

Egyptian Journal of Animal Health

P-ISSN: 2735-4938 On Line-ISSN: 2735-4946

Journal homepage: https://ejah.journals.ekb.eg/

Salmonellosis in Poultry Abeer Hassan Ali Saad

Animal Health Research Institute - Alexandria Branch

Received in 7/7/2025 Received in revised from 12/8/2025 Accepted in 13/9/2025

Keywords:

Poultry pullorum disease para typhoid Salmonella Gallinarum).

ABSTRACT

almonella infection considers a widely occurring bacterial disease which affects the intestinal tract. Salmonella bacteria present in both animal and human intestines and are expelled through stool or feaces. Humans often get infected by consuming contaminated water or food. Salmonella infections are categorized into serotypes nonmotile as Salmonella Gallinarum and Salmonella Pullorum, and motile paratyphoid Salmonella. Salmonella non typhoidal serotypes poses a risk to the public health due to its involvement in food poisoning and its origin as zoonotic agents so proper awareness of poultry farm and good personal hygiene of the poultry farm is crucial to avoid infection.

INTRODUCTION

Salmonellosis regarded as is a significant disease present in the world practically affecting poultry farm. The researches reported a lots of routes via which Salmonella species can be affected the farms of poultry (Nayak et al. 2004).

To control the disease the cleanliness and hygienic condition of the poultry house and management are very important (Mekademi and Saidani 2013).

Salmonella is one of the most significant zoonotic bacteria can make both human and animal suffering from gastrointestinal infection such as gastroenteritis, typhoid fever, paratyphoid fever, and can induce signs in both young and old person, and could be fetal (**Zhao et al. 2016**; **Li et al. 2014**).

The primary cause of foodborne illness in human is consuming many types of contaminated food such as meat of broiler and layer chicken and any contaminated kind of products as eggs, seafood, beef, vegetables, and contaminated water (Im et al. 2015; Orji et al. 2005).

When egg shell is contaminated with Salmonella because it can present on the egg shell then enter to the egg content when eggs are broken for preparing the food, which consider dangerous for humans. Therefore, removing of the infection source and using of disinfection can significantly lower the amount of Salmonella that contaminates the shell and the egg content (Omwandho and Kubota 2010). Salmonella pathogenicity islands (SPIs), responsible for Salmonella virulence which contains multiple genes, are clustered and responsible for the pathogenesis of the bacterium (Hensel 2004).

Corresponding author: Abeer Hassan Ali Saad, Animal Health Research Institute (AHRI), Alexandria Branch Agricultural Research Center (ARC), Giza, 12618, Egypt.

Email address:

DOI: 10.21608/ejah.2025.459923

Transmission of Salmonella

- 1- Horizontal transmission: spread via contaminated litter, excrement, contaminated food and water, the dust, some insects, the contaminated equipment, the sick poultry and rodents also the domestic animals and the wild birds.
- **2- Vertical transmission:** via the eggshell following laying and ovarian transmission.

Characterization of salmonella

Characterization of *salmonella* is Gramnegative bacteria facultative anaerobic **or** aerobic, can motile by using peritrichous flagella and non-spore forming bacteria (**Popoff et al. 2001**; **Chao et al. 2007**).

Salmonella are categorized into serotypes which based on anti gens reported as lipopoly-saccharide (O), the flagella (H) and the capsular (vi) antigens.

Salmonella Gallinarum and Salmonella Pullorum consider host-specific to poultry (Shivaprasad and Barrow 2008), but the Salmonella Typhi induce enteric fever in human while Salmonella Enteritidis and Salmonella Typhimurium cause disease in both poultry and human.

According to the geographical location there are present many other *Salmonella* motile serotypes can induce infection in the poultry (Hohmann 2001; Ogunleye et al. 2006; Cogan and Humphrey 2003).

Salmonella can live with in the environment such as poultry house for a considerable amount time (Foler et al 2011) and the poultry reported as the primary reservoir for the zoonotic disease.

Symptoms and clinical signs

The symptoms represented as loss of appetite and less size of the growth of the chick and become very weakness. The chicks get become near the sources of heat and light with drooping wings with closed the eyes. The watery diarrhea could appear. The salmonellosis is rare-

ly found in adult poultry.

Post-mortem lesions

• The liver with small necrotic foci, congested and enlarged.

Kidneys and spleen engorgement.

Anemia.

Anterior small intestine has enteritis.

Diagnosis

1- Isolation and identification:

Buffered peptone water was prepared to pre-enrichment by1:10 dilutions then incubated for 18 to 24 hours at 37C. The enrichment selective media used by added of 0.1 ml of the broth to 10 ml of the (RV) broth and then incubation for 24 hours at 37 degree aerobically (Al-Abadi and Al-,Mayah 2011). Then aloopful of the RV culture was streaked into Xylose Lysine Deoxycholate agar (XLD) plates then incubated at 37°C for 24 hours aerobically. when appear. The pure red colonies with black centers we suspected as the *salmonella* then transfer the colony to the slope for identification.

2- Biochemical tests:

Using the triple sugar iron agar and H2S production appear as indicator on (TSI), the indole test in tryptone broth as red ring and used Christensen's urea agar to urea splitting and sugar fermentation (ISO, 2002).

- **3- Serological test:** tube and rapid plate agglutination test (**Abdullah 2010**). Elissa assay can be used.
- 4- PCR test could be effective and more accurate to diagnosis of the *Salmonella* in all products such as eggs (Ahmed et al. 2014). Also PCR used as accurate method used in the diagnosis of the genes of the virulence of the Salmonella and their serotypes (Fekry et al. 2018).

Antibiotic susceptibility testing (AST)

Clinical and Laboratory Standards Institute (CLSI, 2018). By using the diffusion methods to the antibiotics. The resistance of Salmonella species is a big problem all over world (Chiu et al. 2002). Chloramphenicol reported as the

first antibiotic which made resistance to antibiotic, reported in 1960s, (Montville and Matthews 2008). The resistance by one or more antibiotic agents has increased all over the world with the Salmonella strains.

The antibiotics which used in treatments of the *Salmonella* infections such as ampicillin, trimethoprim—sulfamethoxazole, fluoroquinolones, cephalosporins and nalidixic (**Ochiai et al. 2008**). When the salmonella get resist to these agent called and referred to multi-drug resistant (MDR). Bad choice of the antibiotics in animal feed to increase the growth of the animals, and to treat lead to more resistance to antibiotic and increasing the problems (**Hyeon et al. 2011**).

Salmonella MDR strains can spread by animals to humans through eating the both food and water tainted with the animal's excrements and direct contact, this lead to a major risk of zoonotic disease (Holmberg et al. 1984). By using muller hinton agar media (disc diffusion methods) to choose the accurate antibiotic.

Virulence of Salmonella:

The combination of the chromosome and the plasmid factors are responsible for the *Salmonella virulence*. The genes included as inv, spv, fimA and stn considered as the genes responsible for salmonellosis (**Sabbagh et al .2010**) . invAgene codes with the protein of the inner membrane of bacteria, it is important for invasive of epithelia (**Darwin** and **Miller 1999**). Spv C gene, it is virulence-related gene of the plasmid which responsible to survive into the host cell (**Chiu** and **Ou 1996**).

Salmonella is a complicated phenomenon that causes diarrhea by production of toxin called enterotoxin, this enterotoxin and is the major cause of gastroenteritis (Chopra et al. 1987).

Zoonotic Importance of the Salmonella:

The zoonotic pathogen that cause numerous losses and responsible for sever losses and lead to a public health problem.

The patients who suffered from Salmonella

MDR strains are become more sickness and ill at its worst of the infection then the sickness is associated with high fever. The splenic and liver Enlargement and the swelling in the abdomen are usually present

People can infect by *salmonella* through eating contaminated food from animals as contaminated both meat and eggs, and any kind of contaminated food as vegetables, spices and seeds, consider as sources of infection. Another way to get infection is by contact with infected persons is (**Zaheer 2018**).

The Salmonella infectious dosage of is varies according to the characteristics of strain, the age of individual and the state of immunity. The infectious takes up to 100,000 bacteria for a normal immune system, healthy and adult to get sick. On the other hand, children or the elderly person even little amount of bacteria can make the disease. (Salmonella as azoonosis 2020).

The disease outcome causes dehydration due to diarrhea, nausea and vomiting. Fever could occur. But in immune-compromised persons, it leads to septicemia. The diseases usually not lead to the mortality in humans; (**Orpi 2020**).

Salmonellosis Prevention and Control

Salmonella Control by applied the HACCP. The poultry farms and house should be compelled to maintain hygiene and biosecurity (Wibisono et al. 2020). The Poultry must be with good health condition and from sources with clean and good places.

By controlling who the persons is allowed to enters the farm, *Salmonella* can prevent in the farm and keeping hands and feet clean and wearing protective clothing (Van Immerseel et al. 2009). The drinking water and floors of poultry farm should be sterilized. (Effendi et al. 2020).

Biosecurity and sources of contamination:

Maintaining adequate biosecurity is an important to keeping the infection out of the poultry farms. The primary source of contamination

and infection is the humans who acting as carriers and the entrance of the backyard of the chickens serves as the most important reservoir of these bacteria. The persons are the ones who come into the farm and get contact with an infected chicken and then spread the infection into a clean flock. So biosecurity policy program will prevent contamination in poultry farm.

CONCULSION

he main food-borne pathogenic bacterial are *salmonella*. The farm environment is one of the big source and reservoir for *Salmonella* MDR. Treatment of the *salmonella* MDR is very complicated, very expensive, and need long-time for treatment. Antimicrobial sensitivity test used to choice the accurate anti biotic.

REFERANCES

- Abdullah M. 2010. Incidence and antimicrobial susceptibility pattern of salmonella species in children attending some hospitals in kano metropolis, kano state nigeria. Bayero J. Pure and Appl. Sci.; 3 (1): 202 206.
- Ahmed A, Hajime F, Takuya M, Takayuki E. 2014. Isolation of Salmonella from Liquid Whole Eggs Sold in Retail Outlets in Egypt, Bangladesh and not in Japan. Advances in Animal and Veterinary Sciences 2 (7): 390 392.
- Al-Abadi IKM, AL- Mayah AAS. 2011. Isolation and identification of Salmonella spp. from chicken and chicken environment in Basrah province. African J. Biol. Sci., 7 (AEM.00598-1(.
- Chao MR, MetropolYeh CM. 2007. assessing the prevalence of the *Salmonella enterica* in poultry hatcheries by using hatched eggshell membranes. *Poult Sci* 2007; (86): 1651–5.doi: https://doi.org/10.1093/ps/86.8.1651.
- Chiu C, Ou JT. 1996. Rapid identification of salmonella serovars in feces by specific detection of virulence genes *inv* Aand *spv* C, by an enrichment broth culture-multiplex PCR combination

- assay. *J. Clin. Microbiol.* 1996;34 (10):2619–2622. [PMC free article] [PubMed] [Google Scholar].
- Chiu CH, Wu TL, Su LH, Chu C, Chia JH, Kuo AJ, Chien MS, Lin TY. 2002. The emergence in Taiwan of fluoroquinolone resistance in Salmonella enterica serotype choleraesuis. The New England Journal of Medicine. 346:413–419. doi: https://doi.org/10.1056/NEJMoa012261 [Crossref], [PubMed], [Web of Science. [Google Sschola
- Chopra AK, Houston CW, Peterson J.W, Prasad R, Mekalanos JJ. 1987. Cloning and expression of the *Salmonella* enterotoxin gene. *J. Bacteriol.* 1987; 169(11):5095–5100.[PMCfreearticle] [PubMed] [Google Scholar].
- Cogan TA, Humphrey TJ. 2003. The rise and fall of the *Salmonella* Enteritidis in the UK. *J Appl Microbiol* 2003; 94: 114–9.doi: https://doi.org/10.1046/j.1365-2672.94.s1.13.x
- Darwin KH, Miller VL. 1999. Molecular basis of the interaction of *Salmonella* with the intestinal mucosa. *Clin. Microbiol. Rev.* 1999;12(3):405–428. [PMC free article] [PubMed] [Google Scholar].
- Effendi MH, Cicilia R; Rahmahani J, Tyasningsih W. 2020. Public Awareness for Antimicrobial Resistance from *Escherichia coli* Isolated from Beef Sold on Several Wet Market in Surabaya, Indonesia. *Indian J. Public Health Res. Dev.* 2020, 11, 295–300. [Google Scholar] [CrossRef].
- Fekry E, Eman-Abdeen E, Ahmed MA, Alaa-Edin H. 2018. Molecular Detection of InvA, OmpA and Stn Genes in Salmonella Serovars from Broilers in Egypt. Alexandria Journal of Veterinary Sciences, 56 (1):69-74.
- Foley SL, Nayak R, Hanning IB. 2011. Population dynamics of the *Salmonella* enterica serotypes in commercial egg and poultry production. *Appl Environ Microbiol* 2011; 77: 4273– 9.doi: https://doi.org/10.1128/AEM.00598-11.

- Hensel M. 2004. Evolution of pathogenicity islands of Salmonella Enterica. Int. J. Med. Microbiol., 294:95–102.
- Hohmann EL, Nontyphoidal salmonellosis. *Clin Infect Dis* (2001); 32: 263–269. doi: https://doi.org/10.1086/318457.
- Holmberg SD, Osterholm MT, Senger KA, Cohen ML. 1984. Drug-resistant Salmonella from animals fed antimicrobials. The New England Journal of Medicine. 311(10):617–622. doi: https://doi.org/10.1056/NEJM198409063111001 [Crossref], [PubMed], [Web of Science ®], [Google Scholar].
- Hyeon JY, Chon JW, Hwang IG, Kwak HS, Ki m MS, Kim SK, Choi IS, Song CS, Park C, Seo KH. (2011). Prevalence, antibiotic resistance, and molecular characterization of *Salmonella* serovars in retail meat products. J Food Prot. 74:161–166. doi: https://doi.org/10.4315/0362-028X.JFP-10-327 [Crossref], [PubMed], [Web of Science ®], [Google Scholar].
- Im M.C, Jeong S.J, Kwon Y.K, Jeong O.M, Kang M.S, Lee Y.J.(2015). Prevalence and the characteristics of *Salmonella* spp. Isolated from commercial layer farms in Korea. *Poult. Sci.* 2015; 94(4):1691–1698. [PubMed] [Google Scholar].
- International Standard, (ISO, 6579/2002). Microbiology of food and the animal feeding stuffs-Horizontal method for detection of the Salmonella spp. 4th ed. Genev: International Organization for Standardization, 27str.
- Li Y, Xie X, Xu X, Wang X, Chang H, Wang C, Wang A, He Y, Yu H, Wang X, Zeng M. (2014). Nontyphoidal *Salmonella* infection in children with acute gastroenteritis: Prevalence, serotypes, and antimicrobial resistance in Shanghai, China. *Foodborne Pathog. Dis.* 2014;11 (3):200–206. [PubMed] [Google Scholar
- Mekademi K and Saidani K (2013). Contamination of broilers by the *Salmonella* non Typhi in Mitidja. J. Curr. Res. Sci. 2013, 1: 213-217.
- Montville TJ and Matthews KR.(2008). Food

- microbiology: an introduction. 2nd ed. Washington, USA: ASM Press. [Google Scholar]
- Nayak R, Stewart T, Wand RF, Lin J, Cerninglia CE, Kenney PB. 2004. The Genetic diversity and the virulence gene determinants of antibiotic-resistant *Salmonella* isolated from preharvest Turkey production sources. *Int. J. Food Microbiol.* 2004; 91:51–62. [PubMed] [Google Scholar].
- Ochiai RL, Acosta CJ, Danovaro-Holliday MC, Baiqing D, Bhattacharya SK, Agtini MD, Bhutta ZA, Canh do G, Ali M, Shin S. 2008. A study of the typhoid fever in five Asian countries: disease burden and implications for controls. Bulletin of the World Health Organization. 86:260–268. doi: https://doi.org/10.2471/BLT.06.039818 [Crossref], [PubMed], [Web of Science ®], [Google Scholar.
- Ogunleye AO, Ajuwape ATP, Adetosoye AI. 2006. Pathogenicity of the *Salmonella* Paratyphi A in pullets. *Revue d'elevage et de medicine veterinaire des pays tropicaux* 2006; 59: 5–9.
- Omwandho COA, Kubota T. 2010. Salmonella Enterica serovar Enteritidis: A minireview of contamination routes and limitations to effective control. Japan Agric. Res. Q., 44(1):7-16.
- Orji MU, Onuigbo HC, Mbata TI. 2005. Isolation of *Salmonella* from poultry droppings and other environmental sources in Awka, Nigeria. *Int. J. Infect. Dis.* 2005;9(2):86–89. [PubMed] [Google Scholar].
- Orpí JP. 2020. Importance of the Salmonellosis as a Zoonosis. Veterinary Digital. Available online: https://www.veterinariadigital.com/en/articulos/importance-of-salmonellosis-as-azoonosis/ (accessed on 16 July 2021).
- Popoff MY, Bockemühl J, Brenner FW. 2001. Supplement 2000 (no. 44) to the Kauffmann-White scheme. *Res Microbiol* 2001; 152: 907– 9.doi: https://doi.org/10.1016/S0923-2508(01)01274-8.
- Sabbagh SC, Forest CG, Lepage C, Leclerc

- JM, Daigle F. 2010. Uncovering distinctive features in the genomes of the *Salmonella enterica* serovars Typhimurium and typhi. *FEMS. Microbiol. Lett.* 2010; 305(1):1–13. [PubMed] [Google Scholar].
- Salmonella as a Zoonosis. SVA Natl. Vet. Institute. (2020). Available online: https://www.sva.se/en/our-topics/feed-safety/salmonella-as-a-zoonosis/ (accessed on 16 July 2021).
- Shivaprasad HL, Barrow. 2008. P. *Salmonella* infections: pullorum disease and fowl typhoid. In: YM Saif, AM Fadly, JR Glisson, eds. *Swayne and the editorial Board for the AAAP. Diseases of Poultry.* 12th edn: Blackwell publishing, 2008: 302–45.
- The Clinical Laboratory Standards Institute (CLSI). 2018. *VET08: Performance standards for antimicrobial disc susceptibility tests. Approved standard* (13th ed.). Clinical Laboratory Standards Institute.
- Van Immerseel F, De Zutter L, Houf K, Pasmans F, Haesebrouck F, Ducatelle R. 2009. Strategies to control *Salmonella* in the broiler production chain. *World's Poult. Sci. J.* 2009, *65*, 367–392. [Google Scholar] [CrossRef][Green Version].
- Wibisono FJ, Sumiarto B, Untari T, Effendi MH, Permatasari DA, Witaningrum AM. 2020. CTX Gene of Extended Spectrum Beta-Lactamase (ESBL) Producing *Escherichia coli* on Broilers in Blitar, Indonesia. *Syst. Rev. Pharm.* 2020, *11*, 396–403. [Google Scholar] [CrossRef].
- Zaheer T, Salmonellosis. 2018. A Concise Review of One of Major Zoonotic Meat Borne Illness. Poultry Industry. Available online: https://en.engormix.com/poultry-industry/articles/salmonellosis-concise-review-one-t41243.htm (accessed on 16 July 2021).
- Zhao X, Gao Y, Ye C, Yang L, Wang T, Chang W. 2016. Prevalence and characteristics of *Salmonella* isolated from freerange chickens in Shandong province,

China. *Biomed. Res. Int, 2016*: 8183931. [PMC free article] [PubMed] [Google Scholar