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Abstract 

The ZnO/CuO/ZnFe₂O₄ nanocomposite was successfully synthesized using the co-precipitation 
method and subjected to calcination at 800°C for 3 hours. The formation of the nanocomposite was 
confirmed through X-ray powder diffraction (XRD), while its optical properties were evaluated using 
UV-Vis diffuse reflectance spectroscopy. XRD analysis identified the presence of ZnO, ZnFe₂O₄, and 
CuO phases, which correspond to JCPDS cards 36–1451, 22–1012, and 45–0937, respectively, with an 
estimated crystal size of 30.58 nm. The UV-Vis diffuse reflectance spectrum demonstrated that the 
synthesized nanocomposite effectively absorbed both ultraviolet and visible light, exhibiting band gap 
energy of 1.87 eV. Furthermore, 0.1 g of the co-precipitated ZnO/CuO/ZnFe₂O₄ nanocomposite was 
applied in the photo-Fenton catalytic decolorization of a 50 mL remazol red solution (1.6 × 10⁻⁵ M) in the 
presence of 3% H₂O₂, achieving an apparent rate constant of 0.005 min⁻¹ and a decolorization efficiency of 
79.5%. 
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1. Introduction: 
One of the serious global challenges facing 

humanity in this era is providing a sustainable 
source of clean water. Many factors affect water 
quality, such as industrial and agricultural waste, 
which contain highly toxic pollutants like dyes and 

other organic compounds. Since water is essential 
for human life, its pollution is a major problem 
that requires urgent action and effective solutions 
(Abdel-Raouf et al., 2019, 018-034). Photo-
oxidation technologies are among the most 
promising and effective methods for water 
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purification. They rely on the power of ultraviolet 
light from sunlight to oxidize and reduce 
pollutants in different environments (Iyyappan et 
al., 2024, 100599-100615). 

The essence of these methods lies in the 
absorption of sunlight or UV light by 
contaminated water in the presence of an oxidant 
and catalyst, which helps generate reactive 
oxidizing species that break down pollutants into 
non-toxic molecules such as water, carbon 
dioxide, and inorganic salts. Examples of these 
oxidants include hydrogen peroxide, ozone, and 
persulfate, which in turn produce reactive 
oxidizing species under the influence of various 
solar radiation components. 

These methods offer several advantages, such as 
easy process control, harmless byproducts, no need 
for off-gas treatment, and no requirement for 
multiple treatment stages, in addition to the 
complete removal of pollutants (Iyyappan et al., 
2024, 100599-100615; Khader et al., 2024, 
100384-100398). 

The effectiveness of the photo-oxidation 
process depends on the oxidizing agent involved. 
One of the important oxidants is the hydroxyl 
radical due to its characteristics, such as high 
reactivity, strong oxidizing power, easy 
generation, short lifespan, and harmless nature 
(Sharma et al., 2020, 221-255). They are 
produced through various processes such 
hydrogen peroxide/ultraviolet photolysis 
(H2O2/UV) that involves photolysis and oxidation 
simultaneous reactions. UV light cleaves H2O2 to 
form of hydroxyl radicals. H2O2 + h → 2 •OH. 
These radicals interact with organic compounds in 
water, generating organic radicals that 
subsequently react with dissolved oxygen to form 
hydroperoxyl radicals. These newly formed 

radicals then trigger oxidation reactions, breaking 
down contaminants into smaller, harmless 
fragments (Khader et al., 2024, 100384-100398).  

Another process is photolytic ozonation 
(UV/O3), where O3 is a powerful oxidant for 
organic and inorganic pollutants that produce 
hydroxyl radicals and others through several 
reactions (Khader et al., 2024, 100384-100398). 
Photocatalysis is another technique used to treat 
contaminant water through producing radicals. In 
which a photocatalyst (such as TiO2) is illuminated 
with energy exceeding its optical band gap, its 
molecules absorb the energy, causing an electron 
to move to the conduction band and leaving a 
hole in the valence band. This electron can either 
transfer to an acceptor in the solution or be 
replaced by a donor transferring electrons to the 
valence band at the solid–liquid interface. Without 
effective electron and hole trappers, the stored 
energy disperses due to recombination. The holes 
in the valence band act as strong oxidants that 
interact with H2O to produce •OH hydroxyl 
radical, while the conduction band electrons serve 
as effective reductants which interact with surface 
adsorbed O2 to give O2

-• superoxide radical anions. 
Those radicals contribute to the breakdown of 
organic contaminants (Chakravorty & Roy, 2024, 
100155-100173; Ikram et al., 2021, e00343-
e00385).  

Additionally, •OH radicals can be produced 
through the homogeneous Fenton reaction – 
based process in which  Fe2+ salts react with H2O2 

(Fenton process; Fe2+/H2O2; Fe2+ + H₂O₂ → Fe3+ + 
OH-+ •OH) or through Fenton-like process when 
Mn+ compounds interact with H2O2  (Mn+= Fe3+, 
Co2+, Mn2+, and Cu2+/ H2O2) (Das & Adak, 2022, 
100282-100302; Machado et al., 2023, 13995–
14032; Vorontsov, 2019, 103-112). 
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Also, there is heterogeneous Fenton-like 
reaction that involves the interaction of hydrogen 
peroxide (H₂O₂) with solid compounds containing 
iron, such as iron oxides, and others. The 
heterogeneous nature of this reaction allows it to 
occur at any pH level, in addition to being easy to 
handle with the possibility of recycling. To 
maximize the benefit of pollutant degradation 
through exposure to UV and visible light and the 
Fenton reaction, the photo-Fenton technique 
emerges to be effective than Fenton process. 
Through this reaction hydroxyl radical and others 
are formed and undergo to degrade the water 
contaminate according to the following steps 
(Figure 1): (Machado et al., 2023, 13995–14032; 
Ribeiro et al., 2024, 591-609; Vorontsov, 2019, 
103-112)  

Fe3+ + h → Fe2++ •OH 
H₂O₂ + h → 2 •OH 
RH + •OH → H₂O + R• 

R• + H₂O2 → ROH +•OH 
R• + O2 → ROO• 
The target of our study is to discard remazole 

red dye from textile waste water through photo-
Fenton process using ternary composite 
photocatalyst. The removal of this dye using 
ZnO/CuO/ZnFe2O4 nanocomposite through 
photo-Fenton technology is not recorded yet. 

 

2. The Theoretical Framework  

Semiconductor photocatalysts have been 
widely applied in photo-Fenton process due to 
their optical and catalytic properties. Zinc oxide is 
considered to be one of those photocatalysts that 
has high photocatalytic activity in spite of its 
limiting application in visible light due to its broad 
band gap. Combing ZnO with other 

semiconductors can enhance its photocatalytic 
activity based on the charge transfer between them 
that effectively separate the photogenerated 
electrons and holes. Zinc ferrite (ZnFe₂O₄) and 
copper oxide (CuO) are semiconductors can be 
used to expand the ability of ZnO to absorb visible 
light rang due to their narrow band gaps. The 
ternary ZnO/CuO/ZnFe2O4 nanocomposite has a 
great photocatalytic activity compared to the 
physical mixed of three oxides due to the 
formation of •OH radicals (Bi et al., 2024, 
111066-111075).  

Synthesizing the ternary nanocomposite from 
ZnO, CuO, and ZnFe₂O₄ is limited in the 
literature, and the following presents a review of 
the existing studies.  

Li et al., 2018, prepared the 
ZnO/CuO/ZnFe2O4 nanocomposite by co-
precipitating Zn2+, Cu2+and Fe3+ from their salts 
and tested different the calcination temperature to 
reach the suitable temperature for ternary 
composite preparation. Then they characterized 
the composite with different tools. The 
photocatalytic activity of the ZnO/CuO/ZnFe2O4 
nanocomposite as a photoFenton-like catalyt was 
examined under ultraviolet (UV), visible (Vis) and 
near-infrared (NIR) for methyl orange 
degradation.  

Al-Gaashani et al., 2019, used a one-step 
thermal decomposition method to prepare ZnO-
CuO-ZnFe2O4 nanocomposite from salts of Zn, 
Cu and Fe as precursors at two different 
temperatures (400 and 500 °C). The crystal 
structure, the elemental compositions, the 
morphology, the thermal stability and the light 
absorption of prepared nanocomposites were 
examined by X-ray diffraction, X-ray 
photoelectron spectroscopy, scanning electron 
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microscope with energy dispersive X-ray 
spectroscopy, thermogravimetric analysis and UV–
Vis diffuse reflectance spectroscopy, respectively. 

Bi et al., 2024, synthesized photo-Fenton 
nanofiber of ZnFe₂O₄/ZnO/CuO composite by 
electrospinning technique and characterized by X-
ray diffraction, X-ray photoelectron spectroscopy, 
transmission electron microscopy, electron spin 
resonance, ultraviolet-visible diffuse reflectance 
spectroscopy and fluorescence spectroscopy. The 
photocatalytic of the ZnFe₂O₄/ZnO/CuO photo-

Fenton like catalyst was evaluated by the 
degradation of Rhodamine B. 

Our study focuses on synthesizing 
ZnO/CuO/ZnFe2O4 nanocomposite using co-
precipitation method, characterizing its chemical 
structure and optical properties by XRD and UV-
Vis diffuse reflectance to employ it as a photo-
Fenton like catalyst for remazole red decolorizing. 

 
 

 

 
Figure (1): Schematic representation of photo-Fenton pathway (Sharma et al., 2020, 221-255)  

3. Methods of Research and the tools 
used 
3.1. Chemicals and equipment 

The chemicals utilized in this work include zinc 
nitrate hexahydrate (Zn(NO3)2.6H2O) from 
WINLAB, cupric nitrate trihydrate 
(Cu(NO3)2.3H2O) from Oxford and Ferric nitrate 
nonahydrate (Fe(NO3)3.9H2O) from LOBA 
CHEMIE; nitrate salts were stored in a desiccator. 

Remazol Red RB-133 with molecular structure 
illustrated in Figure 2 was obtained from DyeStar. 
Sodium hydroxide (ALPHA AROMATIC), 
sodium carbonate anhydrous (Biotech), 3% 
hydrogen peroxide (from a local market) and 
deionized water were also used. The equipment 
used for nanocomposite preparation is listed in 
Table 1.  
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3.2. PhotoFenton-like ZnO/ CuO/ ZnFe2O4 

nanocomposite’s synthesis  
The ZnO/ CuO/ ZnFe2O4 nanocomposite was 

synthesized using co-precipitation method (Li et 
al., 2018, 557-569). 1.34 g of zinc nitrate 
hexahydrate (0.045 M), 0.36 g of cupric nitrate 
trihydrate (0.015 M) and 0.81 g of ferric nitrate 
nonahydrate (0.02 M) were homogeneously 
mixed together in a total volume of 100 mL 
deionized water. In 100 mL deionized water; 1.40 
g of sodium carbonate (0.35 M) was mixed with 
0.53 g of sodium hydroxide (0.05 M) to prepare a 
mixed alkali aqueous solution. The mixed alkali 
solution was gradually added to the previously 
prepared mixed nitrate salt solution under 
vigorous stirring until the pH of that solution 
reached 10.5. The resultant slurry was 
continuously stirred for half an hour and then aged 
for three hours (3 h) at 65°C. The slurry was 
centrifugally separated and washed repeatedly with 
deionized water. After that it was dried in a 
furnace at 80°C for 24 hours. Finally the dried 
solid was ground and calcined at 800°C for three 
hours to obtain a black powder. A schematic 
representation of ZnO/ CuO/ ZnFe2O4 

nanocomposite’s synthesis process is shown in 
Figure 3. 

 
3.3. Monitoring of PhotoFenton-like 
Catalytic activity 

The photofenton-like catalytic activity of ZnO/ 
CuO/ ZnFe2O4 nanocomposite was examined by 
evaluating its effect on the decolourization of an 
aqueous remazol red solution in the presence of 
H2O2 under simulated solar light source using a 
500 W Xe lamp. Approximately 0.1 g of ZnO/ 
CuO/ ZnFe2O4 nanocomposite was vigorously 
stirred with 50 mL of 3% H2O2 containing 
remazol red (1.6x10-5M) in darkness for 30 
minutes to reach adsorption/desorption 
equilibrium. Under continuous stirring, the 
solution was exposed to light source and every 20 
minutes, a small portion the sample was taken and 
centrifuged at 7000 rpm for 30 minutes to remove 
the fine particles of catalyst while the UV-vis 
absorption of the dye was measured using a UV–
vis spectrophotometer. 

 
3.4. Characterization of prepared photo-
Fenton like catalyst  

The ZnO/ CuO/ ZnFe2O4 nanocomposite's 
chemical structure and optical properties were 
examined through X- ray powder diffraction and 
UV–vis diffuse reflectance techniques, 
respectively. The used equipment model were 
listed in Table 2 

  
 

Table 1: Preparation equipment. 

Equipment Model 

Magnetic stirrer with hot plate 
JENWAY 1000 magnetic stirrer (100-1000 r/min) with hot 
plate 

pH Meter JANWAY 3505 ion analyzer 

Centrifuge Centrifuge model ECCO-LABOR-1 of a maximum speed 
9000 RPM 

Basic Sciences Sector, The Department of Chemistry       103       Volume 2, July 2025



 

  6 

Equipment Model 
Oven HST 5020 
Muffle furnace VULCAN® A-550 Ney® muffle furnace 

 

Table 2: Characterization equipment. 

Measured technique Equipment model 

X-ray powder diffraction (XRD) Bruker D8 Advance X-ray diffractometer with Cu Kα 
radiation at 10 kV and 10 mA. 

UV–vis diffuse reflectance (DR) JASCO V-530" spectrometer with BaSO4 reference. 
 

 

 
Figure (2). Ramazol Red structure (Pavithra, 2017, 247-255)  

 

 

Figure (3). ZnO/ CuO/ ZnFe2O4 nanocomposite’s synthesis 
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4. Results of Research  
4.1. XRD  

The crystallographic structure and crystallite 
size of the prepared photoFenton-like ZnO/ 
CuO/ ZnFe2O4 catalyst were examined using X-
ray diffraction (XRD) analysis. Figure 4 explores 
its XRD pattern. At the calcination temperature 
800 °C, the diffraction peaks belongs to hexagonal 
ZnO phase, monoclinic CuO phase and the spinel 
cubic ZnFe2O4 phase are appeared and matched 
with JCPDS cards no. 36–1451, 45–0937 and 22–
1012, respectively. For hexagonal ZnO, the 
diffraction peaks are found at 31.87°, 34.65°, 
36.70°, 47.81°, 56.89°, 63.02°,66.35°, 68.21° and 
69.33° (2θ) angles. While CuO phase appears at 2θ 
= 35.40°, 39.11° and 48.92°. The diffraction peaks 
of ZnFe2O4 phase are 18.52°, 30.20°, 35.40°, 
37.24°, 43.18°, 53.37°, 56.89°and 62.45°. The 
diffraction peaks are slightly shifted to higher angle 
(Li et al., 2018, 557-569). 

The calculated crystalline size (L) is 305.8 Å 
(30.58 nm) based on the application of the 
Scherrer equation [L = (0.9 * λ)/(β * cos θ); where λ 
= 1.5406 Å (for Cu Kα radiation), β is the full 
width at half maximum (FWHM in radians), and θ 
is the diffraction angle (in degrees) ] to the highest 
intensity peak (Hassanzadeh-Tabrizi, 2023, 
171914-171934).  

4.2. UV-Vis diffuse reflectance 
The UV-Vis diffuse reflectance (DR) of ZnO/ 

CuO/ ZnFe2O4 nanocomposite calcined at 
800°C/3h was examined, resulting in the spectrum 
shown in Figure 5 (a) and optical data collected in 
Table 3. From the intended spectrum, a broad 
absorption band ranged from 200 to 700nm was 
found with an absorption edge appearing at 
664.11nm. Which emphasized that ZnO/ CuO/ 
ZnFe2O4 photo-Fenton nanocomposite could 
absorb ultraviolet light and visible light. ZnO/ 
CuO/ ZnFe2O4 nanocomposite’s band gap value 
(Eg) was calculated using the Wood and Tauc 
equation (Soliman, 2023, 7280-7295); 

𝛼 ℎ𝜐 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (ℎ𝜐 − 𝐸𝑔)
𝑚 

 
by plotting (αһυ)2 as a function of һυ. In this 

context, the absorption coefficient (α) is given by 
the equation: α = 2.303 x ln(Io/I)/t, where ln(I0/I), t 
and h represent the absorbance, the sample 
thickness and the photon energy of the incident 
radiation, respectively. The parameter m 
characterizes the optical transition type, with 
m=0.5 for direct allowed transitions and m=2 for 
indirect allowed transitions. It was found that the 
calculated band gap equal to be 1.87 eV (Figure 
5(b)). 

 
Table 3: ZnO/ CuO/ ZnFe2O4 's optical parameters obtained from UV-Vis DR . 

Sample Absorption edge (nm) Band gap (eV) 

ZnO/ CuO/ ZnFe2O4 664.11 1.87 
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Figure (4): XRD pattern of ZnO/ CuO/ ZnFe2O4  

  
Figure (5): (a) UV- vis/DR spectrum of ZnO/ CuO/ ZnFe2O4 and (b) (αh)2 vs. photon energy 

(hν).  
 

4.3. PhotoFenton-like Catalytic Activity of 
ZnO/ CuO/ ZnFe2O4  

The target contaminant used to examine the 
photofenton-like catalytic capability of ZnO/ 
CuO/ ZnFe2O4 nanocomposite was Remazol Red 
RB-133. The capability of ZnO/ CuO/ ZnFe2O4 
nanocomposite to decolorize the remazol red dye’s 
solution was monitored by measuring its 

absorbance spectra for 5 hours under simulated 
solar illumination at 25°C. The remazol red’s 
absorbance spectra were examined from 430 to 
600 nm under illumination time as shown in 
Figure 6, in which the absorbance peak of remazol 
red dye at 525 nm was decreased gradually. That 
indicates the dye molecule’s decolorization. After 
5 hours of illumination, the dcolorization 
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efficiency (%D) of remazol red equal 79.5% with 
correlation factor (R) = 0.98. 

Decolorization efficiency (%D) formula that 
was applied at 525 nm is: (Ara et al., 2013, 93-98): 

100 100 %D 






o

to

o

to

A

AA

C

CC

      
Here, A₀ denotes represents the initial 

absorbance of remazol red (corresponding to its 
initial concentration C₀), while Aₜ represents the 
absorbance at a specific time interval t 
(corresponding to the concentration Cₜ).  

The decolorization kinetics of remazol red dye 
was analyzed by calculating the reaction rate 
constant using a pseudo-first-order model, as 
expressed in the following equation (Elkahoui et 
al., 2025, 23-51).  

tapp

o

t k  
A

A
ln 











             
The apparent rate constant kapp is the slop of 

ln(At / Ao) versus time (t) plot to be 0.005 min−1 
(Figure 7). The observed apparent rate constant 
(kapp, min−1) of ZnO/ CuO/ ZnFe2O4 
nanocomposite as well as its specific rate constant 
(K, min−1 g−1) were listed in Table 4.   

The degradation ability of ZnO/ CuO/ 
ZnFe2O4 is also found to be negligible in the 
absence of irradiation, as seen in Figure (8) and in 
the absence of H2O2, as shown in Figure (9), 
indicating that the reaction is a typical 
photoFenton reaction.  

 
 
 
 

  
Figure (6): Absorbance spectra of remazol red the 
under simulated solar irradiation in the presence of 
ZnO/ CuO/ ZnFe2O4.  

Figure (7): Dye’s Decolorization Rate in the 
presence ZnO/ CuO/ ZnFe2O4. 
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Figure (8): Absorbance spectra of remazol red 
without irradiation in the presence of ZnO/ CuO/ 
ZnFe2O4. 

Figure (9): Absorbance spectra of remazol 
red without H2O2 in the presence of ZnO/ 
CuO/ ZnFe2O4. 

 

Taple (4): kinetic parameters of remazol red decolorization by ZnO/ CuO/ ZnFe2O4 
 

Sample Kapp min−1 R K (min−1g-1) Decolorization % 
ZnO/ CuO/ 
ZnFe2O4 

0.005 0.98 0.05 79.5 

 

 
5. Interpretation of Results  

From the previously mentioned data in the 
above sections, ZnO/ CuO/ ZnFe2O4 

nanocomposite was perfectly prepared using co-
precipitation method according to XRD pattern. 
And depending on the UV–Vis DR spectra, there 
is the strong synergistic effect between ZnO, CuO 
and ZnFe2O4 that absorb ultraviolet light and 
visible light. In addition to the previously reported 
studies (Al-Gaashani et al., 2019, 41-49; Bi et al., 
2024, 111066-111075; Li et al., 2018, 557-569) 
that proved the photofenton catalytic ability of 
ZnO/ CuO/ ZnFe2O4 to degrade the organic 
dyes. We propose the photofenton mechanism of 
remazol red removal via ZnO/ CuO/ ZnFe2O4  
(Figure 10). After the adsorption/desorption 
equilibrium of remazol red on the surface of as-
prepared nanocomposite was reached, the system 

was illuminated by simulated solar source. The 
nanocomposite absorbed the energy of the 
bandgap (Eg) of its components and the 
electrons/holes were formed; the electrons 
transferred to the conduction band (CB), leaving 
holes in the valence band (VB). Due to the strong 
synergistic effect between ZnO, CuO and 
ZnFe2O4, the photoinduced e-/h+ pairs are 
perfectly separated.  

𝑍𝑛𝑂 
ℎ
→  ℎ+ + 𝑒− 

𝐶𝑢𝑂 
ℎ
→  ℎ+ + 𝑒− 

𝑍𝑛𝐹𝑒2𝑂4  
ℎ
→  ℎ+ + 𝑒− 

As a result, the photoinduced charge carriers 
undergo different reactions. The conduction band 
electrons may interact with either the adsorbed 
oxygen on the surface forming of superoxide 
radicals (O2

-•)  
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O2 + 2 e- → O2
-•                       

or with H2O2 forming •OH . 

H2O2 + e- → OH-+ •OH                     

As well as, the electrons play vital role in 
reduction/oxidation cycles of both Fe3+/Fe2+ and 
Cu2+/Cu+ of the composite. Fe3+ and Cu2+ are 
electron trappers and could be reduced to Fe2+ and 
Cu+, respectively. Fe2+ and Cu+ subsequently react 
with H2O2 to generate more •OH radicals and are 
reoxidized again to Fe3+and Cu2+.  

Fe3+ + e- → Fe2+  
𝐻2𝑂2
→      Fe3+ + OH-+ •OH 

Cu2+ + e- → Cu+  
𝐻2𝑂2
→      Cu2+ + OH-+ •OH 

Also photogenerated holes can react with H2O 
or with OH- forming •OH  

H2O + h+ → H++ •OH                     

OH- + h+ → •OH                     

The reactive hydroxyl and superoxide radicals 
(OH• and O2

−•) oxidize the adsorbed remazol red 
molecules on the nanocomposite's surface and give 
non-toxic byproducts.  

OH• / O2
-• + Dye →CO2 +H2O+ degradation 

product  
 
 
 
 
 

 

 
Figure (10): Proposed dye's decolorization mechanism using ZnO/ CuO/ ZnFe2O4. 

 6. Conclusion  
The ZnO/CuO/ZnFe₂O₄ nanocomposite was 

successfully co-precipitated and calcined at 800°C 
for 3 hours. Then its formation was confirmed by 
X-ray powder diffraction (XRD), and its optical 

properties were determined from UV-Vis diffuse 
reflectance measurements. XRD analysis revealed 
the presence of three phases: ZnO, ZnFe₂O₄, and 
CuO, which correspond to JCPDS cards 36–1451, 
22–1012, and 45–0937, respectively, with an 
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average crystal size of 30.58 nm. The UV-Vis 
diffuse reflectance spectrum confirmed that the 
prepared nanocomposite absorbed both ultraviolet 
and visible light, exhibiting band gap energy of 
1.87 eV. 

In this study, 0.1 g of the co-precipitated 
ZnO/CuO/ZnFe₂O₄ nanocomposite was 
successfully applied in the photo-Fenton catalytic 
decolorization of an aqueous solution containing 
50 mL of remazol red dye at a concentration of 
1.6×10−5 M. The experiment was conducted in 
the presence of 3% hydrogen peroxide (H₂O₂) to 
enhance the generation of hydroxyl radicals 
(•OH). The catalytic reaction was monitored over 
time, and the results demonstrated that the process 
has an apparent rate constant of 0.005 min⁻¹ with a 
moderately high decolorization efficiency of 
79.5%, indicating the effective removal of 
synthetic dyes from wastewater. These findings 
suggest that the ZnO/CuO/ZnFe₂O₄ 
nanocomposite can serve as an effective photo-
Fenton like catalyst in advanced oxidation 
processes.  

Based on the data obtained and the recorded 
results, we recommend further examinations to 
gain more insights into the prepared 
nanocomposite. This includes using scanning 
electron microscopy (SEM) and transmission 
electron microscopy (TEM) for a deeper 
understanding of its morphology, as well as 
measuring the specific surface area and pore size 
distribution due to their significant impact on its 
photocatalytic activity. Additionally, the Chemical 
Oxygen Demand (COD) and Total Organic 
Carbon (TOC) can be measured to ensure the 
complete photocatalytic degradation of the dye. 
Furthermore, the effect of catalyst dosage, 
hydrogen peroxide concentration, dye 

concentration, and the pH of the dye solution can 
be studied due to their influence on the 
decolorization efficiency.  
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