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ABSTRACT: This study develops a fractional stochastic framework for modeling epidemic spread, based 

on a recently proposed fractional Wiener process. The proposed model generalizes the classical SIR 

structure by incorporating fractional Brownian motion, which captures memory effects and long-range 

dependencies observed in real-world epidemiological data. The system is formulated through stochastic 

differential equations, using Itô stochastic calculus with fractional methods to describe transmission 

dynamics under uncertainty. The analysis addresses existence, uniqueness, and qualitative properties of the 

solutions to the fractional stochastic model. Numerical simulations are conducted to demonstrate the 

system's behavior under various conditions and to illustrate the role of stochastic fluctuations in epidemic 

progression. A variant of the model using a fractional Ornstein–Uhlenbeck process is also considered to 

assess the influence of damping and noise. The results highlight the effectiveness of the proposed 

framework in capturing complex epidemic behaviors and provide a mathematically robust approach for 

analyzing disease transmission. This work offers valuable insights for researchers and contributes to the 

broader development of stochastic modeling in epidemiology.  
 

 

1. INTRODUCTION

Modeling the spread of epidemics under uncertainty remains a 
central challenge in mathematical epidemiology. Traditional 

deterministic models, while useful for capturing general trends, 
often fail to account for the inherent randomness and memory-

dependent dynamics observed in real-world outbreaks. These 
limitations may lead to oversimplified representations that do 

not reflect the complex, time-dependent interactions among 
individuals and their environments. 

In recent years, fractional-order models have proved effective in 
capturing the memory and hereditary characteristics observed in 

epidemic dynamics. Although the present study does not adopt 
Caputo-type derivatives, such formulations have been 

successfully applied in several epidemic contexts, particularly in 
modeling COVID-19 transmission dynamics [1]. Fractional 

stochastic differential equations have emerged as powerful tools 
for integrating stochastic fluctuations with long-range temporal 

dependencies. These models simultaneously capture the 
randomness of disease transmission and the memory effects 

inherent in biological and social systems. Consequently, they 
offer a robust framework for analyzing and forecasting epidemic 

behavior under uncertainty. This study introduces a fractional 

stochastic model grounded in the fractional Wiener process 
developed by El-Borai and El-Nadi [2-9], which generalizes 

classical Brownian motion by incorporating memory effects. 
The model is formulated using stochastic differential equations 

with fractional integrals and implemented within a generalized 
SIR framework to investigate epidemic dynamics. 

The study investigates the probabilistic properties of the 

proposed system by analyzing the existence, uniqueness, and 
asymptotic stability of its solutions. Numerical simulations are 

presented to illustrate the impact of varying the basic 

reproduction number 𝑅0 on the epidemic peak and overall 

disease spread. Furthermore, an extended version of the model 
incorporating a fractional Ornstein–Uhlenbeck process is 

considered to assess the impact of damping and stochastic 
fluctuations [10]. 

By integrating advanced stochastic calculus with fractional-

order dynamics, this study presents a comprehensive modeling 
framework that captures both randomness and memory effects 
in disease transmission. 
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This integrated approach enhances the understanding of 
epidemic progression under uncertainty and offers valuable 
insights for informing effective control strategies. 

Fractional calculus extends classical differentiation and 
integration to non-integer orders, allowing mathematical 

models to incorporate memory and hereditary characteristics 
in a mathematically consistent manner. This approach is 

particularly valuable in epidemiology, where the present state 
of disease dynamics is often influenced by historical 

behavior. Fractional derivatives are especially effective in 
representing long-term temporal dependencies and non-local 
interactions in epidemic processes [11]. 

Stochastic integrals, particularly those driven by the Wiener 
(Brownian) process, offer a powerful approach for modeling 

the random fluctuations and uncertainties inherent in real-
world epidemics. These uncertainties may arise from 

variability in human behavior, environmental conditions, and 
the implementation of public health measures [12]. When 

combined with fractional calculus, these tools provide a 
robust framework that captures both memory effects and 

stochastic disturbances. This integrated approach yields more 
realistic representations of epidemic dynamics compared to 
purely deterministic or classical stochastic models [13]. 

2. Fractional Stochastic System 

To facilitate the understanding of the following model, we 
provide the definitions of the main variables and parameters 
used throughout the formulation: 

𝑆(𝑡): Number of susceptible individuals at time t. 

𝐼(𝑡): Number of infected individuals at time t. 

𝑅(𝑡): Number of recovered individuals at time t. 

𝛽: Transmission rate from susceptible to infected individuals. 

𝛾: Recovery rate of infected individuals. 

𝑅0: Basic reproduction number. 

𝛼: Order of the fractional derivative 0 < α ≤ 1. 

σ1: Volatility of the susceptible population S(t). 

σ2: Volatility of the infected population I(t). 

𝑏: The rate of birth from the infected to the susceptible state. 

𝑊(𝑡): Standard Wiener process (Brownian motion), used to 

model stochastic fluctuations as the integral of Gaussian 
white noise. 

Consider the following fractional stochastic system: 

𝑆(𝑡) = 𝑆(0) +
1

𝛤(𝛼)
∫ (𝑡 − 𝛩)𝛼−1𝑡

0
[−

𝛽

𝑁
𝑆(𝛩) +

I(𝛩) b (I(𝛩) + R(𝛩))] d𝛩 +
𝜎1

𝛤(𝛼)
∫ (𝑡 −

𝑡

0

𝛩)𝛼−1 𝑆(𝛩)𝑑𝑊(𝛩),   

𝐼(𝑡) = 𝐼(0) +  
1

𝛤(𝛼)
∫ (𝑡 − 𝛩)𝛼−1 [

𝛽

𝑁
𝑆(𝛩)I(𝛩) −

𝑡

0

𝐼(𝛾 + 𝑏)] 𝑑𝛩 +  
𝜎2

𝛤(𝛼)
∫ (𝑡 − 𝛩)𝛼−1𝑡

0
I(𝛩)dW(𝛩),

  

 𝑅(𝑡) = 𝑅(0) +
1

𝛤(𝛼)
∫ (𝑡 − 𝛩)𝛼−1𝑡

0
[𝛾𝐼(𝛩) − 𝑏𝑅(𝛩)]𝑑𝛩 −

1

𝛤(𝛼)
∫ (𝑡 − 𝛩)𝛼−1[𝜎1𝑆(𝛩) + 𝜎2𝐼(𝛩)]dW(𝛩).

𝑡

0
                  (2.1) 

The proposed fractional stochastic system extends the 
classical SIR model by incorporating random effects through 

a fractional Wiener process. This formulation introduces 
memory into the transmission dynamics, capturing long-range 

dependence often observed in epidemic processes. While 

comparable fractional stochastic methodologies have been 
applied to other epidemic frameworks, including extended 

forms such as the SIRS model [13], the present study focuses 
specifically on the fractional stochastic SIR framework to 
provide a clear and tractable analysis. 

The following assumptions are made: 

a) 𝑆(0) > 0, 𝐼(0) > 0 and 𝑅(0) > 0. 

b) Population size 𝑁 is constant and equal to the sum 
of individuals in three classes. 

c) The ratio between birth and death is one. 

d) The rate of moving directly from the infectious state 
to the susceptible state is equal to that from the 
recovered to susceptible states. 

While this assumption simplifies the analysis, future 

extensions may consider time-varying population 
dynamics. 

The classical SIR model and the fractional stochastic SIR 

model represent two distinct methodologies for simulating 
infection diseases. While the classical SIR model relies on 

deterministic parameters and has been foundational in 
epidemiological modeling, it lacks the flexibility to reflect 

real-world variability in transmission rates. In contrast, the 
fractional stochastic SIR model integrates both fractional 

calculus and stochastic elements, offering a more nuanced 
representation of disease spread by capturing memory effects 
and randomness. 

Operating under a deterministic framework, the classical 
model assumes fixed transition rates between the Susceptible, 

Infected, and Recovered compartments. This rigidity limits its 
ability to respond to dynamic changes in the effective 

reproduction number observed in real outbreaks [14]. In 
contrast, the fractional stochastic SIR model extends this 

framework by incorporating fractional derivatives, which 
capture memory effects and allow past states to influence 

current dynamics [15]. By introducing stochasticity, it also 
accounts for inherent randomness and uncertainty in infection 
patterns [16]. 

Empirical findings indicate that the fractional stochastic 
model often yields lower root mean square errors compared to 

the classical formulation, particularly when the fractional 
order lies between 0.93 and 0.99 [16]. Although the model is 

computationally more demanding, it provides a flexible and 

realistic framework for understanding epidemic dynamics and 
capturing the complexity of epidemic processes, although it 

may pose additional challenges in calibration and 
interpretability. 

3. Stochastic Integral Epidemic Model 

The general model is presented in integral form, which 

naturally arises in the context of fractional calculus. However, 
for the special case when α = 1, the model is expressed in its 

equivalent differential form for clarity and analytical 
convenience. 

Consider the case when 𝛼 = 1: 

𝑆(𝑡) = 𝑆(0) + ∫ [−
𝛽

𝑁
𝑆(𝛩) + I(𝛩)b(I(𝛩) + R(𝛩))]d𝛩

𝑡

0

+ 𝜎1𝑆(𝛩)𝑑𝑊(𝛩), 
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𝐼(𝑡) = 𝐼(0) + ∫ [
𝛽

𝑁
𝑆(𝛩)I(𝛩) − 𝐼(𝛾 + 𝑏)]𝑑𝛩

𝑡

0

+ 𝜎2 ∫ I(𝛩)dW(𝛩)
𝑡

0

, 

𝑅(𝑡) = 𝑅(0) + ∫ [𝛾𝐼(𝛩) − 𝑏𝑅(𝛩)]𝑑𝛩
𝑡

0
− ∫ [𝜎1𝑆(𝛩) +

𝑡

0

𝜎2𝐼(𝛩)]dW(𝛩).                                                 (3.1) 

It can be observed that 

𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) = 𝑁 = 𝑆(0) + 𝐼(0) + 𝑅(0), 

This relation has been studied in several works, see [17-20]. 

Theorem 1. If 𝛽 < 𝛾 + 𝑏, then: 

lim
𝑡→∞

𝐸[𝐼(𝑡)] = lim
𝑡→∞

𝐸(𝑅(𝑡)) = 0 ,   lim
𝑡→∞

𝐸(𝑆(𝑡)) = 𝑁 

Proof: Consider the equation 

𝑣(𝑡) = 𝐼(0) + ∫ (𝛽 − 𝛾 − 𝑏)𝑣(𝛩)𝑑𝛩
𝑡

0

+ 𝜎2 ∫ 𝑣(𝛩)𝑑𝑊(𝛩)
𝑡

0

. 

Consider the following stochastic differential equation,  

𝑑𝑋(𝑡) = [
𝜎2

2

2
− (𝛽 − 𝛾 − 𝑏)] 𝑋(𝑡)𝑑𝑡 − 𝜎2𝑋(𝑡)𝑑𝑊(𝑡), 

𝑑𝑌(𝑡) = [
𝜎2

2

2
+ (𝛽 − 𝛾 − 𝑏)] Y(t)dt + 𝜎2𝑌(𝑡)𝑑𝑊(𝑡), 

The solution of these equations is given by 

𝑋(𝑡) = 𝑒−𝜎2𝑤(𝑡)−(𝛽−𝛾−𝑏)𝑡  

𝑌(𝑡) = 𝑒𝜎2𝑤(𝑡)+(𝛽−𝛾−𝑏)𝑡 

Set 𝑣∗(𝑡) = 𝑋(𝑡)𝑣(𝑡) 

𝑑𝑣∗(𝑡) = 𝑋(t)𝑑𝑣(𝑡) + 𝑣(𝑡)𝑑𝑋(𝑡) + 𝐺1(𝑡)𝐺2(𝑡)𝑑𝑡 

=𝑋(𝑡)[((𝛽 − 𝛾 − 𝑏)𝑡)𝑣(𝑡)𝑑𝑡 + 𝜎2𝑣(𝑡)𝑑𝑤(𝛩)] +

𝑣(𝑡) [
𝜎2

2

2
− (𝛽 − 𝛾 − 𝑏)] 𝑋(𝑡)𝑑𝑡 − 𝜎2𝑋(𝑡)𝑑𝑤(𝑡) −

𝜎2
2𝑣(𝑡)𝑋(𝑡)𝑑𝑡 

𝑑𝑣∗ = −
𝜎2

2

2
dt , 𝑣∗(𝑡) = 𝑒− 

𝜎2
2

2
 𝑡𝐼(0), 

𝑣(𝑡) = 𝑌(𝑡)𝑒−
𝜎2

2

2
𝑡𝐼(0) = 𝑒𝜎2𝑊(𝑡)+(𝛽−𝛾−𝑏)𝑡𝑒−

𝜎2
2

2
𝑡𝐼(0), 

𝐸[𝑣(𝑡)] = 𝑒(𝛽−𝛾−𝑏)𝑡I(0) 

Thus lim
𝑡→∞

𝐸[𝐼(𝑡)] = 0 

It can be observed that 

𝐸[𝑅(𝑡)] = 𝑅(0) + 𝛾 ∫ 𝐸[𝐼(𝛩)]𝑑𝛩 − 𝑏 ∫ 𝐸[𝑅(𝛩)]𝑑𝛩,
𝑡

0

𝑡

0

 

Consequently, 

𝑑

𝑑𝑡
𝑒𝑏𝑡𝐸[𝑅(𝑡)] = 𝛾𝑒𝑏𝑡𝐸[𝐼(𝑡)], 

𝑒𝑏𝑡𝐸[𝑅(𝑡)] = 𝛾 ∫ 𝑒𝑏𝛩𝐸[𝐼(𝛩)]𝑑𝛩
𝑡

0
, 

𝑒𝑏𝑡𝐸[𝑅(𝑡)] ≤  𝛾 ∫ 𝑒𝑏𝛩𝑒−(𝑏+𝛾−𝛽)𝐼(0)𝑑𝛩
𝑡

0

, 

𝐸[𝑅(𝑡)] ≤
𝛾

𝛽−𝛾
[𝑒(𝛽−𝑏−𝛾)𝑡 − 𝑒−𝑏𝑡]𝐼(0). 

If  𝛽 < 𝑏 + 𝛾, then  

lim
𝑡→∞

𝐸[𝑅(𝑡)] =0 

Now 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) = 𝑁, indicating that the population 
size remains constant   

𝐸[𝑆(𝑡)] + 𝐸[𝐼(𝑡)] + 𝐸[𝑅(𝑡)] = 𝑁 
 

For analytical simplicity and to ensure a constant total 

population, we assume equal birth and death rates, as 
commonly adopted in classical epidemic modeling 
frameworks. 

Thus 

lim
𝑡→∞

𝐸[𝑆(𝑡)] = 𝑁 

Theorem 2. 

Let 𝑆(𝑡), 𝐼(𝑡) 𝑎𝑛𝑑 𝑅(𝑡) be the solutions of the fractional 

stochastic equations (2.1). 

If 𝑅0 < 1, 

Then: 

lim
𝑡→∞

𝐸[𝑆(𝑡)] = 𝑁 , 

lim
𝑡→∞

𝐸[𝐼(𝑡)] = 0    , lim
𝑡→∞

𝐸[𝑅(𝑡)] = 0 

Proof: consider the equation  

𝑣(𝑡) = 𝐼(0) +
1

𝛤(𝛼)
∫ (𝑡 − 𝛩)𝛼−1𝑡

0
(𝛽 − 𝛾 − 𝑏)𝑣(𝛩)𝑑𝛩 + 

𝜎2

𝛤(𝛼)
∫ (𝑡 − 𝛩)𝛼−1𝑡

0
𝑣(𝛩)𝑑𝑊(𝛩), 

𝐸[𝑣(𝑡)] = 𝐼(0) +
1

𝛤(𝛼)
∫ (𝑡 − 𝛩)𝛼−1

𝑡

0

(𝛽 − 𝛾

− 𝑏)𝐸[𝑣(𝛩)]𝑑𝛩 

According to [21], we get  

𝐸[𝑣(𝑡)] = ∫ 𝜉𝛼

∞

0

(𝛩)𝑒(𝛽−𝛾−𝑏)𝑡𝛼𝛩𝐼(0)d𝛩 

= ∑
((𝛽−𝛾−𝑏)𝑡𝛼)𝑗

𝛤(1+𝛼𝑗)

∞
𝑗=0  𝐼(0)    Mittage-Leffer function 

Hence, 

𝐸[𝐼(𝑡)] ≤ 𝐸[𝑣(𝑡)] → 0 

as 𝑡 → ∞ 

4. A Fractional Stochastic Epidemic Model Based 

on Fractional Brownian Motion 

Fractional indicates the use of fractional-order stochastic 
processes, enabling the model to capture memory effects and 

long-range dependencies in epidemic dynamics, thus 
generalizing classical stochastic approaches. 

To incorporate both long-memory effects and mean-reverting 

random fluctuations into epidemic dynamics, we extend the 
classical stochastic SIR model by introducing fractional 

Brownian motion and a fractional Ornstein–Uhlenbeck 
process. 

Consider the following model: 

𝑑𝑆(𝑡) = µ𝑁 − µ𝑆 − 𝑊𝛼
∗𝑆𝐼 + 𝛾𝐼]𝑑𝑡 − 𝜎𝑆𝐼𝑑𝑊𝛼(𝑡), 

𝑑𝐼(𝑡) = [𝑊𝛼
∗𝑆𝐼 − µ𝐼 − 𝛾𝐼]𝑑𝑡 +  𝜎𝑆𝐼𝑑𝑊𝛼(𝑡). 

where 𝑊𝛼(𝑡)  is the  fractional Brownian motion, constructed 

by El-Borai and El-Nadi, see [2-9], 𝜎  is the standard 

deviation of the noise and 𝑊𝛼
∗(𝑡) is the fractional Ornstein-

Uhlenbeck process defined by 

𝑑𝑊𝛼
∗(𝑡) = 𝜎3(𝛽 − 𝑊𝛼

∗(𝑡))𝑑𝑡 + 𝜎4𝑑𝑊𝛼(𝑡), 

This relation has been studied in [10], 

Here 𝜎3 > 0  is the speed of reversion, 𝜎4 > 0 is the intensity 
of volatility.  

Setting 

𝑣(𝑡) = 𝑊𝛼
∗(𝑡) − 𝛽, 

we obtain 
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𝑑𝑣(𝑡) = −𝜎3𝑣(𝑡)𝑑𝑡 + 𝜎4𝑑𝑊𝛼(𝑡), 

𝑣(0) = 𝛽0 − 𝛽 ,    𝛽0 = 𝑊𝛼
∗(0). 

The solution is given by  

𝑣(𝑡) = 𝑒−𝑡𝜎3(𝛽0 − 𝛽) + 𝜎4 ∫ 𝑒−(𝑡−𝑠)𝜎3

𝑡

0

𝑑𝑊𝛼(𝑠) 

Hence, 

𝑊𝛼
∗(𝑡) = 𝛽0 + 𝑒−𝑡𝜎3(𝛽0 − 𝛽) + 𝜎4 ∫ 𝑒−(𝑡−𝑠)𝜎3

𝑡

0
𝑑𝑊𝛼(𝑠). 

The expectation of  𝑊𝛼
∗(𝑡) is given by  

𝐸[𝑊𝛼
∗(𝑡)] = 𝛽0 + 𝑒−𝑡𝜎3(𝛽0 − 𝛽). 

The variance of 𝑊𝛼
∗(𝑡) is: 

𝑣𝑎𝑟[𝑊𝛼
∗(𝑡)] = 𝜎4

2 ∫ 𝑒−2(𝑡−𝑠)𝜎3

𝑡

0

𝑠𝛼−1

𝛤(𝛼)
𝑑𝑠. 

Notice that at 𝛼 = 1, 

𝐸[𝑊𝛼
∗(𝑡)] = 𝛽0 + 𝑒−𝑡𝜎3(𝛽0 − 𝛽), 

𝑣𝑎𝑟[𝑊𝛼
∗(𝑡)] =

 𝜎4
2

2𝜎3

[1 − 𝑒−2𝑡𝜎3]. 

We aim to find a deterministic function 𝐺(𝑡, 𝛼), 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  

[∫ 𝑒−(𝑡−𝑠)𝜎3
𝑡

0
𝑑𝑊𝛼(𝑠)]𝑑𝑡 = 𝐺(𝑡, 𝛼)𝑑𝑊𝛼(𝑡). 

We notice that: 

∫ [∫ 𝑒−(𝜂−𝑠)𝜎3
𝜂

0
𝑑𝑊𝛼(𝜂)]𝑑𝜂 = ∫ 𝐺(𝜂, 𝛼)

𝑡

0

𝑡

0
 𝑑𝑊𝛼(𝜂) =

1

𝜎3
∫ [1 − 𝑒−(𝑡−𝑠)𝜎3]

𝑡

0
 𝑑𝑊𝛼(𝑠), 

1

𝜎3
2 𝐸[{∫ [1 − 𝑒−(𝑡−𝑠)𝜎3] 𝑑𝑊𝛼(𝑠)

𝑡

0

}]2

= 𝐸 [{∫ 𝐺(𝜂, 𝛼)
𝑡

0

𝑑𝑊𝛼(𝑠)}

2

]

= ∫ 𝐺2
𝑡

0

(𝜂, 𝛼)
  𝜂𝛼−1

𝛤(𝛼)
𝑑𝜂 

Thus, we have  

1

𝜎3
2 ∫ (1 − 𝑒−(𝑡−𝑠)𝜎3)

2 𝑠𝛼−1

𝛤(𝛼)
𝑑𝑠 = ∫ 𝐺2

𝑡

0

(𝑠, 𝛼)
𝑠𝛼−1

𝛤(𝛼)
𝑑𝑠

𝑡

0

 

 Consequently, it follows that  

𝑡𝛼−1𝐺2(𝑡,𝛼)

𝛤(𝛼)
=

2

𝜎3
∫ [𝑒−(𝑡−𝑠)𝜎3

𝑡

0
− 𝑒−2(𝑡−𝑠)𝜎3] 

𝑠𝛼−1

𝛤(𝛼)
𝑑𝑠. 

                                                             

Hence, the stochastic process 𝑊𝛼
∗(𝑡) can be expressed as: 

𝑊𝛼
∗(𝑡)𝑑𝑡 = [𝛽 + (𝛽0 − 𝛽)𝑒−𝑡𝜎3]𝑑𝑡 + 𝜎4G(t, 𝛼) 𝑑𝑊𝛼(𝑡). 

Since given that S(t)+I(t)=N, it is sufficient to study the 

fractional stochastic equation for 𝐼(𝑡): 

𝑑𝐼(𝑡) = [{𝛽 + (𝛽0 − 𝛽)𝑒−𝑡𝜎3}𝐼(𝑁 − 𝐼) − 𝐼µ − 𝐼𝛾]𝑑𝑡 +
 𝜎4σI(N − I)𝑑𝑊𝛼(𝑡)     (4.1) 

With the initial condition 𝐼(0) = 𝐼0   ∈ (0, 𝑁) 

Theorem 3. For any given initial value 𝐼0   ∈ (0, 𝑁), the 

fractional stochastic differential equation (2) has a unique 

global positive solution 𝐼(𝑡)   ∈ (0, 𝑁) for all 𝑡 ≥ 0, with 
probability one,  

𝑃(𝐼(𝑡) ∈ (0, 𝑁), ∀𝑡 ≥ 0) = 1 

Proof: Consider the following fractional stochastic model: 

𝑑𝑢 = {𝛽0 + (𝛽0 − 𝛽)𝑒−𝑡𝜎3(𝑁 − 𝑒𝑢)}𝑑𝑢 + {−(µ + 𝛾)𝑑𝑡 −

1

2
𝜎2𝜎4

2 𝑡𝛼−1

𝛤(𝛼)
(𝑁 − 𝑒𝑢)2} 𝑑𝑡                                                  (4.2) 

With the initial value 𝑢(0) = 𝐼0 

It is clear that the coefficient of model 4.2satisfies the local 

Lipschitz condition, thus there is a local solution 𝑢(𝑡),  of the 

model 4.2, see [21]. 

Therefore, it is easy to check that 𝐼(𝑡) = 𝑒𝑢(𝑡) is the positive 

solution of model 4.1 with the initial value 𝐼0.  

Although the current study emphasizes theoretical 

formulation and simulation, the proposed fractional stochastic 

model is well-suited for parameter estimation based on 

empirical data. The fractional order α may be estimated 
through memory-sensitive residual minimization, generalized 

least squares, or optimization of model fit against cumulative 

case trajectories. The stochastic intensities σ1 and σ2 can be 

inferred via maximum likelihood estimation or Bayesian 
techniques. In particular, Markov Chain Monte Carlo 

(MCMC) methods are highly effective for capturing latent 
noise structures. Incorporating real-time epidemiological data 

would enable dynamic model calibration, support real-world 
forecasting, and inform data-driven public health decision-
making [19-22]. 

Numerical simulation of Stochastic Differential Equations 
(SDEs) presents multiple computational challenges due to the 

absence of closed-form solutions, the stochastic 

characteristics of the system, and the high demands of 
convergence accuracy. Implicit schemes such as the backward 

Euler method offer strong convergence properties but require 
solving nonlinear equations at each time step, resulting in 

increased computational cost. Furthermore, Monte Carlo 
(MC) methods, which are widely used to approximate the 

expectation of functionals of SDE solutions, suffer from slow 

convergence rates of order 𝑂(𝑁
−1

2⁄ ), demanding a large 
number of samples to achieve desired accuracy. To address 

this, Multilevel Monte Carlo (MLMC) techniques have been 
developed to reduce total cost significantly while maintaining 

the same accuracy level. Other numerical methods for SDEs 
include the Euler–Maruyama method, Milstein method, and 

stochastic Runge-Kutta methods, each with trade-offs 
between accuracy, convergence, and computational efficiency 
[23]. 

On the other hand, Fractional Differential Equations (FDEs) 
are characterized by memory effects and nonlocality, which 

introduce considerable computational burdens. Time-
fractional derivatives require storing the entire solution 

history, while space-fractional derivatives lead to nearly 

dense matrices. The computational complexity of fractional 
models typically scales worse than classical PDEs: for 

instance, time-fractional equations may reach O(N²M), and 

space-time fractional equations can grow as O(NM(M +
 N)),where N and M denote the number of time steps and grid 

points, respectively. Solving such models often necessitates 

specialized schemes such as the finite difference method 
(FDM) for fractional time and space derivatives, the finite 

element method (FEM) for irregular domains, spectral 
methods for high-accuracy needs, and fast Fourier transform 

(FFT)-based methods for reducing complexity. Additionally, 
short-memory principles and parallel computing are 

frequently used to alleviate memory and performance 
constraints [24]. 

In both cases, the selection of numerical methods must 
consider the trade-offs between stability, accuracy, 

computational cost, and the specific structure of the 
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equations. The development and implementation of efficient 
algorithms remain an active area of research, especially in 
real-time simulation and data-driven forecasting contexts. 

5. Application of the SIR Model in Epidemic 

Modeling 

The proposed epidemic models were simulated using a 

discrete-time iterative scheme based on the explicit Euler 
method. At each step, the numbers of susceptible, infected, 

and recovered individuals were updated according to the 
governing equations, providing a clear and widely accepted 

approximation of the epidemic dynamics. Implementation 
was performed in Python (Anaconda environment) using 

standard scientific libraries, including NumPy, Pandas, and 
Matplotlib, ensuring reproducibility and clear visualization of 
the results. 

In this section, we present numerical simulations to illustrate 
the behavior of the proposed fractional stochastic epidemic 

model. The aim is to demonstrate how different parameter 
values, particularly the basic reproduction number R₀, 
influence the epidemic dynamics over time.  

To simulate the behavior of the epidemic model under various 
transmission scenarios, we used a deterministic SIR 

framework implemented in Python. The parameters 𝛽 

(transmission rate) and 𝛾 (recovery rate) were selected to 

achieve specific basic reproduction numbers (𝑅0), reflecting 

different epidemic intensities. Initial conditions assume that 

1% of the population is infected, with the remaining 99% 
susceptible. The total population is normalized to 1. Each 

simulation was run over a 60-day period to observe infection 

dynamics, and the impact of 𝑅0 values on peak infection 

levels and timing was assessed. The model does not 
incorporate real-world datasets but is designed to demonstrate 

theoretical behavior based on commonly accepted parameter 
ranges. 

The simulations were implemented in Python using a 

deterministic SIR framework to analyze how different values 

of the transmission rate (𝛽) and recovery rate (𝛾) influence 

the epidemic curve. By adjusting β and γ, we generated 
scenarios corresponding to various basic reproduction 

numbers (𝑅0), including 𝑅0 = 5 (high), 𝑅0 = 3 (moderate), and 

𝑅0 = 1.5 (low). These values were selected based on ranges 

reported in recent epidemiological literature. For instance, the 

basic reproduction number R₀ for COVID-19 has been 
estimated to lie between 2.2 and 5.7 in early pandemic 

assessments, according to public health reports and modeling 
studies [25]. 

Rather than calibrating the model to real-world data, the 

objective of this simulation was to explore the qualitative 

behavior of the system under plausible epidemic conditions. 
This approach highlights the flexibility of the model and its 

ability to reflect key transmission dynamics without relying 
on specific datasets. 

Let S = y[0] denote the number of individuals not yet 

infected, I=y[1] the number of individuals infected, R=y[2] 
the number of individuals recovered or died from the disease, 
β=0.6 is the infected rate and γ=0.025  is the recovery rate. 

Figure 1 presents the results of a simulation with parameters 

𝛽 = 0.6 and 𝛾 = 0.025. The simulation illustrates a typical 

epidemic trajectory in which the susceptible population 
decreases over time, the number of infected individuals rises 

and subsequently declines, and the recovered population 
steadily increases. This experiment is provided for illustrative 
purposes and is not based on empirical data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

As shown in Figure 2, increasing the transmission rate 𝛽 

leads to a sharper and earlier peak in the number of infected 

individuals, while lower values of 𝛽 help flatten the curve and 

spread the infections over a longer period. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The framework separates the population into categories using 

the standard SIR notation defined in Section 2, where 𝑆(𝑡),
𝐼(𝑡) 𝑎𝑛𝑑 𝑅(𝑡) denote the susceptible, infected, and recovered 

populations, respectively. A major assumption is that 
recovered individuals acquire immunity to the disease. 

We consider the total population 𝑁 to be normalized to 1. The 

initial state for the infectious category 𝐼0 is the proportion of 

the total population infected at time 𝑇0. The initial state for 

the susceptible population 𝑆0 is the remaining population 𝑁 −
𝐼0, assuming no vaccination. It is also believed that there is no 

individual found at the start. The model also assumes that the 
population remains constant, meaning that there are no 

additional births or deaths due to causes other than the 
pandemic. 

Figure 1. Simulation of the SIR Epidemic Model with 
Transmission Rate (β=0.6) and Recovery Rate (γ=0.025). 

Figure 2. Effect of Varying Transmission Rate 
(β=0.2,0.03,…,1.0) on the Number of Infected Individuals 
Over Time in the SIR Model with γ=0.04. 
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The epidemic initiates when susceptible individuals encounter 
infectious individuals, leading to new infections over time. 

The number of new infections is proportional to both the 
susceptible and infectious populations, calculated as New 

infection = 𝛽𝑆𝐼-> (I), where 𝛽 represents the transmission 

rate. New recoveries occur as a subset of the infectious 

population either recovers or dies. The number of recoveries 

is given by = New recovery = γI -> (II), where γ is the 
recovery rate. 

The effects of new infections and recoveries on the 

𝑆, 𝐼 𝑎𝑛𝑑 𝑅 compartments are described as follows: 

The susceptible population (S) decreases as new infections 
occur: 

S[T+1] = S[T] - new infections. [T] 

The infectious population grows with new infections and 
declines with new recoveries: 

I[T+1] = I[T] plus new infections. [T] - New Recovery. 

The recovered population grows as new recoveries occur. 

R[T+1] = R[T] + New Recovery 

An infection is considered an epidemic when it spreads over 

time, the number of new infections exceeds the number of 
new recoveries. 

New infections lead to new recoveries (𝛽𝑆𝐼 > 𝛾𝐼), as seen in 
(I) and (II). 

The effective reproductive number is defined as 
𝑆𝛽

𝛾
> 1. 

At the start of an epidemic, almost the entire population is 

vulnerable, resulting in 𝑆 = 𝑆0 = 1. 

Reproduction number = 
𝛽

𝛾
, often known as the fundamental 

reproduction number (𝑅0). 

If 𝑅0 > 1, the infection becomes an epidemic; otherwise, it 
dies off. 

5.1. SIR Model for 𝑹𝟎 = 𝟓 

 The basic reproduction number 𝑅0 for Covid-19 is estimated 

to range between 2.2 to 5.7. We consider a scenario where 𝑅0  

is 5 and the initial state of infectious population is 1%. 

We use 𝛽 = 0.75 and 𝛾 = 0.15 to obtain the desired 𝑅0  of 5.0 

[25].These simulations use a basic reproduction number 𝑅0 =
5 to reflect high transmissibility scenarios, consistent with 

early estimates COVID-19, which replaced 𝑅0 between 2.2 

and 5.7. A key model-based study reported a central estimate 

of 𝑅0≈5.7, highlighting the virus’s potential for rapid spread 
in the absence of control measures. 

In the simulation with 𝑅0 = 5, shown in Figure 3, the 

infection peaks rapidly, reaching over 52% of the population 

around day 12. The epidemic infects nearly the entire 
population by the end of the simulation. 

5.2. SIR Model for 𝑹𝟎=3 

To demonstrate the impact of reduced transmissibility, a 

hypothetical scenario is considered in which the basic 

reproduction number is set to 𝑅0 =3. Since 𝑅0 =
𝛽

𝛾
, this 

reduction can theoretically be achieved by decreasing the 

transmission rate 𝛽, increasing the recovery rate γ, or 

applying both adjustments. In this scenario, 𝛽 is set to 0.45 

while γ remains at 0.15, producing a resulting 𝑅0 to 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Figure 4, with 𝑅0 reduced to 3 by decreasing 𝛽 to 0.45 
while maintaining γ at 0.15, the infection curve exhibits a 

substantially reduced peak of infections. The peak proportion 
of infectious individuals falls to 32.22%, occurring around 

day 20, thereby providing additional time for potential 
intervention measures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This results in a decrease from approximately 52% in the 

previous scenario with 𝑅0 = 5, to 32.22%, and nearly 5% of 

the total population remains uninfected by the end of the 
epidemic. 

5.3. SIR Model for 𝑹𝟎 =1.5 

To demonstrate the impact of reduced transmissibility, a 
hypothetical scenario is considered in which the basic 

reproduction number is set to R₀ = 1.5. Since R₀ = β/γ, this 
reduction can be achieved by adjusting either the transmission 

rate β or the recovery rate γ. In this case, γ is increased to 0.3 
while β remains unchanged, yielding a resulting R₀ of 1.5. 

In Figure 5, this reduction markedly attenuates the epidemic 

dynamics. The peak proportion of infectious individuals 
decreases to 7.28%, occurring around day 25, while the 

cumulative number of infections is restricted to 
approximately 60% of the total population. 

 

 

 

Figure 3. Maximum Infectious population at a time: 
52.43%, total Infected population: 99.6%. 

Figure 4. Maximum Infectious population at a time 
:32.22%, total Infected population :95.01%. 
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5.4. Flatten the curve 

The concept of flattening the curve effectively captures the 

epidemic dynamics described above. Reducing 𝑅0 decreases 

both the transmission potential and the peak prevalence of 
infections, while also postponing the infection peak, 

providing additional time for effective intervention strategies. 
The following analysis examines how the peak level and the 

overall extent of infection vary with different values of 𝑅0. 

Figure 6 shows the effect of reducing 𝑅0 from 6 to 2, which 

delays the epidemic peak by more than two weeks and 

decreases the maximum proportion of infections, thereby 
mitigating the burden on healthcare systems. 

As 𝑅0 drops, the curve for infectious population flattens. When 

𝑅0 is 6, more than 60% of the population becomes infected by 

the eighth day, whereas when 𝑅0 is 2, the highest infectious 

population is 16.7% by the twenty-fourth day. That means a 

reduction in 𝑅0  from 6 to 2 provides us an extra two weeks to 

prepare for the peak infection. It is also worth noting that when 

𝑅0 falls, so does the degree of infection. When R₀=6, the entire 
population becomes infected, however when R₀=2, 20% of the 
population remains uninfected after the epidemic has ended. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As 𝑅0 decreases, the infection curve flattens. For  𝑅0 = 6, 

more than 60% of the population becomes infected by the 

eighth day, whereas for 𝑅0 = 2, the peak proportion of 

infectious individuals is 16.7% on the twenty-fourth day. 

Reducing 𝑅0 from 6 to 2 effectively extends the time to peak 

infection by approximately two weeks, providing additional 
time for preparedness. Importantly, the model further 

indicates that lower values of 𝑅0 reduce the overall extent of 

infection: while nearly the entire population becomes infected 

when 𝑅0 = 6, about 20% of the population remains 

uninfected when 𝑅0 = 2. 

The COVID-19 pandemic demonstrated that elevated 

transmission rates can rapidly overwhelm healthcare capacity, 
defined as the point where patient demand exceeds available 

hospital resources. To capture these dynamics, a fractional 
SIR model with the Mittag–Leffler kernel was introduced in 

[12], reflecting memory effects and nonlocal behavior. 
Experiences from countries such as Italy and Spain 

highlighted how sudden surges can deplete ICU capacity and 
essential medical supplies.The proposed fractional stochastic 

epidemic model can be extended to incorporate public health 
interventions such as vaccination programs and behavioral 

mitigation strategies. Specifically, vaccination can be 
modeled by introducing a time-dependent control term that 

adjusts the susceptible or recovered compartments according 
to immunization rates. 

Additionally, behavioral responses can be reflected by 

allowing the transmission coefficient 𝛽(𝑡) to vary over time, 

potentially influenced by policy enforcement, public 

compliance, or seasonal effects. In stochastic formulations, 
such time-varying parameters may also be subject to random 

fluctuations, modeled through additional noise-driven terms. 
These theoretical extensions highlight the model's structural 

flexibility and its potential relevance for future applications 
involving real-time intervention strategies under uncertainty. 

Although the current formulation considers a constant 

transmission rate 𝛽, it can be extended to 𝛽(𝑡) to account for 

time-dependent interventions or seasonal variations, which 
can be explored in future studies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Maximum Infectious population at a time: 
7.28%, total Infected population: 60.07%. 

Figure 6. Effect of R₀ on Infectious Population and Total Confirmed Cases in the SIR Model. 
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6. Conclusion 

This study examined a stochastic fractional epidemic model 
incorporating a recently proposed formulation of the 

fractional Wiener process. The analysis addressed the 
existence, uniqueness, and qualitative behavior of solutions 

within a generalized stochastic framework. Additionally, a 
model driven by a formulation of fractional Brownian motion 

was considered, demonstrating the impact of memory and 
long-range dependence in the modeling of disease 
transmission under uncertainty. 
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