
of ZnFe,O4 phase are 18.52°, 30.20°, 35.40°,
37.24°, 43.18°, 53.37°, 56.89°%nd 62.45°. The
diftraction peaks are slightly shifted to higher angle
(Lietal., 2018, 557-569).

The calculated crystalline size (L) is 305.8 A
(30.58 nm) based on the application of the
Scherrer equation [L = (0.9 * A)/(B * cos 8); where A
- 1.5406 A (for Cu Kq radiation), B is the full
width at half maximum (FWHM in radians), and 0
1s the diffraction angle (in degrees) | to the highest
intensity  peak  (Hassanzadeh-Tabrizi, 2023,
171914-171934).

4.2. UV-Vis diffuse reflectance
The UV-Vis diffuse reflectance (DR) of ZnO/
CLIO/ ZHF6204

800°C/3h was examined, resulting in the spectrum

nanocomposite calcined at
shown in Figure 5 (a) and optical data collected in
Table 3. From the intended spectrum, a broad
absorption band ranged from 200 to 700nm was
found with an absorption edge appearing at
664.11nm. Which emphasized that ZnO/ CuO/
ZnFe,O, photo-Fenton nanocomposite could
absorb ultraviolet light and visible light. ZnO/
CuO/ ZnFe,O4 nanocomposite’s band gap value
(E;) was calculated using the Wood and Tauc
equation (Soliman, 2023, 7280-7295);

a hv = constant (hv — E )™

by plotting (ahv)” as a function of hv. In this
context, the absorption coefticient (a) is given by
the equation: a = 2.303 x In(I,/I)/t, where In(Iy/I), t
and hv represent the absorbance, the sample
thickness and the photon energy of the incident
radiation, respectively. The parameter m
characterizes the optical transition type, with
m=0.5 for direct allowed transitions and m=2 for
indirect allowed transitions. It was found that the
calculated band gap equal to be 1.87 ¢V (Figure

5(by).

Table 3: ZnO/ CuO/ ZnFe,O, 's optical parameters obtained from UV-Vis DR .

Sample

Absorption edge (nm)

Band gap (eV)

ZnO/ CuO/ ZnFe,0y4

664.11 1.87

7
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Relative Intensity (a.u.)

ZnO/CuO/ZnFeZO4

s 7ZnO
e CuO
¢ ZnFe 2O ’

¢
| I I I I I
20 30 40 50 60 70 80
20 (degree)
Figure (4): XRD pattern of ZnO/ CuO/ ZnFe,0,
1.6-
1004 (a) (b)
80 o 124
g
=
. 60 2
X = 0.8
e =
40 §
3
= 0.4
20
0 T T T T T T 1 0.0 T T T T T T 1
200 300 400 500 600 700 800 900 1.6 20 24 28 32 36 40
A (nm) hv

Figure (5): (a) UV- vis/DR spectrum of ZnO/ CuO/ ZnFe,O, and (b) (¢hv)’ vs. photon energy

4.3. PhotoFenton-like Catalytic Activity of
ZnO/ CuO/ ZnFe,0,

The target contaminant used to examine the
photofenton-like catalytic capability of ZnO/
CuO/ ZnFe,O4 nanocomposite was Remazol Red
RB-133. The capability of ZnO/ CuO/ ZnFe,O4
nanocomposite to decolorize the remazol red dye’s
monitored by measuring its

solution was

8

(hv).

Basic Sciences Sector, The Department of Chemistry

absorbance spectra for 5 hours under simulated
solar illumination at 25°C. The remazol red’s
absorbance spectra were examined from 430 to
600 nm under illumination time as shown in
Figure 6, in which the absorbance peak of remazol
red dye at 525 nm was decreased gradually. That
indicates the dye molecule’s decolorization. After
of the dcolorization

5 hours illumination,

106
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efficiency (%D) of remazol red equal 79.5% with
correlation factor (R) = 0.98.

Decolorization efficiency (%D) formula that
was applied at 525 nm is: (Ara et al., 2013, 93-98):

Co _Ct

%D = %100 =A°A.%Atxloo

0

Here, Ao denotes represents the initial
absorbance of remazol red (corresponding to its
initial concentration Co), while A, represents the
interval t

absorbance at a specific time

(corresponding to the concentration Cy).

The decolorization kinetics of remazol red dye
was analyzed by calculating the reaction rate
constant using a pseudo-first-order model, as
expressed in the following equation (Elkahoui et
al., 2025, 23-51).

0.6

1 ZnO/ CuO/ ZnFe,0, (800°C/3h) 9
0.5+

for each 20 min,

A nm

Figure (6): Absorbance spectra of remazol red the

A
In (A—tj = _kappt

The apparent rate constant k,, is the slop of
In(A, / A,) versus time (t) plot to be 0.005 min ™'
(Figure 7). The observed apparent rate constant

of ZnO/ CuO/ ZnFe,Oy

nanocomposite as well as its specific rate constant

(kapp, minfl)

(K, min~' g ') were listed in Table 4.

The degradation ability of ZnO/ CuO/
ZnFe,O, is also found to be negligible in the
absence of irradiation, as seen in Figure (8) and in
the absence of H,O,, as shown in Figure (9),
typical

indicating that the reaction 1is a

photoFenton reaction.

0.0 ®  ZnO/ CuO/ ZnFe,0, (800°C/3h)

-0.5 1

In(A/A,)

-1.0

-1.54

0 50 100 150 200 250 300

Time (min.)

Figure (7): Dye’s Decolorization Rate in the

under simulated solar irradiation in the presence of presence ZnO/ CuO/ ZnFe,;0,.

ZnO/ CuO/ ZnFe,0;,.

9
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0.6

=

ZnO/ CuO/ ZnFe,0, (800°C/3h)
0.5 (Dark)

0.4 5h
0.3
0.2

0.1

0.0

450 500 550 600

A nm

Figure (8): Absorbance spectra of remazol red

without irradiation in the presence of ZnO/ CuO/

ZnFe204.

0.6

ZnO/ CuO/ ZnFe,0, (800°C/3h)
(Absence ofHJOI) \ 0

450 500 550 600

A nm

Figure (9): Absorbance spectra of remazol
red without H,O, in the presence of ZnO/
CUO/ ZnFe204.

Taple (4): kinetic parameters of remazol red decolorization by ZnO/ CuO/ ZnFe,O,

Sample K,pp min™' R K (min'g™) Decolorization %
Zn0O/ CuO/

0.005 0.98 0.05 79.5
ZHF€204

5. Interpretation of Results

From the previously mentioned data in the
ZnO/ CuO/ ZnFe,Oy4

nanocomposite was perfectly prepared using co-

above  sections,
precipitation method according to XRD pattern.
And depending on the UV-Vis DR spectra, there
1s the strong synergistic eftect between ZnO, CuO
and ZnFe,O, that absorb ultraviolet light and
visible light. In addition to the previously reported
studies (Al-Gaashani et al., 2019, 41-49; Bi et al.,
2024, 111066-111075; Li et al., 2018, 557-569)
that proved the photofenton catalytic ability of
ZnO/ CuO/ ZnFe,O4 to degrade the organic
dyes. We propose the photofenton mechanism of
remazol red removal via ZnO/ CuO/ ZnFe,O,
10). After the

equilibrium of remazol red on the surface of as-

(Figure adsorption/desorption

prepared nanocomposite was reached, the system

10
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was illuminated by simulated solar source. The
absorbed the
bandgap (E,) of its

nanocomposite energy of the
components and the
electrons/holes were formed; the electrons
transferred to the conduction band (CB), leaving

holes in the valence band (VB). Due to the strong

synergistic effect between ZnO, CuO and
ZnFe,Oy4, the photoinduced e/h" pairs are
perfectly separated.

hov
Zn0 —» h* + e~

hov
CuO - h*+ e~

hv
ZnF6204 i h+ + e”
As a result, the photoinduced charge carriers

undergo different reactions. The conduction band
electrons may interact with either the adsorbed

oxygen on the surface forming of superoxide

radicals (O,

Volume 2, July 2025



Oz +2e¢ — 027.
or with H,O, forming ‘OH .
H,O, + e~ — OH + 'OH

As well as, the electrons play vital role in

reduction/oxidation cycles of both Fe’*/Fe®* and
and Cu®" are

electron trappers and could be reduced to Fe** and

Cu®'/Cu* of the composite. Fe*

Cu’, respectively. Fe** and Cu” subsequently react
with H,O, to generate more "OH radicals and are

.. . 3 2
reoxidized again to Fe”"and Cu™.

H30;

Fe’' + ¢ — Fe>* =23 Fe* + OH+ "OH

2+ H30; 2. .
Cu"+e »>Cu" — Cu” +OH+ OH

Also photogenerated holes can react with H,O
or with OH" forming ‘OH

Dye

Simulated sun light

Dye
====h"
H,0 or OH VB

Dye r\

CO, +H,0

H,O +h" — H+ 'OH

OH +h" - 'OH

The reactive hydroxyl and superoxide radicals
(OH" and O, ) oxidize the adsorbed remazol red
molecules on the nanocomposite's surface and give
non-toxic byproducts.

OH | O,

product

+ Dye —-CO, +H,O+ degradation

H,0,

CO +H,0

(.
- ) uu___q,&:)

\ " To TN 4
ZnFe,0, I

Simulated sun light

‘ H,0 or OH-

Dye CO_ +H,0

H,0 or OH-

CO, +H,0

Figure (10): Proposed dye's decolorization mechanism using ZnO/ CuO/ ZnFe,0,.

6. Conclusion

The ZnO/CuO/ZnFe,Os nanocomposite was
successfully co-precipitated and calcined at 800°C
tor 3 hours. Then its formation was confirmed by

X-ray powder diffraction (XRD), and its optical

11
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properties were determined from UV-Vis diffuse
reflectance measurements. XRD analysis revealed
the presence of three phases: ZnO, ZnFe,O4, and
CuO, which correspond to JCPDS cards 361451,

22-1012, and 45-0937, respectively, with an

Volume 2, July 2025



average crystal size of 30.58 nm. The UV-Vis
diffuse reflectance spectrum confirmed that the
prepared nanocomposite absorbed both ultraviolet
and visible light, exhibiting band gap energy of
1.87 eV.

In this study, 0.1 g of the co-precipitated
ZnO/CuO/ZnFe,O4
successfully applied in the photo-Fenton catalytic

nanocomposite was

decolorization of an aqueous solution containing
50 mL of remazol red dye at a concentration of
1.6x107° M. The experiment was conducted in
the presence of 3% hydrogen peroxide (H>O,) to
enhance the generation of hydroxyl radicals
(OH). The catalytic reaction was monitored over
time, and the results demonstrated that the process
has an apparent rate constant of 0.005 min~" with a
moderately high decolorization efficiency of
79.5%,
synthetic dyes from wastewater. These findings
ZnO/CuO/ZnFe,O,

nanocomposite can serve as an eftective photo-

indicating the effective removal of

suggest that the

Fenton like catalyst in advanced oxidation
processes.

Based on the data obtained and the recorded
results, we recommend further examinations to
gain  more insights into the  prepared
nanocomposite. This includes using scanning
electron microscopy (SEM) and transmission
(TEM) for a

understanding of its morphology, as well as

electron microscopy deeper
measuring the specific surface area and pore size
distribution due to their significant impact on 1its
photocatalytic activity. Additionally, the Chemical
Oxygen Demand (COD) and Total Organic
Carbon (TOC) can be measured to ensure the

complete photocatalytic degradation of the dye.

Furthermore, the eftect of catalyst dosage,
hydrogen peroxide concentration, dye
12
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concentration, and the pH of the dye solution can
be studied due to their influence on the

decolorization efficiency.
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