10.21608/avmj.2025.345705.1527

Assiut University web-site: www.aun.edu.eg

PERINATAL LAMB MORTALITY DISTRIBUTION WORLDWIDE AND CAUSES: REVIEW ARTICLE

HAYEM BENMEBAREK ¹; SAMIA DJEFFAL^{1,2} AND LOUIZA BENHAMZA^{1.}

¹ GSPA Research Laboratory (Management of Animal Health and Productions), Institute of Veterinary Sciences, University Frères Mentouri Constantine 1, Algeria.

ORCID: 0009-0002-3915-6857

² Department of Agronomy University 20 Août, Skikda, Algeria

Received: 19 January 2025; Accepted: 21 August 2025

ABSTRACT

Perinatal lamb mortality constitutes an important sanitary problem affecting sheep-farm productivity and profitability. The perinatal period is the most critical period in which mortalities can occur during the prenatal period (embryonic and fetal), the day of birth, and the postnatal period (early, intermediate, and late). The risk factors that are associated with these mortalities are related to the ewe (age, body score condition, mothering behavior, and colostrum quality), to the lamb (age, weight, sex, behavior, and body temperature at birth), and to the environment (hygiene of the livestock, climate, lambing in sheepfold or outside and the breeding system) affecting the lambs' survival and thermoregulation capacities. The global distribution of perinatal mortality varied over the years with different rates: in Africa, the reported rates were as follows: in Algeria (5, 8% - 17, 2%), in Morocco (14, 35% - 25, 09%), and in Ethiopia (46.3%-51.5%), On the other hand in Europe: the noted rates were of 16 % in France, (7% -10%) in United Kingdom and (25,8%) in Scotland. Moreover, in America, the rates varied from one country to another: in the United States of America (8, 2% - 17%) and Canada (14%). In Asia, the recorded rates were (17.6%- 31.3%) in India and (1, 86% - 27, 8%) in Pakistan. Also in Australia (15%-35, 8%). The causes of these lamb losses are infectious, such as pneumonia, gastrointestinal affections, septicemia, parasitism, and abortions, incriminating numerous pathogens, and non-infectious, such as starvation, dystocia, stillbirths, birth injuries, and weakness.

Keywords: Infectious, Lamb, Non-infectious, Perinatal mortality, Risk factors.

INTRODUCTION

Sheep farming industries are very promising suppliers of red meat due to sheep's capacity to adapt to the natural climate. Currently, China, Australia, and India are the highest inputs. This makes

Corresponding author: Hayem Benmebarek E-mail address: benmebarek.hayem@gmail.com
Present address: GSPA Research Laboratory
(Management of Animal Health and Productions),
Institute of Veterinary Sciences, University Frères
Mentouri Constantine 1, Algeria.

flock productivity a fundamental parameter that should be tracked to improve the industry's profitability (Cutress, 2020). This productivity can be impacted by many factors, such as high lamb mortalities during the perinatal period, causing important wastage, and affecting animals' welfare (Dwyer *et al.*, 2016). It was reported that 50% of pre-weaning deaths are recorded during the day of birth (Nowak *et al.*, 2000).

Perinatal lamb mortality is a significant sheep-farm indicator of productivity, affecting lambs' annual yield. occurrence of these mortalities is frequently related to various risk factors, mainly the breeding system and the hygiene of the farms, the ewes (body score condition, maternal behavior, age, parity, colostrum quality), and the lambs (sex, age, weight, behavior, and body temperature at birth) (Gautier and Corbiere, 2011) in addition to many infectious and noninfectious causes such as pneumonia. septicemia, omphalitis, diarrhea dystocia, hypothermia-inanition syndrome, accidents, injuries or predation (Brugère-Picoux, 2004; 2016).

Through the decades, sheep-breeding countries, such as New Zeeland and Australia (Bruce et al., 2021; Jordan and Le Feuvre, 1989), Egypt (Rania et al., 2021; El-Kattan et al., 2018; Wassif et al., 2015), Algeria (Dahmani et al., 2019; Abdelhadi et al., 2010), Nigeria (Ugochukwu et al., 2017) France (Gautier and Corbiere, 2011., Gautier et al., 2012; Prud'Hon et al., 1968), United Kingdom (Binns et al., 2002)etc conducted numerous studies on these perinatal mortalities to determine their rate,

associated risk factors, causes (infectious or non-infectious), and the most touched age categories and tracts (respiratory, gastrointestinal, vascularetc.).

This review aims to classify these perinatal lamb mortalities according to their occurrence period, risk factors associated with each period, their rates, and causes in several countries to provide a complete portrait of them worldwide.

Classification of perinatal mortalities according to their occurrence period

The perinatal period is the time just before, at, and soon after birth (Mellor and Hodgson 2007), and the neonatal period is the period after birth until the weaning of the lamb (Fragkou *et al.*, 2010). Through the years, many classifications have been used. Prud'Hon *et al.* (1986) applied a categorization with four periods, starting from the day of birth until weaning. On the other hand, in 2011, Gautier and Corbiere used a sectioning with three periods (prenatal mortality, stillbirth, and postnatal mortality) that included the perinatal period from the early embryonic life to the weaning period (Figure 1).

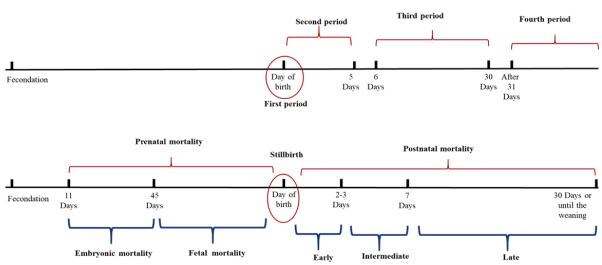


Figure 1: Classifications of perinatal mortality according to their occurrence period.

From these classifications, we see that lambs can die before birth, during the embryonic or fetal period, during the birth, and after the birth until weaning. The postnatal period is also known as the neonatal or pre-weaning period and constitutes the most important period in the lamb's life (Fragkou *et al.*, 2010).

Risk factors associated with perinatal mortality

Many risk factors can be associated with perinatal mortalities, which are related to:

- The ewe (age, body score condition, mothering behavior, and colostrum quality) mainly affects the survival capacity of the lambs during their first days of life (Southey *et al.*, 2001; Swalha *et al.*, 2007) during both embryonic, fetal periods and after birth.
- The lamb (age, weight, sex, behavior, and body temperature at birth) strongly correlated with their thermoregulation capacity (Dwyer and Morgan, 2006).
- The environment (hygiene of the livestock, climate, lambing in sheepfold or outside, and the breeding system) principally exposes the newborns to various pathogens (Gautier and Corbiere, 2011).

These risk factors have strong correlations; the environmental risk factors affect both ewes and lambs, and risk factors related to the ewe can affect the ones related to the lambs. For example, the body score condition of the ewe is crucial, especially during the last months of gestation, this factor is strongly associated with the breeding system (quantity and quality of the food given to the ewes) and can affect the weight of the lambs that determines the thermoregulation of the lamb and condition its survival during its first days of life, this demonstrates perfectly example multifactorial of perinatal character mortalities.

In addition, risk factors can affect the lambs during several periods (embryonic, fetal, and neonatal). In embryonic and fetal periods, losses implicate several factors, mainly genetic, physiological, endocrine, and environmental (Diskin *et al.*, 2008).

Mukasa-Mugerwa *et al.* (1994) showed that in Ethiopian Menz sheep, the ewes feed supplementation in the third trimester helped to produce heavier lambs, increasing their survival and reducing the risk of death to less than 10%. Besides, the dam nutrition demonstrated that ewes that gained weight during their pregnancy had a heavier placenta with a higher number of placentomes than those that maintained or lost weight emphasizing the role of the body score condition and the importance of a balanced and well-done supplementation on the embryonic and fetal survival in ewes.

Dixon et al. (2007) reported that the breed type (black-faced ewes had greater embryonic and fetal losses than mottledfaced white-faced and ones) concentration of progesterone, estradiol, and vascular endothelial growth factor (VEGF) were the main risk factors associated with the embryo and fetal losses. Variations in the concentration rates (high, estradiol, medium. and low) of progesterone, and VEGF are associated with partial or complete losses in the embryonic, fetal periods, or both periods (Table 1).

In 2013, Shorten et al. estimated that the ewe weight has a notable effect on embryo survival and that the optimal ewe weight for its survival increases with the ovulation rate. Additionally, the results of maternal heritability were significant, indicating that the ability of ewes to maintain a pregnancy has a superior effect than the embryo survival ability. This means that the maternal factor is more determining than the embryonic factor in the genetics of embryo survival. Other studies established that in some breeds, embryo survival is more notable in adult ewes than in ewe lambs. In these embryo transfer-employing studies, impaired embryo survival in ewe lambs was attributed to the inherent quality of the embryo rather than any deficiency of the uterine environment. (Diskin et al. 2008).

In the neonatal period, Southey et al. (2001) estimated that the sex of the lambs, litter

size, and the dam age affected mortality rates, indicating that male lambs had 23% greater hazard of mortality than female lambs and multiple lambs had a superior hazard than single-born lambs. Moreover, the mortality rate decreases with the dam age (younger ewes have higher mortality rates than older ones). Dwyer *et al.* (2006) concluded that lamb's survival is strongly related to their birth weight and behavior, heavy lambs were more active than lighter ones, they had better abilities to maintain

their body temperature and a higher plasma concentration of thyroid hormones (T3, T4), suggesting a better heat generation, which decreases the risk of mortality. Mandal *et al.* (2007) also pointed out that improving the birth weights of lambs and ewes increases the survival rate of lambs in the postnatal period. Mustafa *et al.* (2014) revealed that the breed, the year, and the season of birth had a considerable effect on mortality rates due to a lack of care, nourishment, and milk feeding.

Table 1: Association between steroids (progesterone, estradiol- 17β) and VEGF (vascular endothelial growth factor) concentration rates and the embryonic and fetal mortalities.

Steroids and VEGF	Concentration rate	Type of losses	
Progesterone	Low	Complete embryonic and fetal losses.	
	Medium	Complete and partial embryonic and fetal losses.	
	High	Partial embryonic losses.	
Estradiol-17β	Low	Complete and partial fetal losses.	
	High	Partial embryonic losses.	
Vascular endothelial growth factor (VEGF)	Low	Partial embryonic and fetal losses.	
	Medium	Partial fetal losses.	
	High	Partial embryonic and fetal losses.	

Perinatal mortality rates worldwide

The distribution worldwide of perinatal mortality rate studies varied from country to country (Figure 2).

In Africa, lamb mortality has increased from 4, 35% to 25, 09% in Algeria (Abdelhadi *et al.*, 2010; Douh *et al.*, 2018; Gani and Niar, 2021) and from 17.6% to 31.3% in Morocco (Chaarani *et al.*, 1991), and above that in Ethiopia (46.3%-51.5%) (Bekele *et al.*, 1992).

In the United States of America, the mortality rate goes up by 8,2% to 17 % (Huffman *et al.*, 1985; Rook *et al.*, 1990; Rowland *et al.*, 1992; Nash *et al.*, 1997; Kott *et al.*, 1998; Southey *et al.*, 2001). In Australia, mortality rates vary from 15% to

35,8% (Dennis et al., 1974; Fowler, 2007; Geenty et al., 2014; Kopp et al., 2020; Clune et al., 2021a). Also, in Canada and Scotland, studies showed that the rate varies from 14% to 25,8% (Johnston et al., 1980; Wiener et al., 1983; Bélanger et al., 2001; Girard et Arsenault, 2003). In India and Pakistan, the rate was lower, between (1, 86%- 27, 8%) and (5, 8% - 17, 2%) respectively (Mandal et al., 2007; Rastogi, 2001; Swarnkar et al., 2021; Mustafa et al., 2014). The recorded mortality rates in France and the United Kingdom were from 16 % to 18, 4% (Gautier and Corbiere, 2011; Lepeltier, 2010) and 7%- 10% respectively. (Green and Morgane, 1993; Binns et al., 2002) (Table 2).

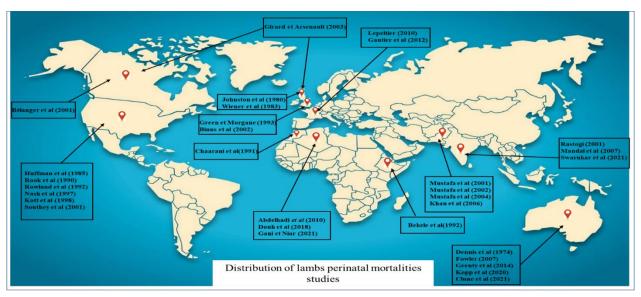


Figure 2: Distribution of perinatal lamb mortality worldwide.

Table 2: Recorded perinatal mortality rates by countries.

Authors	Years of study	Mortality rate	Country
Huffman et al. (1985)	1979	14.3%	
Rook et al. (1990)	1986-1988	15%-20%	
Rowland <i>et al.</i> (1992)	1984	8.2 to 12.2%	
Nash et al. (1997)	1986-1991	15.5%	
Kott et al. (1998)	1994-1996	17%	
Southey et al. (2001)	1983-1999	15.2%	
Dennis et al. (1974)	1963-1965	22.8%	Australia
Fowler (2007)	2006-2007	31.5%	
Geenty et al. (2014)	2007-2011	15%-22%	
Kopp et al. (2020)	2019	20-25%	
Clune et al. (2021)	2018-2022	35.8%	
Bélanger et al. (2001)	1999-2001	15.8%	Canada
Girard et Arsenault (2003)	2003	14%	Scotland and Canada
Johnston et al. (1980)	1978-1980	14.2%	_ Scotland
Wiener et al. (1983)	1966-1971	25.8%	
Green et Morgane (1993)	1989-1991	9.7%	 United kingdom
Binns et al. (2002)	1997	7%-10%	
Lepeltier (2010)	2010	18.4	- France
Gautier <i>et al.</i> (2012)	2010-2011	16%	
Mustafa et al. (2001)	2001	17.2%	– Pakistan
Mustafa et al. (2002)	2002	16.6%	
Mustafa <i>et al.</i> (2004)	2004	5.8%	
Khan et al. (2006)	1998–1999	9%- 12%	
Rastogi (2001)	1982-1985	8.8 %-27.8%	India
Mandal et al. (2007)	1978-2002	6.6%	
Swarnkar et al. (2021)	2021	1.86%- 5.12%	
Abdelhadi <i>et al.</i> (2010)	2004-2006	25,09%	Algeria
Douh <i>et al</i> . (2018)	2015-2016	24±6%	
Gani et Niar (2021)	2020	14.35%	
Chaarani <i>et al.</i> (1991)	1984–1986	17.6%- 31.3%	Morocco
Bekele et al. (1992)	1989-1990	46.3%-51.5%	Ethiopia

Perinatal lamb mortality causes worldwide

Perinatal mortalities can be attributed to many causes classified according to the aetiology into two categories (infectious, non-infectious). The infectious causes are due to several agents, such as bacteria, viruses, parasites, and fungi, causing lesions in numerous tracts (respiratory, digestive, vascular, etc.), which cause abortion, pneumonia, septicemia, diarrhoea, and omphalitis. Non-infectious causes dystocia, mainly due injuries, to hypothermia, starvation syndrome, predation...etc. (Brugère-Picoux, 2016; 2004; Gautier and Corbiere, 2011: Henderson, 2007).

Rook *et al.* (1990) reported that lamb loss is frequently due to abortion, hypothermia, starvation, exposure, pneumonia, stillbirths, and dystocia, which represents 50% to 75% of all documented perinatal losses. In several countries (the United Kingdom, New Zealand, Australia, Ethiopia, and India), studies on abortion show that

In Australia and New Zealand, studies from 1970 to 2022 concluded that the leading causes of lamb losses were non-infectious, including dystocia, starvationmismothering, stillbirth, trauma, cold exposure, and predation in addition to congenital abnormalities, death in uteroprematurity implication of and the infectious agents (Corynebacterium spp, Unidentified fungus, Escherichia coli, Spherophorus necrophorus, Pasteurella hemolytica, Pasteurella multocida) (Dennis et al., 1970; 1974; Jordan and Le Feuvre, 1989; Refshauge et al., 2015; Ridler et al., 2022). In 2021, Bruce et al. used a classification of death due to dystocia based on the lamb necropsy (McFarlane, 1965; Holst, 2004) as follows:

• A born dead lamb (Subcutaneous oedema around the head and neck) due to fetal-pelvic disproportion or bad presentation (Dystocia A).

bacterial agents such as Chlamydophila spp, Coxiella burnetti, Toxoplasma gondii, and Brucella melitensis cause premature birth, low-weight lambs, late abortion, fetal resorption, infertility, and stillbirths (Green and Morgane, 1993; Renukaradhya et al., 2002; Verma et al., 2017; Gebretensay et al., 2019; Clune et al., 2021a, 2021b). In France, besides the previous pathogens, Salmonella abortusovis was responsible for an increase in abortion, mainly during the last six weeks of gestation or fatal septicemia in newborns (Gautier and Corbiere, 2011). In North Campylobacter spp. is the most important cause of sporadic or recurrent abortion, stillbirths, or the birth of weak lambs (Menzies, 2007; Mobini et al., 2002). Meanwhile, viral agents such as the blue tongue virus and akabane virus cause abortion, fetal mummification. congenital deformities (Givens and Marley, 2008). The major challenge confronting veterinarians in these cases is availability of the placenta to perform etiological diagnosis (Clune et al., 2021a).

- Stillborn lambs with significant lesion scores or could have breathed and walked without metabolizing perirenal or pericardial fat (Dystocia B) (Refshauge *et al.*, 2015).
- Dead lambs, due to birth injury, breathed and metabolized perirenal and pericardial fat reserves (Dystocia C).

These lambs died at any time up to 5 days after their birth. In some cases, there is milk ingestion, but the significant lesion score defines this death category (Holst *et al.*, 2002; Refshauge *et al.*, 2015). This classification offers a subcategorization of the dystocia into proper dystocia (fetus presentation problems), stillbirths, and birth injuries and is wildly used (Behrendt *et al.*, 2019; Lockwood *et al.*, 2019a, b; Kerslake *et al.*, 2005).

In Canada, lamb losses were attributed to birth injuries, lack of adaptation to postnatal life, thermoregulation, weakness, mis-

infections like mothering, pneumonia (Pasteurella spp) and diarrhoea (Escherichia coli), functional disorders, and predation (Dohoo et al., 1985; Dwyer, 2008). In Perou, Ameghino et al. (1984) demonstrated that starvation and infections (Pneumonia, Enterotoxaemia, and septicemia), accidents, predation, stillbirths, and congenital malformations induce lamb mortalities (Ameghino et al., 1984).

In the United States of America and Morocco, the leading cause of lamb death is starvation, followed by infections (Colisepticemia, enterotoxaemia, Pasteurellosis, peritonitis, and salmonellosis) (Huffman et al., 1985), pneumonia, trauma, and gastrointestinal problems (Yapi et al., 1990), dystocia, stillbirth, and infections (Enteritis, in utero infection, pneumonia) (Rowland et al., 1992) and infections (enteritis, septicemia, and pneumonia) in Morocco (Chaarani et al., 1991). Thus, mortalities in Turkey are due to premature birth, birth stress, trauma, trichobezoar, starvation, septicemia, omphalitis, clostridial infection, and white muscular disease (Gökçe and Erdoğan, 2009).

In Norway, India, Pakistan, Brazil, and Ethiopia, infections are the most significant cause of mortality in the perinatal period, classified as follows:

Pneumonia (bacterial and verminous), gastrointestinal affections (enteritis. abomasal impaction, and parasitism), septicemia, toxemia, pleurisy, infection, white scour, tympany, heat stroke, starvation, trauma, severe congenital malformations, accidents, mismothering with various distributions (Swarnkar et Sonawane, 2024; Holmøy et al., 2017; Mustafa et al., 2014; Mandal et al., 2007; Nóbrega et al., 2005; Bekele et al., 1992).

In Algeria, studies demonstrated a significant prevalence of dystocia due to bad presentations, cervical problems (atony, a lack of dilation, and cervical atresia),

uterine torsion, and neonatal diarrhoea Cryptosporidium implicating parvum, Escherichia coli K99, rotavirus, and coronavirus (Dahmani et al., 2019; 2020). On the other hand, French farmers reported problems of dystocia, drowned lambs, weak lambs at birth and enterotoxaemia, watery mouth disease (Escherichia coli), diarrhoea mainly caused by Escherichia Salmonella spp and Cryptosporidium parvum and respiratory tract disease caused by Mannheimia haemolytica, Pasteurella multocida and Mycoplasma ovipneumoniaeect. However, omphalitis can cause permitting septicemia, pathogens penetration (staphylococci, streptococci, Actinomyces pyogenes, Escherichia coli) via the umbilical cord (Gautier and Corbiere, 2011; Gautier et al., 2012). Furthermore, in Spain, the principal cause of high mortality rates is neonatal diarrhoea attributed to various infectious agents (Escherichia coli and Cryptosporidium spp) (Munoz et al., 1996; Andres et al., 2007).

CONCLUSION

This review concludes that perinatal lamb mortality is a multifactorial entity that depends on the breeding system and management, as well as the ewes and the lambs. The associated risk factors and rates are widely spread worldwide and have various origins (infectious, non-infectious), implicating numerous pathogens (bacteria, viruses, fungi, and parasites) affecting lambs during the embryonic and fetal period or the neonatal period, which makes investigations quite relevant to describe the epidemiological status of the sheep farms, estimate these mortality rates and determine their causes.

To avoid dystocia and birth injuries, it is imperative to establish adequate management strategies such as assisted lambing, ensuring expulsion of the placenta, and providing appropriate care to mothers during their gestation (food supplementation during the third trimester) and to newborn lambs in the first days of their life (standing, sucking the udder, taking colostrum, etc.) and the hygiene of floors and livestock buildings (disinfecting lambing pens, lamb nurseries, etc.). These practices help to minimize the risk of exposure to pathogens that can cause several diseases, affect the survival capacities of lambs, and increase both mortality and morbidity rates. Furthermore, their application can limit the impact of these perinatal mortalities on sheep production and the industry's profitability, especially in sheep farming countries.

REFERENCES

- Abdelhadi, S.; Niar, A.; Smail, N. and Abdelhadi, F. (2010): Struggle against perinatal lamb mortalities by using techniques of improvement and control of breeding on the level of Tiaret area (Algeria). Journal of Cell and Animal Biology 4 (2): 025-8.
- Ameghino, E.; Reif, J.S.; Inope, L.; Laos, A. and Gamarra, M. (1984): Perinatal lamb mortality in the central sierra of Peru. Preventive Veterinary Medicine 2(6): 833-843. https://doi.org/10.1016/0167-5877 (84)90036-9.
- Andrés, S.; Jiménez, A.; Sánchez, J.; Alonso, J.M.; Gómez, L.; Lopez, F. and Rey, J. (2007): Evaluation of some etiological factors predisposing to diarrhoea in lambs in "La Serena" (Southwest Spain). Small Ruminant Research 70(2-3):272-275.https://doi.org/10.1016/j.smallrumres.2006.04.004.
- Behrendt, R.; Hocking Edwards, J.E.; Gordon, D.; Hyder, M.; Kelly, M.; Cameron, F.; Byron, J.; Raeside, M., Kearney, G. and Thompson, A.N. (2019): Offering maternal composite ewes higher levels of nutrition from mid-pregnancy to lambing results in predictable increases in birthweight, survival and weaning weight of their lambs. Animal Production Science

- 59(10) : 1906-1922. https://doi.org/10.1071/AN18505.
- Bekele, T.; Otesile, E.B. and Kasali, O.B. (1992): Influence of passively acquired colostral immunity on neonatal lamb mortality in Ethiopian highland sheep. Small Ruminant Research 9(3): 209-215. https://doi.org/10.1016/0921-4488(92)90151-S.
- Bélanger, D.; Arsenault, J.P. and Dubreuil, Girard, C. (2001): Rapport du projet sur l'évaluation du statut sanitaire des troupeaux ovins du Bas-St-Laurent et de l'Estrie. Pages de la Faculté de Médecine Vétérinaire, Université de Montréal.
- Binns, S.; Cox, I.; Rizvi, S. and Green, L. (2002): Risk factors for lamb mortality on UK sheep farms.Preventive veterinary medicine 52 (3-4): 287-303. https://doi.org/10.1016/S0167-5877 (01)00255-0.
- Brugère-Picoux, J. (2004): Maladies des moutons. Paris: Éditions France agricole.
- Brugère-Picoux, J. (2016): Maladies du mouton. Paris: Editions France Agricole.
- Bruce, M.; Young, J.M.; Masters, D.G.; Refshauge, G.; Thompson, A.N.; Kenvon, P.R.; Behrendt, *R*.: Lockwood, A.; Miller, D.W. and Jacobson, C. (2021): The impact of lamb and ewe mortality associated with dystocia on Australian and New Zealand sheep farms: A systematic review. meta-analysis and economic model. Prev. Vet. Med 196: 105478.https://doi.org/10.1016/j.prev etmed.2021.105478.
- Chaarani, B.; Robinson, R.A. and Johnson, D.W. (1991): Lamb mortality in Meknes province (Morocco). Preventive Veterinary Medicine 10(4): 283-298.https://doi.org/10.1016/0167-5877(91)90014-S.
- Clune, T.; Lockwood, A.; Hancock, S.; Thompson, A.N.; Beetson, S.; Campbell, A.J.D.; Glanville, E.;

- Brookes, D.; Trengove, C.; O'Handley, R.; Kearney, G. and Jacobson, C. (2021a): Abortion and lamb mortality between pregnancy scanning and lamb marking for maiden ewes in southern Australia. Animals 12(1): 10. https://doi.org/10.3390/ani12010010.
- Clune, T.; Besier, S.; Hair, S.; Hancock, S.; Lockwood, A.; Thompson, A.; Jelocnik, M. and Jacobson, C. (2021b): Chlamydia pecorum detection in aborted and stillborn lambs from Western Australia. Veterinary Research 52(1): 84.
- Cutress, D., 2020. Factors affecting sheep flock productivity. Farming Connect.
- Dahmani, A.; Dahmani, H.; Rahal, K. and Kaidi, R. (2019): Description of dystocia in ewes of the Ksar el Boukhari region (Algeria). Agriculture 3 (4): 111-112. https://doi.org/10.15835/agrisp.v111i 3-4.13566.
- Dahmani, H.; Ouchene, N.; Dahmani, A.; Ouchene-Khelifi, N.A. and Oumouna, (2020): М. First report Cryptosporidium parvum, Escherichia coli K99, rotavirus and coronavirus in neonatal lambs from north-center region, Algeria. Comparative Immunology, Microbiology and Infectious Diseases 73:101567.https://doi.org/10.1016/j.c imid.2020.101567.
- Dennis, S.M. (1970): Perinatal Lamb Mortality in a Purebred Southdown Flock. Journal of Animal Science 31(1): 76–79, https://doi.org/10.2527/jas1970.31176x.
- Dennis, S.M. (1974): Perinatal lamb mortality in Western Australia. 1. General procedures and results. 2. Non-infectious conditions 50: 443-449. https://doi.org/10.1111/j.1751-0813.1974.tb06867.x.
- Diskin, M.G. and Morris, D.G. (2008): Embryonic and early foetal losses in cattle and other ruminants. Reproduction in Domestic

- Animals.43 :260-267. https://doi.org/ 10.1111/j.1439-0531.2008.01171.x.
- Dixon, A.B.; Knights, M.; Winkler, J.L.; Marsh, D.J.; Pate, J.L.; Wilson, M.E.; Dailey, R.A.; Seidel, G. and Inskeep, E.K. (2007): Patterns of late embryonic and fetal mortality and association with several factors in sheep. Journal of Animal Science 85(5): 1274-1284. https://doi.org/10.2527/jas.2006-129.
- Dohoo, I.R.; Curtis, R.A. and Finley, G.G. (1985): A survey of sheep diseases in Canada. Can J Comp Med 49(3):239-47. PMID: 3840053; PMCID: PMC1236163.
- Douh, M.; Aissaoui, C.; Hicher, A. and Abdelmajid, S. (2018): Lambing and mortality rate in Ouled-Djellal sheeps in Tebessa region-Algeria. Iraqi Journal of Veterinary Sciences 32(2):267-73.

 10.33899/ijvs.2019.153863.
- Dwyer, C.M. and Morgan, C.A. (2006):

 Maintenance of body temperature in the neonatal lamb: Effects of breed, birth weight, and litter size. Journal of Animal Science 84(5):1093–1101.

 https://doi.org/10.2527/2006.845109
 3x.
- Dwyer, C.M. and Smith, L.A. (2008): Parity effects on maternal behaviour are not related to circulating oestradiol concentrations in two breeds of sheep. Physiology & behavior 93(1-2), 148-154. https://doi.org/10.1016/j.physbeh.2007.08.007.
- Dwyer, C.M.; Conington, J.; Corbiere, F.; Holmøy, I.H.; Muri, K.R.; Nowak Rooke, J.; Vipond, J. and Gautier, J.M. (2016): Invited review: Improving neonatal survival in small ruminants: science into practice. Animal 10 (3):449-459. Doi: 10.1017/S1751731115001974.
- El-Kattan, A. (2018): Klebsiella pneumoniae as a causative agent of pneumonia and abscessation in Barki lambs. JEgyptvetmedAssoc 78 (4):709 715.

- Fowler, D.G. (2007): Lamb marking performance for ultrasound-scanned ewes in Australian sheep flocks. Project AHW. 131. Meat and Livestock Australia: Sydney, NSW, Australia.
- Fragkou, I.A.; Mavrogianni, V.S. and Fthenakis, G.C. (2010): Diagnostic investigation of cases of deaths of newborn lambs. Small Ruminant Research 92(1-3): 41-44. https://doi.org/10.1016/j.smallrumres.2010.04.013.
- Gautier, J.M. and Corbiere, F. (2011): La mortalité des agneaux: état des connaissances. 18. Rencontres Recherches Ruminants (3 R): 265-262. ffhal-01189960f.
- Gautier, J.M.; Jousseins, C.; Tchakerian, E. and Corbiere, F. (2012): Mortalité des agneaux: ressenti des éleveurs et modalités de conduite et de gestion sanitaire des troupeaux Rencontres autour des recherches sur les ruminants. 2012: (19). hal-01189960.
- Gani, F. and Niar, A. (2020): Reproductive Characteristics of Local Sheep Breeds in the Saharan Region of Béchar in Algeria. Life sciences leaflets. 127: 38-45.
- Gebretensay, A.; Alemayehu, G.; Rekik, M.; Alemu, B.; Haile, A.; Rischkowsky, B.; Aklilu, F. and Wieland, B. (2019): Risk factors for reproductive disorders and major infectious causes of abortion in sheep in the highlands of Ethiopia. Small ruminant research 177: 1-9. https://doi.org/10.1016/j.smallrumres.2019.05.019.
- Geenty, K.G.; Brien, F.D.; Hinch, G.N.; Dobos, R.C.; McCaskill, M.; Ball, A.J. and van der Werf, J.H.J. (2014): Reproductive performance in the sheep CRC information nucleus across different sheep production environments in southern Australia. Animal Production Science 54: 715-726.
- Girard C. and Arsenault J. (2003): La mortalité des agneaux en période

- périnatale. Le médecin vétérinaire du Québec, vol 33, N° 1 et 2.
- Givens, M.D. and Marley, M.S.D. (2008): Infectious causes of embryonic and fetal mortality. Theriogenology 70(3): 270-285. https://doi.org/10.1016/j.theriogenology.2008.04.018.
- Gökçe, E. and Erdoğan, H.M.A. (2009): An epidemiological study on neonatal lamb health. Kafkas Üniversitesi Veteriner Fakültesi Dergisi 15(2). Doi:10.9775/kvfd.2008.104-A.
- Green, L.E. and Morgan, K.L. (1993): Mortality in early born, housed lambs in south-west England. Preventive Veterinary Medicine 17(3-4): 251-261.https://doi.org/10.1016/0167-5877(93)90033-P.
- Henderson, D.C. (2007): Neonatal conditions. Diseases of Sheep. Blackwell Publishing. pp 81-87. 10.1002/9780470753316.
- Holmøy, I.H.; Waage, S.; Granquist, E.G.; L'Abée-Lund, T.M.; Ersdal, C.; Hektoen, L. and Sørby, R. (2017): Early neonatal lamb mortality: postmortem findings. Animal 11: 295–305.

Doi:10.1017/S175173111600152X.

- Holst, P.J.; Fogarty, N.M. and Stanley, D.F. (2002): Birth weights, meningeal lesions, and survival of diverse genotypes of lambs from Merino and crossbred ewes. Australian Journal of Agricultural Research53, 175–181. https://doi.org/10.1071/AR01046.
- Holst, P.J. (2004): Lamb autopsy: notes on a procedure for determining cause of death. NSW Agriculture.
- Huffman, E.M.; Kirk, J.H. and Pappaioanou, M. (1985): Factors associated with neonatal lamb mortality. Theriogenology 24 (2): 163–171. https://doi.org/10.1016/0093-691X(85)90180-3.
- Johnston, W.S.; Maclachlan, G.K. and Murray, I.S. (1980): A survey of sheep losses and their causes on commercial farms in the north of

- Scotland. The Veterinary Record 106(11): 238-240. https://doi.org/10.1136/vr.106.11.238
- Jordan, D.J. and Le Feuvre, A.S. (1989):
 The extent and cause of perinatal lamb mortality in 3 flocks of Merino sheep. Australian Veterinary Journal 66(7), 198-201. https://doi.org/10.1111/j.1751-0813.1989.tb09807.x.
- Khan, A.; Sultan, M.A.; Jalvi, M.A. and Hussain, I. (2006): Risk factors of lamb mortality in Pakistan. Animal Research 55(4): 301-311. https://doi.org/10.1051/animres:2006 017.
- Kerslake, J.I., Everett-Hincks, J.M. and Campbell, A.W. (2005): Lamb survival: a new examination of an old problem. Proc. N.Z. Soc. Anim. Prod 65: 13–18.
- Kopp, K.; Hernandez-Jover, M.; Robertson, S.; Abuelo, A. and Friend, M. (2020):
 A survey of New South Wales sheep producer practices and perceptions on lamb mortality and ewe supplementation. Animals 10(9):1586.https://doi.org/10.3390/ani10091586.
- Kott, R.W.; Thomas, V.M.; Hatfield, P.G.; Evans, T. and Davis, K.C. (1998): Effects of dietary vitamin E supplementation during late pregnancy on lamb mortality and ewe productivity. Journal of the American Veterinary Medical Association 212(7): 997-1000. https://doi.org/10.2460/javma.1998.212.07.997.
- Lepeltier, G. (2010): Thèse exercice Vétérinaire, Nantes 139p.
- Lockwood, A.; Hancock, S.; Kearney, G. and Thompson, A. (2019a): Reducing mob size increases the survival of twin-born Merino lambs when feed-on-offer from pasture is limited and ewes are supplementary fed during lambing. Small Rumin. Res 173: 65–69. https://doi.org/10.1016/j.smallrumres.2019.02.008.

- Lockwood, A.; Hancock, S.; Paganoni, B.; Macleay, C.; Kearney, G.; Sohi, R. and Thompson, A. (2019b): Mob size of single-bearing or twin-bearing Merino ewes at lambing may not influence lamb survival when feed-on-offer is high. Animal 13: 1311–1318.

 Doi: 10.1017/S175173111800280X.
- Mellor, D.J. and Hodgson, J.C. (2007): The Perinatal Period. Diseases of Sheep. Blackwell Publishing pp 65-75.https://doi.org/10.1002/9780470753316.ch10.
- Mukasa-Mugerwa, E.; Said, A.N.; Lahlou-Kassi, A.; Sherington, J. and Mutiga, E.R. (1994): Birth weight as a risk factor for perinatal lamb mortality, and the effects of stage of pregnant ewe supplementation and gestation weight gain in Ethiopian Menz sheep. Preventive veterinary medicine 19(1): 45-56. https://doi.org/10.1016/0167-5877(94)90014-0.
- Mandal, A.; Prasad, H.; Kumar, A.; Roy, R. and Sharma, N. (2007): Factors associated with lamb mortalities in Muzaffarnagari sheep. Small Ruminant Research 71 (1-3): 273-279.
 - $\frac{https://doi.org/10.1016/j.smallrumres}{.2006.07.010}.$
- McFarlane, D. (1965): Perinatal lamb losses. 1. An autopsy method for the investigation of perinatal losses. N. Z. Vet. J 13: 116–135. https://doi.org/10.1080/00480169.1965.33615.
- Menzies PA. (2007): Abortion in sheep: diagnosis and control. In: Youngquist RS, Threlfall WR, editors. Current therapy in large animal theriogenology. 2nd ed., St. Louis: Elsevier, pp. 667–80.
- Mobini, S.; Heath, A.M. and Pugh, D.G. (2002): Theriogenology of sheep and goats. In: Pugh DG, editor. Sheep and goat medicine. Philadephia: W.B. Saunders Company, pp. 129–86.
- Munoz, M.; Alvarez, M.; Lanza, I. and Carmenes, P. (1996): Role of enteric

- pathogens in the aetiology of neonatal diarrhoea in lambs and goat kids in Spain. Epidemiology Infection 117(1): 203-211. Doi:10.1017/S0950268800001321.
- Mustafa, M.I.; Mehmood, M.M.; Lateef, M.; Bashir, M.K.; Khalid, A.R. (2014): Factors influencing lamb mortality from birth to weaning in Pakistan. Pakistan Journal of Life & Social Sciences 12(3): 139-143.
- Nash, M.L.; Hungerford, L.L.; Nash, T.G. and Zinn, G.M. (1997): Risk factors for respiratory disease mortality in lambs. Small Ruminant Research 26(1-2): 53-60. https://doi.org/ 10.1016/S0921-4488 (96)00987-X.
- Nóbrega Jr, J.E.D.; Riet-Correa, F.; Nóbrega, R.S.; Medeiros, J.M.D.; Vasconcelos, J.S.D.; Simões, S.V.D. and Tabosa, I.M. (2005): Perinatal mortality of lambs in the semi-arid region of Paraiba, Brazil. Pesquisa Veterinária Brasileira 25: 178. https://doi.org/10.1590/S0100-736X2005000300008.
- Nowak, R.; Porter, R.H.; Lévy, F.; Orgeur, P. and Schaal, B. (2000): Role of mother-young interactions in the survival of offspring in domestic mammals. Reviews of Reproduction 5: 153–163.
 - DOI: <u>10.1530/ror.0.0050153</u>.
- Prud'Hon, M.; Denoy, I.; Desvignes, A.; Devillard, R. and Sicard, C. (1968): Étude des résultats de six années d'élevage des brebis mérinos d'Arles du domaine du merle. Iii. - la mortalité des agneaux. Annales de zootechnie 17 (2): 159-168. ffhal-00886926f.
- Rania, H.; Rehab, E.M.; Amira, E.L.; Noha, M. and Heba, A. (2021): Mixed infection of Mycoplasma and bacteria in the respiratory tract of sheep with reference to the histopathological picture in Sharkia Governorate. Egyptian Journal of Animal Health 1 (2021): 7-22. 10.21608/ejah. 2021. 133580.

- R.K.*(2001):* Rastogi, Production performance of Barbados blackbelly sheep in Tobago, West Indies. Small Ruminant Research 41(2): 171-175. https://doi.org/10.1016/S0921-4488(01)00199-7.
- Refshauge, G.; Brien, F.D.; Hinch, G.N.; Van De Ven, R. (2015): Neonatal lamb mortality: factors associated with the death of Australian lambs. Animal Production Science 56(4): 726-735.
 - https://doi.org/10.1071/AN15121.
- Renukaradhya, G.J.: Isloor. and Rajasekhar, M. (2002): Epidemiology, aspects, zoonotic vaccination and control/eradication of brucellosis in India. Veterinary microbiology 90(1-4): 183-195. https://doi.org/10.1016/S0378-1135(02)00253-5.
- Ridler, A.L.; Flay, K.J.; Kenyon, P.R.; Blair, H.T.: Corner-Thomas, R.A. and Pettigrew, E.J. (2022): Factors Associated with mortality of lambs born to Ewe Hoggets. Animals 12 (3): https://doi.org/10.3390/ani 319. 12030319.
- Rook, J.S.; Scholman, G.; Wing-Proctor, S. and Shea, M. (1990): Diagnosis and control of neonatal losses in sheep. The Veterinary Clinics of North America. Food Animal Practice 6(3): 531-562. https://doi.org/10.1016/ s0749-0720 (15)30831-8.
- Rowland, J.P.; Salman, M.D.; Kimberling, C.V.; Schweitzer, D.J. and Keefe, T.J. **Epidemiologic** factors (1992): involved in perinatal lamb mortality on four range sheep operations. American journal of veterinary research 53(2): 262-267.https://doi.org/10.2460/ajvr.1992 .53.02.262.
- Shorten, P.R.; O'Connell, A.R.; Demmers, K.J.; Edwards, S.J.; Cullen, N.G. and Juengel, J.L. (2013): Effect of age, weight, and sire on embryo and fetal survival in sheep. Journal of Animal 91(10):4641-4653. Science

- https://doi.org/10.2527/jas.2013-6415.
- Southey, B.R.; Rodriguez-Zas, S.L. and Leymaster, K.A. (2001): Survival analysis of lamb mortality in a terminal sire composite population. Journal of Animal Science 9 (9): 2298–2306. https://doi.org/10.2527/2001.7992298x.
- Sawalha, RM.; Conington, J.; Brotherstone, S. and Villanueva, B. (2007): Analyses of lamb survival of Scottish Blackface sheep. Animal 1(1):151-157.

Doi:10.1017/S1751731107340056;

- Swarnkar, C.; Sonawane G. and Sharma S., (2021): Best practices for reducing the neonatal mortality in sheep flocks. All India Network Programme on Neonatal Mortality in Farm Animals. Division of Animal Health ICAR-Central Sheep and Wool Research Institute Avikanagar, Rajasthan, pp. 304 501.
- Swarnkar, C.P. and Sonawane, G.G. (2024): Risk factors associated with neonatal mortality in LAMBS: An overview. Indian Journal of Small Ruminants (The) 30(1):1-17. http://dx.doi.org/10.5958/0973-9718. 2024.00036.9.
- Ugochukwu, I.C.; Aneke, C.I.; Ezeasor, C.K.; Msheila, W.P.; Idoko, S.; Kwabugge, A.; Shoyinka, S.V.O.;

- Chineme, C.N.; Chah, K.F. and Ugochukwu, E.I. (2017): Pathomorphology and aerobic bacteria associated with pneumonia in small ruminants slaughtered at the Nsukka abattoir. Animal Research International 14 (1): 2644-2651.
- Verma, R.; Devi, R. and Singh, K.D. (2017): Infectious agents responsible for abortion in sheep. Progressive Research – An International Journal 12:1090-1093.
- Wassif, IM. and El-Kattan AM. (2015): A case report-multifocal pulmonary and liver abscesses due to klebsiella pneumoniae infection in a lamb in Sidi-barrani city, matrouh governorate, Egypt. Egyptian Journal of Desert Research 65 (1):75-80. 10.21608/ejdr.2015.5801.
- Wiener, G.; Woolliams, C. and Macleod, N. S.M. (1983): The effects of breed, breeding system and other factors on lamb mortality: 1. Causes of death and effects on the incidence of losses. The Journal of agricultural science 100 (3): 539-551. https://doi.org/10.1017/S0021859600035292.
- Yapi, C.V.; Boylan, W.J. and Robinson, R.A. (1990): Factors associated with causes of preweaning lamb mortality. Preventive Veterinary Medicine 10(1-2): 145-152. https://doi.org/10.1016/0167-5877 (90)90060-U.

توزيع وفيات الحملان في الفترة المحيطة بالولادة حول العالم وأسبابها: مقال مراجعة هيام بن مبارك¹، سامية جفال^{1,2}، لويزة بن حمزة ا

معهد العلوم البيطرية جامعة قسنطينة 1 - الإخوة منتوري 1 جامعة 2 وت سكيكدة 2

Email: benmebarek.hayem@gmail.com Assiut University web-site: www.aun.edu.eg

تشكل وفيات الحملان في الفترة المحيطة بالولادة مشكلة صحية هامة تؤثر على إنتاجية وربحية مزارع الأغنام لأن هذه الفترة تشكل الفترة الأكثر حرجًا التي يمكن أن تحدث فيها الوفيات خلال الفترة السابقة للولادة (خلال الفترات الجنينية) و يوم الولادة وفترة ما بعد الولادة (المبكرة، المتوسطة، والمتأخرة). عوامل الخطر المرتبطة الفترات الجنينية الفيات تتعلق بالنعجة (العمر، الحالة الجسمية، سلوك الأم، وجودة اللبأ)، وبالخروف (العمر، الوزن، الجنس السلوك، ودرجة حرارة الجسم عند الولادة)، وبالبيئة (نظافة الماشية، المناخ، الولادة في الحظيرة أو خارجها ونظام التربية) التي تؤثر على بقاء بقاء الحملان على قيد الحياة وقدراتها على تنظيم و الحفاظ على درجة حرارة جسمها. سجل توزيع معدل وفيات الحملان في الفترة المحيطة بالولادة حول العالم نسب متفاوتة على مر السنين بمعدلات مختلفة: في أفريقيا، كانت المعدلات المبلغ عنها كما يلي: في الجزائر (5.8% - 7.1%)، في المغرب معدلات مؤي أوروبا: كانت المعدلات المسجلة ،(%25.09)، في المغرب في أوروبا: كانت المعدلات المسجلة ،(%25.09)، من ناحية أخرى، في أوروبا: كانت المعدلات المسجلة ،(%40.25.0)، من ناحية أخرى، في أوروبا: كانت المعدلات المسجلة ،(%10.9). في أمريكا، تفاوتت %16 المعدلات من بلد إلى آخر: في الولايات المتحدة و(8.25%) في اسكتلندا. علاوة على ذلك، في أمريكا، تفاوتت %16 المعدلات المسجلة (6.71% - 10%) في الهند و(6.81% - 27.8%) في باكستان. أيضًا في أستر اليا (15% - السباب هذه الخسائر في الحملان هي أسباب معدية، مثل الالتهاب الرئوي، والاضطرابات المعوية، وأسباب غير معدية، مثل الجوع، وصعوبة الولادة، والموت عند الولادة، وإصابات الولادة، والضعف

الكلمات المقتاحية: حمل، عوامل الخطر، غير معدى، معدى، وفيات الحملان في الفترة المحيطة بالولادة