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ABSTRACT: This study develops a fractional stochastic framework for modeling epidemic spread, based
on a recently proposed fractional Wiener process. The proposed model generalizes the classical SIR
structure by incorporating fractional Brownian motion, which captures memory effects and long-range
dependencies observed in real-world epidemiological data. The system is formulated through stochastic
differential equations, using Itd stochastic calculus with fractional methods to describe transmission
dynamics under uncertainty. The analysis addresses existence, uniqueness, and qualitative properties of the
solutions to the fractional stochastic model. Numerical simulations are conducted to demonstrate the
system's behavior under various conditions and to illustrate the role of stochastic fluctuations in epidemic
progression. A variant of the model using a fractional Ornstein—Uhlenbeck process is also considered to
assess the influence of damping and noise. The results highlight the effectiveness of the proposed
framework in capturing complex epidemic behaviors and provide a mathematically robust approach for
analyzing disease transmission. This work offers valuable insights for researchers and contributes to the

broader development of stochastic modeling in epidemiology.

1. INTRODUCTION

Modeling the spread of epidemics under uncertainty remains a
central challenge in mathematical epidemiology. Traditional
deterministic models, while useful for capturing general trends,
often fail to account for the inherent randomness and memory-
dependent dynamics observed in real-world outbreaks. These
limitations may lead to oversimplified representations that do
not reflect the complex, time-dependent interactions among
individuals and their environments.

In recent years, fractional-order models have proved effective in
capturing the memory and hereditary characteristics observed in
epidemic dynamics. Although the present study does not adopt
Caputo-type derivatives, such formulations have been
successfully applied in several epidemic contexts, particularly in
modeling COVID-19 transmission dynamics [1]. Fractional
stochastic differential equations have emerged as powerful tools
for integrating stochastic fluctuations with long-range temporal
dependencies. These models simultaneously capture the
randomness of disease transmission and the memory effects
inherent in biological and social systems. Consequently, they
offer a robust framework for analyzing and forecasting epidemic
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behavior under uncertainty. This study introduces a fractional
stochastic model grounded in the fractional Wiener process
developed by El-Borai and EI-Nadi [2-9], which generalizes
classical Brownian motion by incorporating memory effects.
The model is formulated using stochastic differential equations
with fractional integrals and implemented within a generalized
SIR framework to investigate epidemic dynamics.

The study investigates the probabilistic properties of the
proposed system by analyzing the existence, uniqueness, and
asymptotic stability of its solutions. Numerical simulations are
presented to illustrate the impact of varying the basic
reproduction number R, on the epidemic peak and overall
disease spread. Furthermore, an extended version of the model
incorporating a fractional Ornstein—Uhlenbeck process is
considered to assess the impact of damping and stochastic
fluctuations [10].

By integrating advanced stochastic calculus with fractional-
order dynamics, this study presents a comprehensive modeling
framework that captures both randomness and memory effects
in disease transmission.
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This integrated approach enhances the understanding of
epidemic progression under uncertainty and offers valuable
insights for informing effective control strategies.

Fractional calculus extends classical differentiation and
integration to non-integer orders, allowing mathematical
models to incorporate memory and hereditary characteristics
in a mathematically consistent manner. This approach is
particularly valuable in epidemiology, where the present state
of disease dynamics is often influenced by historical
behavior. Fractional derivatives are especially effective in
representing long-term temporal dependencies and non-local
interactions in epidemic processes [11].

Stochastic integrals, particularly those driven by the Wiener
(Brownian) process, offer a powerful approach for modeling
the random fluctuations and uncertainties inherent in real-
world epidemics. These uncertainties may arise from
variability in human behavior, environmental conditions, and
the implementation of public health measures [12]. When
combined with fractional calculus, these tools provide a
robust framework that captures both memory effects and
stochastic disturbances. This integrated approach yields more
realistic representations of epidemic dynamics compared to
purely deterministic or classical stochastic models [13].

2. Fractional Stochastic System

To facilitate the understanding of the following model, we
provide the definitions of the main variables and parameters
used throughout the formulation:

S(t): Number of susceptible individuals at time t.

1(t): Number of infected individuals at time t.

R(t): Number of recovered individuals at time t.

B Transmission rate from susceptible to infected individuals.
y: Recovery rate of infected individuals.

R, Basic reproduction number.

a: Order of the fractional derivative 0 < a < 1.

o, Volatility of the susceptible population S(t).

o, Volatility of the infected population I(t).

b: The rate of birth from the infected to the susceptible state.

W (t): Standard Wiener process (Brownian motion), used to
model stochastic fluctuations as the integral of Gaussian
white noise.

Consider the following fractional stochastic system:
S(®) = S(0) + = [ (t — ) [~ £ 5(0) +

r(a)
1(6) b (1(0) +R(6))] d6 + -2 [(t —
0)*1 S(6)dW (6),
10 =10+ o[yt =0 [[5(0)1(6) -
I+ b)] do + 7= JL(t - ©)%1(0)dW(8),

R(t) = R(0) + — [[(t — ©)*"* [yI(0) — bR(0)]d6 —

I'(a)
[}t = ©)%[5,5(6) + 0, (0)]AW(D). 2.1)

The proposed fractional stochastic system extends the
classical SIR model by incorporating random effects through
a fractional Wiener process. This formulation introduces
memory into the transmission dynamics, capturing long-range
dependence often observed in epidemic processes. While
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comparable fractional stochastic methodologies have been
applied to other epidemic frameworks, including extended
forms such as the SIRS model [13], the present study focuses
specifically on the fractional stochastic SIR framework to
provide a clear and tractable analysis.

The following assumptions are made:
a) S(0)>0,1(0) > 0andR(0) > 0.

b) Population size N is constant and equal to the sum
of individuals in three classes.

c) The ratio between birth and death is one.

d) The rate of moving directly from the infectious state
to the susceptible state is equal to that from the
recovered to susceptible states.

While this assumption simplifies the analysis, future
extensions may consider time-varying population
dynamics.

The classical SIR model and the fractional stochastic SIR
model represent two distinct methodologies for simulating
infection diseases. While the classical SIR model relies on
deterministic parameters and has been foundational in
epidemiological modeling, it lacks the flexibility to reflect
real-world variability in transmission rates. In contrast, the
fractional stochastic SIR model integrates both fractional
calculus and stochastic elements, offering a more nuanced
representation of disease spread by capturing memory effects
and randomness.

Operating under a deterministic framework, the classical
model assumes fixed transition rates between the Susceptible,
Infected, and Recovered compartments. This rigidity limits its
ability to respond to dynamic changes in the effective
reproduction number observed in real outbreaks [14]. In
contrast, the fractional stochastic SIR model extends this
framework by incorporating fractional derivatives, which
capture memory effects and allow past states to influence
current dynamics [15]. By introducing stochasticity, it also
accounts for inherent randomness and uncertainty in infection
patterns [16].

Empirical findings indicate that the fractional stochastic
model often yields lower root mean square errors compared to
the classical formulation, particularly when the fractional
order lies between 0.93 and 0.99 [16]. Although the model is
computationally more demanding, it provides a flexible and
realistic framework for understanding epidemic dynamics and
capturing the complexity of epidemic processes, although it
may pose additional challenges in calibration and
interpretability.

3. Stochastic Integral Epidemic Model

The general model is presented in integral form, which
naturally arises in the context of fractional calculus. However,
for the special case when o = 1, the model is expressed in its
equivalent differential form for clarity and analytical
convenience.

Consider the case when a = 1:

St)=S(0)+ ft[—%S(O) +1(@)b(1(0) + R(0))]d6O

+0,5(0)dW (0),
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1(t) = 1(0) +f [%5(@)1(@) —I(y + b)]de
+ 0, f tI(@)dW(@),
0

R(t) = R(0) + [;[yI(0) — bR(0)]dO — [][0,S(6) +
a,1(0)]dW(0). (3.1)
It can be observed that

S +1()+R(t)=N=S(0)+1(0) + R(0),
This relation has been studied in several works, see [17-20].
Theorem 1. If § <y + b, then:
lim E[1()] = lim E(R() =0, lim E(S(6) =N

Proof. Consider the equation

v(t) = 1(0) + t(ﬁ —y —b)v(0)dO + o, f tv(@)dW(@).
0 0

Consider the following stochastic differential equation,

dx(t) = [0722 -B-v- b)] X(©)dt — o, X(£)dW (0),

day(t) = [%22 +(B-v- b)] Y(t)dt + o, Y ()adWw (),
The solution of these equations is given by
X(t) = e~ o2WO-(B-y-b)t
Y(t) = e 2w+ (B-y-b)t
Set v*(t) = X(t)v(t)
dv*(t) = X(©)dv(t) + v(t)dX(t) + G, (t) G, (t)dt
=X(O[((B -y — b)t)v(t)dt + a,v(t)dw(0)] +
v(0) [Z = (B -y - b)| X(D)dt - 3, X (D)dw(t) -
aZv(t)X(t)dt

0.2
dv* = —%Zdt, v*(t) = e” 7 '1(0),

2 2
v(t) = Y(£)e"2U(0) = ePWOHBr-Die= 7 (),
E[v(t)] = e#-7-2)1(0)
Thus }imE[l(t)] =0

It can be observed that

E[R()] = R(0) +y f

0

E[1(©)]d6 — b ftE[R(@)]dO
Consequently,

% eP E[R(D)]

e’ E[R(t)] =

=yeE[I(D)],
yf eP®E[1(0)]de,

eP"®E[RD] < vy J e e~ 0+v=B1(0)do,

E[R(6)] < 55 [e¥071¢ — e7]1(0).

If B<b+y,then
}im E[R(t)] =

Now S(t) +I(t) + R(t) = N, indicating that the population
size remains constant

E[S@O]+E[I(®)] +E[R®)] =

For analytical simplicity and to ensure a constant total
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population, we assume equal birth and death rates, as

commonly adopted in classical epidemic modeling
frameworks.
Thus
lim E[S®)] =
Theorem 2.

Let S(t),I(t) and R(t) be the solutions of the fractional
stochastic equations (2.1).

IfRy < 1,
Then:
lim E[S(6)] =
PI?O E[I(t)]=0 , lLrg E[R(®)]=0
Proof: consider the equation

V(t)—1(0)+mf(t— 0)* (B —y —b)r(0)do +

2 [y (= 0)% " v(0)aw (6),

BO1 = 100) + s [ -0 5=y
— b)E[v(8)]do
According to [21], we get

Efv(0)] = f “e. (0 TP (0)do

_ yoo (B-y-b)t%
=¥ el 1(0) Mittage-Leffer function

Hence,
E[I()] <E[v(t)]—0
ast —» oo
4. A Fractional Stochastic Epidemic Model Based
on Fractional Brownian Motion

Fractional indicates the use of fractional-order stochastic
processes, enabling the model to capture memory effects and
long-range dependencies in epidemic dynamics, thus
generalizing classical stochastic approaches.

To incorporate both long-memory effects and mean-reverting
random fluctuations into epidemic dynamics, we extend the
classical stochastic SIR model by introducing fractional
Brownian motion and a fractional Ornstein—Uhlenbeck
process.

Consider the following model:
dS(t) = uN — puS — WSI + yIldt — aSIdW, (),
di(t) = [W;SI —ul —ylldt + aSIdW, ().
where W, (t) is the fractional Brownian motion, constructed
by El-Borai and El-Nadi, see [2-9], o is the standard
deviation of the noise and W, (t) is the fractional Ornstein-
Uhlenbeck process defined by

dWy (t) = 03(B — Wy (D)) dt + 0,dW, (1),
This relation has been studied in [10],

Here o; > 0 is the speed of reversion, g, > 0 is the intensity
of volatility.

Setting
v(t) = Wy () =B,

we obtain
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dv(t) = —ozv(t)dt + a,dW,(t),
v(0) =By =B, Bo=W:(0).

The solution is given by
t

V() = e Bo = f) + 0y [ eI aw(s)
Hence, '
W (£) = o + 7% (B — B) + 0y [ ™% dW (s).
The expectation of W, (t) is given by
E[W; (©)] = Bo + €77 (Bo — B).
The variance of W, (t) is:

t a-1

s
* — 42 —2(t-s)o3
var[W, ()] a4f0e F(a)ds'

Notice that at o = 1,
E[W;@®)] =B +e (B — B),
2
04
* - __* 1 __ p—2toz i
var[W (t)] 20, [1—e™f3]
We aim to find a deterministic function G (t, @), such that
[fy e dW,(s)]dt = G(t, @) dW, (t).
We notice that:
L e=@=97s dw, (m)]dn = [, G, @) dW,(n) =
~ 1= e 9% aw (),

1 t
2l 1= e aw, oy

t 2
{ f G(n,a)dWa(S)} ]
0

t na—l
— 2
[ oy

=E

Thus, we have
a-—1 Sa—l

1 ft 2S t
— | (1—ets)0s —dszf G?*(s,a ds
7, ) T ® =), 69

Consequently, it follows that

t63 ey _ 2 ft[ ~(t-s)o: —2(t-s)az7 S5
= e 3—e 3] ds.
0 r(a)

r(a) o3
Hence, the stochastic process W, (t) can be expressed as:
Wy (©)dt = [B + (By — Be™*%]dt + 0,G(t, a) dW, (0).
Since given that S(t)+1(t)=N, it is sufficient to study the
fractional stochastic equation for I(t):

di(t) = [{B + (Bo — B)e **}(N — 1) —In—Iy]ldt +
0,0I(N —DdW,(t) (4.2)

With the initial condition 1(0) =1, € (0,N)

Theorem 3. For any given initial value I, € (0,N), the
fractional stochastic differential equation (2) has a unique
global positive solution 1(t) € (0,N) for all t >0, with
probability one,

P(I(t) e (O,N),vt=0)=1
Proof: Consider the following fractional stochastic model:
du = {B + (B — Be™ " (N — e)}du + {—(u+y)dt —
lotap b (N - e*)}dt 4.2)

4 r@
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With the initial value u(0) = I

It is clear that the coefficient of model 4.2satisfies the local
Lipschitz condition, thus there is a local solution u(t), of the
model 4.2, see [21].

Therefore, it is easy to check that I(t) = e*® is the positive
solution of model 4.1 with the initial value I.

Although the current study emphasizes theoretical
formulation and simulation, the proposed fractional stochastic
model is well-suited for parameter estimation based on
empirical data. The fractional order amay be estimated
through memory-sensitive residual minimization, generalized
least squares, or optimization of model fit against cumulative
case trajectories. The stochastic intensities o, and o, can be
inferred via maximum likelihood estimation or Bayesian
techniques. In particular, Markov Chain Monte Carlo
(MCMC) methods are highly effective for capturing latent
noise structures. Incorporating real-time epidemiological data
would enable dynamic model calibration, support real-world
forecasting, and inform data-driven public health decision-
making [19-22].

Numerical simulation of Stochastic Differential Equations
(SDEs) presents multiple computational challenges due to the
absence of closed-form  solutions, the stochastic
characteristics of the system, and the high demands of
convergence accuracy. Implicit schemes such as the backward
Euler method offer strong convergence properties but require
solving nonlinear equations at each time step, resulting in
increased computational cost. Furthermore, Monte Carlo
(MC) methods, which are widely used to approximate the
expectation of functionals of SDE solutions, suffer from slow

convergence rates of order 0(1\/‘1/2), demanding a large
number of samples to achieve desired accuracy. To address
this, Multilevel Monte Carlo (MLMC) techniques have been
developed to reduce total cost significantly while maintaining
the same accuracy level. Other numerical methods for SDEs
include the Euler—Maruyama method, Milstein method, and
stochastic Runge-Kutta methods, each with trade-offs
between accuracy, convergence, and computational efficiency
[23].

On the other hand, Fractional Differential Equations (FDES)
are characterized by memory effects and nonlocality, which
introduce considerable computational burdens. Time-
fractional derivatives require storing the entire solution
history, while space-fractional derivatives lead to nearly
dense matrices. The computational complexity of fractional
models typically scales worse than classical PDEs: for
instance, time-fractional equations may reach O(N2M), and
space-time fractional equations can grow as O(NM(M +
N)),where N and M denote the number of time steps and grid
points, respectively. Solving such models often necessitates
specialized schemes such as the finite difference method
(FDM) for fractional time and space derivatives, the finite
element method (FEM) for irregular domains, spectral
methods for high-accuracy needs, and fast Fourier transform
(FFT)-based methods for reducing complexity. Additionally,
short-memory principles and parallel computing are
frequently used to alleviate memory and performance
constraints [24].

In both cases, the selection of numerical methods must
consider the trade-offs between stability, accuracy,
computational cost, and the specific structure of the
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equations. The development and implementation of efficient
algorithms remain an active area of research, especially in
real-time simulation and data-driven forecasting contexts.

5. Application of the SIR Model in Epidemic
Modeling

The proposed epidemic models were simulated using a
discrete-time iterative scheme based on the explicit Euler
method. At each step, the numbers of susceptible, infected,
and recovered individuals were updated according to the
governing equations, providing a clear and widely accepted
approximation of the epidemic dynamics. Implementation
was performed in Python (Anaconda environment) using
standard scientific libraries, including NumPy, Pandas, and
Matplotlib, ensuring reproducibility and clear visualization of
the results.

In this section, we present numerical simulations to illustrate
the behavior of the proposed fractional stochastic epidemic
model. The aim is to demonstrate how different parameter
values, particularly the basic reproduction number Ro,
influence the epidemic dynamics over time.

To simulate the behavior of the epidemic model under various
transmission scenarios, we used a deterministic SIR
framework implemented in Python. The parameters S
(transmission rate) and y (recovery rate) were selected to
achieve specific basic reproduction numbers (R,), reflecting
different epidemic intensities. Initial conditions assume that
1% of the population is infected, with the remaining 99%
susceptible. The total population is normalized to 1. Each
simulation was run over a 60-day period to observe infection
dynamics, and the impact of R, values on peak infection
levels and timing was assessed. The model does not
incorporate real-world datasets but is designed to demonstrate
theoretical behavior based on commonly accepted parameter
ranges.

The simulations were implemented in Python using a
deterministic SIR framework to analyze how different values
of the transmission rate (8) and recovery rate (y) influence
the epidemic curve. By adjusting B and y, we generated
scenarios corresponding to various basic reproduction
numbers (R,), including R, = 5 (high), R, = 3 (moderate), and
R, = 1.5 (low). These values were selected based on ranges
reported in recent epidemiological literature. For instance, the
basic reproduction number Ro for COVID-19 has been
estimated to lie between 2.2 and 5.7 in early pandemic
assessments, according to public health reports and modeling
studies [25].

Rather than calibrating the model to real-world data, the
objective of this simulation was to explore the qualitative
behavior of the system under plausible epidemic conditions.
This approach highlights the flexibility of the model and its
ability to reflect key transmission dynamics without relying
on specific datasets.

Let S = y[0] denote the number of individuals not yet
infected, 1=y[1] the number of individuals infected, R=y[2]
the number of individuals recovered or died from the disease,
B=0.6 is the infected rate and y=0.025 is the recovery rate.

Figure 1 presents the results of a simulation with parameters
B = 0.6 and y = 0.025. The simulation illustrates a typical

epidemic trajectory in which the susceptible population
decreases over time, the number of infected individuals rises
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and subsequently declines, and the recovered population
steadily increases. This experiment is provided for illustrative
purposes and is not based on empirical data.

SIR model - §=0.600 y= 0.025

1000 1
800 -
600 - —— S = susceptible
| = infected
400 - — R = removed
200 1
0,

0 50 100 150 200

Figure 1. Simulation of the SIR Epidemic Model with
Transmission Rate (f=0.6) and Recovery Rate (y=0.025).

As shown in Figure 2, increasing the transmission rate
leads to a sharper and earlier peak in the number of infected
individuals, while lower values of g help flatten the curve and
spread the infections over a longer period.

SIR model - y = 0.04

800 - , B
— 0.200 — 0.700
- 0.300 0.800
g 6007 —— 0.400 —— 0.900
3 — 0.500 1.000
}= —— 0.600
= 400+
(1]
=
=]
=>
S 200
£
0,
0 50 100 150 200
time, t
Figure 2. Effect of Varying Transmission Rate

(B=0.2,0.03,...,1.0) on the Number of Infected Individuals
Over Time in the SIR Model with y=0.04.

The framework separates the population into categories using
the standard SIR notation defined in Section 2, where S(t),
I(t) and R(t) denote the susceptible, infected, and recovered
populations, respectively. A major assumption is that
recovered individuals acquire immunity to the disease.

We consider the total population N to be normalized to 1. The
initial state for the infectious category I, is the proportion of
the total population infected at time T,. The initial state for
the susceptible population S, is the remaining population N —
I,,, assuming no vaccination. It is also believed that there is no
individual found at the start. The model also assumes that the
population remains constant, meaning that there are no
additional births or deaths due to causes other than the
pandemic.

Online ISSN: 2974-3273



The epidemic initiates when susceptible individuals encounter
infectious individuals, leading to new infections over time.
The number of new infections is proportional to both the
susceptible and infectious populations, calculated as New
infection = BSI-> (l), where 8 represents the transmission
rate. New recoveries occur as a subset of the infectious
population either recovers or dies. The number of recoveries
is given by = New recovery = yl -> (II), where y is the
recovery rate.

The effects of new infections and recoveries on the
S,1 and R compartments are described as follows:

The susceptible population (S) decreases as new infections
occur:

S[T+1] =S[T] - new infections. [T]

The infectious population grows with new infections and
declines with new recoveries.

I[T+1] =I[T] plus new infections. [T] - New Recovery.

The recovered population grows as new recoveries occur.
R[T+1] =R[T] + New Recovery

An infection is considered an epidemic when it spreads over
time, the number of new infections exceeds the number of
new recoveries.

New infections lead to new recoveries (8SI > yI), as seen in
(I) and (II).

The effective reproductive number is defined as % > 1.

At the start of an epidemic, almost the entire population is
vulnerable, resulting in § = §, = 1.

Reproduction number = g, often known as the fundamental
reproduction number (Ry).

If Ry > 1, the infection becomes an epidemic; otherwise, it
dies off.

5.1. SIR Model for Ry =5

The basic reproduction number R, for Covid-19 is estimated
to range between 2.2 to 5.7. We consider a scenario where R,
is 5 and the initial state of infectious population is 1%.
We use § = 0.75 and y = 0.15 to obtain the desired R, of 5.0
[25].These simulations use a basic reproduction number R, =
5 to reflect high transmissibility scenarios, consistent with
early estimates COVID-19, which replaced R, between 2.2
and 5.7. A key model-based study reported a central estimate
of Ry=5.7, highlighting the virus’s potential for rapid spread
in the absence of control measures.

In the simulation with R, =5, shown in Figure 3, the
infection peaks rapidly, reaching over 52% of the population
around day 12. The epidemic infects nearly the entire
population by the end of the simulation.

5.2. SIR Model for Ry=3

To demonstrate the impact of reduced transmissibility, a
hypothetical scenario is considered in which the basic
reproduction number is set to R, =3. Since R, =§, this
reduction can theoretically be achieved by decreasing the
transmission rate [, increasing the recovery rate y, or
applying both adjustments. In this scenario, g is set to 0.45
while y remains at 0.15, producing a resulting R to 3.
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SIR Model: RO = 5.0

//" .
08 )z

=
@

— Infected
Succeptible
Recovered

=
IS

Fraction of Population

=
a

0o

0 10 20 30 40 50 60
Time {in days)

Figure 3. Maximum Infectious population at a time:
52.43%, total Infected population: 99.6%.

In Figure 4, with R, reduced to 3 by decreasing S to 0.45
while maintaining y at 0.15, the infection curve exhibits a
substantially reduced peak of infections. The peak proportion
of infectious individuals falls to 32.22%, occurring around
day 20, thereby providing additional time for potential
intervention measures.

SIR Model: RO = 3.0

10

o

o
\

\

=)
o
~,

/ — Infected
, Succeptible
Recovered

[=a
=

Fraction of Population

0 10 20 30 40 50 60
Time (in days)

Figure 4. Maximum Infectious population at a time
:32.22%, total Infected population :95.01%.

This results in a decrease from approximately 52% in the
previous scenario with R, = 5, to 32.22%, and nearly 5% of
the total population remains uninfected by the end of the
epidemic.

5.3. SIR Model for R, =1.5

To demonstrate the impact of reduced transmissibility, a
hypothetical scenario is considered in which the basic
reproduction number is set to Ro = 1.5. Since Ro = P/y, this
reduction can be achieved by adjusting either the transmission
rate B or the recovery rate y. In this case, y is increased to 0.3
while p remains unchanged, yielding a resulting Ro of 1.5.

In Figure 5, this reduction markedly attenuates the epidemic
dynamics. The peak proportion of infectious individuals
decreases to 7.28%, occurring around day 25, while the
cumulative number of infections is restricted to
approximately 60% of the total population.
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SIR Model: RO = 1.5

10 —— Infected
Succeptible
Recovered

o o o
IS @ @

\

|

|

Fraction of Population

o

[N}
N

\

0.0

] 10 20 30 40 50 60
Time (in days)

Figure 5. Maximum Infectious population at a time:
7.28%, total Infected population: 60.07%.

5.4. Flatten the curve

The concept of flattening the curve effectively captures the
epidemic dynamics described above. Reducing R, decreases
both the transmission potential and the peak prevalence of
infections, while also postponing the infection peak,
providing additional time for effective intervention strategies.
The following analysis examines how the peak level and the
overall extent of infection vary with different values of R,,.

Figure 6 shows the effect of reducing R, from 6 to 2, which
delays the epidemic peak by more than two weeks and
decreases the maximum proportion of infections, thereby
mitigating the burden on healthcare systems.

As R, drops, the curve for infectious population flattens. When
R, is 6, more than 60% of the population becomes infected by
the eighth day, whereas when R, is 2, the highest infectious
population is 16.7% by the twenty-fourth day. That means a
reduction in R, from 6 to 2 provides us an extra two weeks to
prepare for the peak infection. It is also worth noting that when
R, falls, so does the degree of infection. When Ro=6, the entire
population becomes infected, however when Ro=2, 20% of the
population remains uninfected after the epidemic has ended.

SIR Model: Infectious Population
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As R, decreases, the infection curve flattens. For R, = 6,
more than 60% of the population becomes infected by the
eighth day, whereas for R, = 2, the peak proportion of
infectious individuals is 16.7% on the twenty-fourth day.
Reducing R, from 6 to 2 effectively extends the time to peak
infection by approximately two weeks, providing additional
time for preparedness. Importantly, the model further
indicates that lower values of R, reduce the overall extent of
infection: while nearly the entire population becomes infected
when R, =6, about 20% of the population remains
uninfected when R, = 2.

The COVID-19 pandemic demonstrated that elevated
transmission rates can rapidly overwhelm healthcare capacity,
defined as the point where patient demand exceeds available
hospital resources. To capture these dynamics, a fractional
SIR model with the Mittag—Leffler kernel was introduced in
[12], reflecting memory effects and nonlocal behavior.
Experiences from countries such as Italy and Spain
highlighted how sudden surges can deplete ICU capacity and
essential medical supplies.The proposed fractional stochastic
epidemic model can be extended to incorporate public health
interventions such as vaccination programs and behavioral
mitigation strategies. Specifically, vaccination can be
modeled by introducing a time-dependent control term that
adjusts the susceptible or recovered compartments according
to immunization rates.

Additionally, behavioral responses can be reflected by
allowing the transmission coefficient S(t) to vary over time,
potentially influenced by policy enforcement, public
compliance, or seasonal effects. In stochastic formulations,
such time-varying parameters may also be subject to random
fluctuations, modeled through additional noise-driven terms.
These theoretical extensions highlight the model's structural
flexibility and its potential relevance for future applications
involving real-time intervention strategies under uncertainty.

Although the current formulation considers a constant
transmission rate 3, it can be extended to S(t) to account for
time-dependent interventions or seasonal variations, which
can be explored in future studies.

SIR Model: Total Confirmed Cases
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Figure 6. Effect of Ro on Infectious Population and Total Confirmed Cases in the SIR Model.
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6. Conclusion
This study examined a stochastic fractional epidemic model

incorporating a

recently proposed formulation of the

fractional Wiener process. The analysis addressed the
existence, uniqueness, and qualitative behavior of solutions
within a generalized stochastic framework. Additionally, a
model driven by a formulation of fractional Brownian motion
was considered, demonstrating the impact of memory and

long-range dependence in the

modeling of disease

transmission under uncertainty.
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