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Abstract - Intrusion Detection Systems (IDSs) play a vital 

role in securing modern networks by identifying 

unauthorized access and malicious activities. However, 

challenges such as class imbalance and the limited ability 

of traditional approaches to capture temporal patterns 

hinder accurate detection, particularly for minority attack 

classes. This study introduces a hybrid deep learning model 

that integrates a Convolutional Neural Network (CNN) 

with Long Short-Term Memory (LSTM) layers and an 

attention mechanism. To address the class imbalance 

problem, the model is trained using the Synthetic Minority 

Oversampling Technique (SMOTE) and Focal Loss. 

Experimental evaluations conducted on the KDD Cup 99 

dataset demonstrate that the proposed CNN-LSTM with 

Attention model achieves a classification accuracy of  

97.09% and an F1-score of 97.46%, significantly 

outperforming the baseline CNN model. These findings 

highlight the effectiveness of incorporating temporal 

modeling and attention mechanisms in enhancing intrusion 

detection performance, particularly for rare attack types 

such as Remote to Local (R2L) and User to Root (U2R). 
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1 Introduction 

  With the increasing reliance on internet-based systems 

and services, cyber threats have become more frequent and 

increasingly sophisticated. Consequently, ensuring network 

security has become a top priority for organizations and 

institutions. Network Intrusion Detection Systems (NIDS) 

are essential tools for identifying suspicious activities and 

preventing unauthorized access [1]. However, traditional 

                                                        
 

 

 

 

 

NIDS approaches, which rely primarily on predefined rules 

or signatures, often fail to detect novel and evolving attack 

techniques. 

In recent years, machine learning and deep learning 

techniques have emerged as powerful alternatives [2], 

capable of learning complex patterns directly from raw 

network traffic data. Among these, Convolutional Neural 

Networks (CNNs) are effective at capturing spatial features 

but struggle to model the temporal dependencies inherent 

in many intrusion scenarios. 

To address this limitation, hybrid architectures 

incorporating Long Short-Term Memory (LSTM) networks 

have gained attention for their sequential processing 

capabilities [3]. Nonetheless, challenges such as dataset 

imbalance and minority attack classes continue to hinder 

detection accuracy. 

To mitigate these issues, this study incorporates the 

Synthetic Minority Oversampling Technique (SMOTE) to 

balance the dataset and applies focal loss to improve the 

learning of minority classes during model training. The 

study compares two deep learning-based NIDS approaches: 

a CNN model enhanced with Stochastic Gradient Pooling, 

and a hybrid CNN-LSTM model integrated with an 

attention mechanism. 

The aim is to evaluate their performance on the KDD 

Cup 99 dataset [4] and to demonstrate the benefits of 

sequential modeling and attention-based feature 

enhancement. This study offers several key contributions: 

(1) It presents a hybrid CNN-LSTM model with a soft 

attention mechanism for detecting complex and rare attack 

patterns; (2) It tackles class imbalance using SMOTE and 

focal loss; (3) It provides a detailed comparison against a 

CNN baseline model; and (4) It analyzes how temporal 

modeling and attention mechanisms improve classification 

accuracy, especially for minority attack types. While 

similar architectures have been proposed in previous 
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studies, this work introduces novel enhancements, 

including a custom attention mechanism and advanced 

balancing techniques, leading to improved model 

robustness and detection performance. 

2 Related Work 

Recent advancements in deep learning have significantly 

enhanced Intrusion Detection Systems (IDS), particularly 

through hybrid architectures that combine convolutional 

and recurrent neural networks. Several studies have 

explored the use of CNNs for extracting spatial features 

from traffic data, while others have demonstrated the 

efficacy of Long Short-Term Memory (LSTM) networks in 

capturing temporal patterns within network flows. 

Aljawarneh et al. [5] introduced a CNN-RNN hybrid 

model that improved detection performance, particularly 

for minority classes. Similarly, Yin et al. [6] highlighted the 

potential of LSTM networks in temporal analysis, reporting 

notable improvements over traditional machine learning 

techniques. Nonetheless, these models often encountered 

limitations related to class imbalance and lacked 

sophisticated attention mechanisms to emphasize critical 

features in long sequences. 

To address such challenges, various studies have 

employed techniques like the Synthetic Minority 

Oversampling Technique (SMOTE) or incorporated 

advanced loss functions such as focal loss. For instance, Liu 

et al. [7] showed that integrating focal loss with CNN 

architectures enhances sensitivity to rare attack classes. 

Expanding on this approach, Al-Omar and Trabelsi [8] 

proposed an attention-based CNN-LSTM model, achieving 

over 95% accuracy on the UNSW-NB15 dataset and further 

validating the benefits of attention mechanisms. 

Sinha et al. [9] proposed a hybrid LSTM-CNN model 

applied to the BoT-IoT dataset, attaining a classification 

accuracy of 99.87%, which reinforced the strength of 

combining spatial and temporal features in intrusion 

detection. Yang et al. [10] advanced this line of research by 

integrating Inception-CNN, BiGRU, and attention layers, 

achieving robust performance across imbalanced attack 

categories. Meanwhile, Jouhari and Guizani [11] 

emphasized real-time efficiency by introducing a 

lightweight CNN-BiLSTM model tailored for IoT 

environments, delivering high accuracy with minimal 

computational overhead. 

Building upon prior contributions, our study presents a 

novel CNN-LSTM architecture that integrates a custom soft 

attention mechanism between stacked LSTM layers, and 

employs both SMOTE and focal loss to address class 

imbalance. The objective is to enhance the detection of 

underrepresented attack types, such as Remote-to-Local 

(R2L) and User-to-Root (U2R), using the KDD Cup 99 

dataset. 

Unlike existing studies that often focus on individual 

techniques, this work uniquely combines four critical 

components—CNNs for spatial feature extraction, LSTMs 

for temporal modeling, attention for feature refinement, and 

dual imbalance mitigation—into a cohesive deep learning 

framework. To the best of our knowledge, this combination 

has not been jointly explored in previous IDS research. The 

proposed model demonstrates enhanced capability in 

detecting rare and subtle intrusion patterns, positioning it as 

a robust and novel contribution in the field. 

3 Methodology 

  This section outlines the steps followed in building and 

evaluating the proposed intrusion detection models. It 

includes data preprocessing, feature selection, handling 

class imbalance, and the architecture details of the CNN and 

CNN-LSTM models.  

   The methodological choices in this study were guided by 

the nature of intrusion detection data. CNN was selected for 

its ability to capture local spatial patterns in traffic features, 

making it suitable for processing structured input 

representations. LSTM networks were chosen to model 

temporal dependencies inherent in sequential traffic flows, 

enabling better recognition of patterns across time steps. An 

attention mechanism was integrated to prioritize the most 

relevant time features, enhancing focus on informative 

parts of the input. To address the severe class imbalance in 

the dataset, the SMOTE technique was employed to 

synthetically oversample minority classes, and focal loss 

was used to penalize hard-to-classify examples. These 

combined techniques aimed to improve the robustness and 

generalization ability of the detection model. 

3.1 Data preprocessing 

  To begin, the training and testing datasets were loaded 

and merged for consistent preprocessing. Duplicate records 

were removed to avoid bias. Non-numeric features were 

encoded using label Encoding. The original 22 attack types 

and the "normal" label were grouped into five categories: 

Normal, Denial of Service (DoS), Probing (Probe), R2L, 

and U2R. Feature values were normalized using 

StandardScaler to improve model performance and 

convergence [12]. 
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3.2 Feature selection 

  To improve efficiency and model generalization, 

Information Gain (Mutual Information) was used to select 

the top 20 features with the highest predictive power. This 

selection reduced dimensionality and eliminated redundant 

data [13]. 

3.3 Class imbalance 

  The original KDD dataset exhibited a pronounced class 

imbalance, with the majority of instances belonging to the 

Normal and DoS categories. 

Table 1. Class distribution before and after SMOTE, 

showing balanced categories. 

Class Before SMOTE After SMOTE 

DoS 55,994 (39.82%) 75,942 (20.00%) 

Normal 75,942 (54.01%) 75,942 (20.00%) 

Probe 6,112 (4.35%) 75,942 (20.00%) 

R2L 2,497 (1.78%) 75,942 (20.00%) 

U2R 70 (0.05%) 75,942 (20.00%) 

  As shown in Table 1, classes such as R2L and U2R are 

severely underrepresented, accounting for only 1.78% and 

0.05% of the samples, respectively. To address this issue, 

the Synthetic Minority Oversampling Technique (SMOTE) 

was applied exclusively to the training data, while the test 

set remained unchanged to ensure unbiased evaluation [14]. 

SMOTE generates synthetic samples for minority classes 

by interpolating between an instance xi and one of its nearest 

neighbors xnn: 

xnew = xi + δ ×( xnn - xi ) , δ ∈ [0,1] 

 
 This process increases the number of samples in rare 

classes until each class contains 75,942 instances, achieving 

balanced class representation across all categories. 

Importantly, the test set distribution remained unchanged to 

ensure a realistic and unbiased evaluation of the model’s 

generalization performance, thereby avoiding data leakage 

between training and evaluation phases. 

 In addition to SMOTE, the model was trained using focal 

loss, a modified cross-entropy loss that emphasizes hard-to-

classify samples. It is formulated as: 

 

FL (pt) = − 𝛼𝑡 (1 −  𝑝𝑡)𝛾 𝑙𝑜𝑔(𝑝𝑡) 
   Where pt is the predicted probability for the true class, αt 

is a balancing factor, and γ is the focusing parameter that 

controls the weight given to hard examples. Focal loss is 

particularly beneficial for underrepresented attack types 

such as R2L and U2R. 

  As depicted in Fig. 1, the combined use of SMOTE and 

focal loss effectively mitigated the class imbalance 

problem. This strategy enhanced the model’s robustness, 

promoted fairer training, and significantly improved 

detection performance for minority attack categories, 

especially R2L and U2R, which are often the most 

challenging to classify. 

 

Fig. 1. Class distribution before and after SMOTE, showing 

balanced representation of rare classes 

 

3.4 CNN model with stochastic gradient pooling 

 

  The CNN model used several convolutional layers 

followed by Stochastic Gradient Pooling (SGP). The 

architecture was trained with focal loss, class weighting, 

and SMOTE-balanced data. The confusion matrix and 

performance results are shown in Fig. 2. 

 

 
Fig. 2. Confusion matrix of the baseline CNN model, 

highlighting poor detection of R2L and U2R 
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  As seen in Fig. 2, the CNN model performs well in 

identifying the majority classes (DoS and Normal), but 

exhibits reduced accuracy for minority classes such as R2L 

and U2R. This suggests the model’s limited ability to 

capture temporal and contextual patterns associated with 

rare attacks [15-16]. 
3.5 CNN-LSTM model with attention mechanism 

 

  To better capture the temporal behavior in network traffic, 

a second model was developed based on a hybrid 

architecture that integrates CNN and LSTM layers, 

augmented with a custom attention mechanism [17]. The 

attention mechanism employed in this study consists of a 

soft attention [18] layer placed between two stacked LSTM 

layers. The first LSTM layer is configured with 

return_sequences=True to produce a sequence of hidden 

states. The attention layer then computes context vectors by 

assigning weights to each time step, emphasizing the most 

informative parts of the input sequence. This output is fed 

into a second LSTM layer to refine temporal features before 

reaching the final classification stage. This design allows 

the model to capture essential temporal dependencies, 

which are crucial for detecting subtle intrusion patterns that 

traditional methods often fail to recognize. 

  The performance of the CNN-LSTM model with 

attention is illustrated in Fig. 3, which illustrates improved 

classification accuracy for minority classes such as R2L and 

U2R. This supports the effectiveness of the proposed 

architecture in handling subtle and underrepresented 

intrusion patterns. 

 

 

 
Fig. 3. Confusion matrix of the CNN-LSTM model, 

showing improved detection of R2L and U2R 

 

  

The architecture of the proposed CNN-LSTM model 

comprises several convolutional layers, followed by LSTM 

units and a custom attention mechanism. The convolutional 

layers are designed to extract spatial features from the input 

sequences, while the LSTM units capture temporal 

dependencies within the data. The attention layer is applied 

after the LSTM output to emphasize the most informative 

components [19] of the sequence prior to final classification. 

This integration enhances the model’s capacity to detect 

complex and subtle patterns in network traffic, which is 

particularly beneficial for identifying intrusions belonging 

to minority classes. 

 

  Figure 4 illustrates the architecture of the CNN-LSTM 

model with attention, highlighting its core components: 

convolutional layers for spatial feature extraction, LSTM 

units for learning temporal relationships, and an attention 

mechanism to focus on critical time steps before 

classification. 

  To optimize model performance, hyperparameters such 

as learning rate, batch size, number of epochs, and dropout 

rate were manually tuned based on validation performance. 

Several configurations were evaluated iteratively, and the 

final settings were selected to minimize overfitting while 

ensuring convergence. Due to computational constraints, an 

exhaustive grid search was not used; instead, tuning was 

performed through empirical experimentation on a held-out 

validation set. 

3.6 Implementation details 

  The models were implemented using TensorFlow and 

Keras frameworks, following recent implementations of 

deep LSTM architectures in traffic video analytics [20]. 

The CNN architecture includes two convolutional layers 

with 64 and 128 filters, respectively, each followed by 

MaxPooling and Dropout (rate 0.4). The CNN output is 

reshaped and passed to two stacked LSTM layers with 128 

units each. A soft attention mechanism is applied between 

the LSTM layers [21] to focus on informative time steps. 

The final classification layers consist of two dense layers 

with 256 and 128 units using ReLU activation, followed by 

Dropout (rates 0.4 and 0.3), and a Softmax output layer for 

multi-class prediction. 

 

The training was conducted with the following setup: 

 

 Optimizer: Adam 

 Learning rate: 0.0005 

 Loss function: focal loss 

 Batch size: 128 

 Epochs: 100 (with early stopping) 

 Validation split: 10% of the training data 

 SMOTE: Applied only on training data to balance 

class distribution 
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Fig. 4. Architecture of the proposed CNN-LSTM model 

with attention 

3.7 Evaluation metrics 

  To evaluate the performance of the proposed models, 

several standard metrics for multi-class classification were 

employed. Let the confusion matrix be defined in terms of 

the following variables: 

 

 TP: True Positives (correctly classified positive 

instances). 

 TN: True Negatives (correctly classified negative 

instances). 

 FP: False Positives (negative instances incorrectly 

classified as positive). 

 FN: False Negatives (positive instances 

incorrectly classified as negative). 

 

Based on these values, the metrics are formulated as follows: 

 

Accuracy = 
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
 

 

Accuracy provides a global indicator of the model’s overall 

correctness across all classes. 

  

Precision = 
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
 

 

Precision reflects the reliability of positive predictions, 

which is crucial in IDS to minimize false alarms. 

  

Recall (Sensitivity) = 
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
 

 

Recall quantifies the ability to capture actual attacks, 

ensuring that intrusion attempts are not overlooked. 

 

F1-score = 
2×(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
 

  

The F1-score balances Precision and Recall, making it 

particularly useful in imbalanced datasets such as intrusion 

detection. 

  These metrics were computed for each class, and macro-

averaging was employed to provide an overall performance 

assessment across all classes, treating each class equally 

regardless of its prevalence. 

  These evaluation metrics serve as direct indicators of the 

effectiveness of the proposed methodology [13], [19]. The 

high accuracy and F1-score achieved by the CNN-LSTM 

model with attention underscore its strong generalization 

capability and its effectiveness in detecting both majority 

and minority classes. 

  Moreover, the model’s precision and recall values 

highlight its capacity to reduce false positives and 

accurately identify true positives, particularly in rare attack 

scenarios such as R2L and U2R. These results underscore 

the importance of incorporating temporal modeling (via 

LSTM), attention mechanisms, and class imbalance 
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handling techniques (via SMOTE and focal loss) to 

improve detection performance in complex intrusion 

detection settings. 

  While this study primarily focused on standard metrics 

such as accuracy, precision, recall, and F1-score, future 

work may include additional evaluation measures—such as 

ROC-AUC and PR-AUC—for a more comprehensive 

assessment. Although not implemented in this study, future 

experiments will incorporate ROC-AUC and PR-AUC 

metrics to provide a more nuanced evaluation, especially in 

imbalanced scenarios. Furthermore, in-depth analysis based 

on confusion matrices can yield valuable insights into class-

wise prediction behavior and overall model robustness. 

4 Experimental Results 

  The CNN-LSTM model was evaluated on an 

independent test dataset following training on a SMOTE-

balanced dataset with focal loss. 

4.1 Model convergence 

   As part of the training strategy, the Focal loss function 

was employed to mitigate class imbalance and enhance 

optimization. The training and validation curves of the 

model exhibit consistent convergence, as illustrated in Fig. 

5. The accuracy curves indicate stable learning behavior 

with no signs of overfitting. Similarly, the loss curves 

display a smooth and continuous decline, as shown in Fig. 

6, confirming the effectiveness of the optimization process 

over the training run. 

 

 

 
Fig. 5. Training and validation accuracy over epochs, 

showing consistent convergence 

 

 
Fig. 6. Training and validation loss over epochs, indicating 

effective optimization 

 

4.2 Test set performance 

 

  Both the baseline CNN model and the proposed CNN-

LSTM model with attention were evaluated on the same 

unseen test set to provide a fair comparison of their 

generalization performance [13]. The CNN model served 

as a baseline, whereas the CNN-LSTM model incorporated 

temporal learning and an attention mechanism to enhance 

detection performance, particularly for minority attack 

types. 

 

  Table 2 compares the baseline CNN model with the 

proposed CNN-LSTM with attention. The proposed model 

shows improvements across all metrics, proving the benefit 

of adding temporal features and attention to intrusion 

detection.   The CNN-LSTM significantly outperforms the 

baseline CNN, especially in recall and F1-score, which are 

crucial for detecting rare attacks such as R2L and U2R. 

   It also maintains high accuracy for all categories, with 

strong gains in R2L and U2R detection, and solid 

performance on Normal, DoS, and Probe traffic. 

   Overall, the CNN-LSTM with attention achieves a final 

accuracy of 97.09%, compared to 90.79% for the baseline 

CNN, highlighting its effectiveness in handling class 

imbalance and improving detection of rare intrusions. 

Table 2. Test performance comparison between CNN and 

CNN-LSTM models. 

Metrics CNN CNN-LSTM 

Accuracy (%) 90.79 % 97.09 % 

Precision (%) 95.44 % 98.08 % 

Recall (%) 90.79 % 97.09 % 

F1 Score (%) 92.62 % 97.46 % 
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4.3 Error analysis 

  To gain deeper insight into the model’s limitations, an 

error analysis was performed by examining the distribution 

of False Positives (FP) and False Negatives (FN) across 

each class in the test set. A detailed breakdown of these 

errors is provided in Table 3. 

Table 3. Error analysis showing false positives and false 

negatives per class. 

Class False Positives False Negatives 

DoS 58 31 

Normal 38 374 

Probe 92 36 

R2L 188 22 

U2R 94 3 

  Classification errors per class are summarized in Table 

3. The Normal class shows a high number of false negatives 

(FN), indicating frequent misclassification of benign traffic 

as attacks, possibly due to overlapping feature patterns. In 

contrast, the R2L and U2R classes exhibit elevated false 

positives (FP), suggesting that normal connections were 

sometimes mistaken for rare intrusions. 

  As illustrated in Fig. 7, while most classes have low error 

rates, misclassifications are most prominent in the Normal 

class, followed by R2L and U2R, highlighting areas for 

further refinement. 

Fig. 7. Class-wise error distribution of the CNN-LSTM 

model, highlighting false negatives in Normal and false 

positives in R2L and U2R 

  These results demonstrate that while the model performs 

well in detecting various attack types, especially rare ones 

such as U2R, further refinements are necessary to reduce 

false positives and enhance the distinction between normal 

and malicious traffic. 

  The following section discusses the implications of 

these findings and examines the key factors contributing 

to the model’s performance. 

5 Discussion 

  The experimental results confirm the significant benefits 

of incorporating temporal modeling and attention 

mechanisms within deep learning architectures for 

intrusion detection. Compared to the baseline CNN model, 

the proposed CNN-LSTM with attention yields notable 

improvements across all key evaluation metrics, 

particularly for minority attack classes such as R2L and 

U2R. 

  The integration of SMOTE and focal loss effectively 

addresses class imbalance by oversampling minority 

classes and emphasizing hard-to-classify instances during 

training. These enhancements contribute to improved 

generalization on unseen test data, as reflected in the higher 

accuracy, recall, and F1-score achieved by the model. The 

LSTM layers capture sequential dependencies in network 

traffic, while the attention mechanism refines the model’s 

focus on critical time steps, ultimately enhancing its 

classification capability. 

5.1 Interpretation of results 

  The CNN-LSTM model demonstrated strong 

generalization capability, as evidenced by the smooth 

convergence of training and validation curves and its 

superior classification performance on the test set. It 

consistently achieved high true positive rates across most 

categories. Most notably, it identified U2R attacks—the 

rarest class—more accurately than the baseline CNN, 

which frequently misclassified such instances [22], 

consistent with findings in recent hybrid deep learning 

studies [9], [10], [11]. This highlights the effectiveness of 

temporal sequence modeling and attention mechanisms in 

capturing subtle patterns associated with rare attack types. 

  While the primary comparison in this study focuses on 

the CNN-LSTM model with attention versus a baseline 

CNN model, it is worth noting that previous research has 

explored classical machine learning approaches for 

intrusion detection, including Support Vector Machines 

(SVM), Random Forests (RF), and k-Nearest Neighbors (k-

NN). However, these traditional models often fall short in 

capturing complex temporal and contextual dependencies, 

particularly in imbalanced datasets [2], [5], [16]. In contrast, 

the proposed deep learning architecture demonstrates 

significant improvements in detecting rare and nuanced 

attack types, as demonstrated by the consistently higher 

accuracy and F1-scores. This suggests that integrating 

temporal modeling and attention mechanisms offers a more 
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robust and scalable alternative to traditional classifiers in 

contemporary intrusion detection systems. 

5.2 Error Patterns and Class Behavior 

  Despite the model’s overall strong performance, error 

analysis revealed notable misclassification patterns. The 

normal class had the highest number of false negatives, 

indicating frequent confusion with certain attack types, 

possibly due to overlapping feature distributions between 

benign and malicious traffic. 

  Conversely, the R2L and U2R classes exhibited elevated 

false positive rates, likely influenced by synthetic patterns 

introduced through SMOTE. Although SMOTE effectively 

rebalanced class distributions, it may have contributed to 

overfitting in rare classes [14]. 

  These findings highlight the need for improved feature 

engineering and more selective oversampling strategies to 

reduce false alarms and enhance the model’s ability to 

distinguish between normal and attack traffic. 

6 Conclusion 

  This study presented a comparative analysis between a 

baseline CNN model and an enhanced CNN-LSTM 

architecture with an attention mechanism for network 

intrusion detection using the KDD Cup 99 dataset. Both 

models addressed class imbalances through SMOTE and 

were trained using focal loss to improve sensitivity to hard-

to-classify samples. 

  Experimental results showed that the CNN-LSTM model 

consistently outperformed the baseline CNN across all key 

evaluation metrics, achieving an accuracy of 97.09% and 

an F1-score of 97.46%. The inclusion of LSTM layers 

enabled the model to capture temporal dependencies in 

network traffic, while the attention mechanism improved its 

focus on the most informative features. 

  Notably, the proposed model demonstrated significant 

improvements in detecting rare attack types such as R2L 

and U2R, which are typically difficult for conventional 

classifiers. Error analysis further confirmed a reduction in 

misclassification rates across both majority and minority 

classes. 

  Overall, the CNN-LSTM with attention architecture 

proved to be a robust and effective solution for building 

intelligent, data-driven intrusion detection systems capable 

of handling class imbalance and identifying subtle attack 

patterns. 

  In addition, potential real-time applications of the 

proposed CNN-LSTM model are envisioned. For example, 

the model could be integrated into intrusion detection 

modules of IoT gateways or cloud-based network 

monitoring systems, where low latency and high 

throughput are essential. Future work will focus on 

deploying the model within real-time streaming 

frameworks to evaluate inference latency, computational 

efficiency, and scalability under realistic network traffic 

conditions. 

 

7 Limitations and Future Work 

  Although the proposed CNN-LSTM with attention 

model demonstrated strong performance across most 

evaluation metrics, several limitations should be 

acknowledged. First, reliance on the KDD Cup 99 

dataset—despite its widespread use—poses a challenge to 

generalizability, as it does not adequately represent modern 

network traffic or recent attack types. Second, while 

SMOTE effectively rebalanced the dataset, it may have 

introduced synthetic patterns that contributed to higher 

false positive rates, particularly in minority classes such as 

R2L and U2R. Third, the model was evaluated in an offline 

setting, without consideration of real-time deployment 

constraints such as inference latency and resource 

consumption. Furthermore, cross-validation techniques 

such as k-fold cross-validation will be applied in future 

work to improve the robustness of performance evaluation. 

  Future evaluations will also consider more contemporary 

and representative datasets such as CICIDS2017 and 

UNSW-NB15 to improve generalizability to modern attack 

scenarios. Additionally, incorporating online learning 

capabilities or deploying the model within streaming 

architectures could facilitate assessment under real-time 

operational conditions. Further optimization of the attention 

mechanism and refinement of oversampling strategies may 

help reduce false alarms and enhance generalization of 

evolving attack patterns. Incorporating cross-validation 

techniques is also recommended to provide more reliable 

and robust performance estimates. 
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