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Enhancing Network Intrusion Detection with CNN-LSTM
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Abstract - Intrusion Detection Systems (IDSs) play a vital
role in securing modern networks by identifying
unauthorized access and malicious activities. However,
challenges such as class imbalance and the limited ability
of traditional approaches to capture temporal patterns
hinder accurate detection, particularly for minority attack
classes. This study introduces a hybrid deep learning model
that integrates a Convolutional Neural Network (CNN)
with Long Short-Term Memory (LSTM) layers and an
attention mechanism. To address the class imbalance
problem, the model is trained using the Synthetic Minority
Oversampling Technique (SMOTE) and Focal Loss.
Experimental evaluations conducted on the KDD Cup 99
dataset demonstrate that the proposed CNN-LSTM with
Attention model achieves a classification accuracy of
97.09% and an Fl1-score of 97.46%, significantly
outperforming the baseline CNN model. These findings
highlight the effectiveness of incorporating temporal
modeling and attention mechanisms in enhancing intrusion
detection performance, particularly for rare attack types
such as Remote to Local (R2L) and User to Root (U2R).

Keywords: Intrusion  Detection  System  (IDS),
Convolutional Neural Network (CNN), Long Short-Term
Memory (LSTM), Attention Mechanism, KDD Cup 99,
SMOTE, Focal Loss, Deep Learning, Network Security.

1 Introduction

With the increasing reliance on internet-based systems
and services, cyber threats have become more frequent and
increasingly sophisticated. Consequently, ensuring network
security has become a top priority for organizations and
institutions. Network Intrusion Detection Systems (NIDS)
are essential tools for identifying suspicious activities and
preventing unauthorized access [1]. However, traditional
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NIDS approaches, which rely primarily on predefined rules
or signatures, often fail to detect novel and evolving attack
techniques.

In recent years, machine learning and deep learning
techniques have emerged as powerful alternatives [2],
capable of learning complex patterns directly from raw
network traffic data. Among these, Convolutional Neural
Networks (CNNs) are effective at capturing spatial features
but struggle to model the temporal dependencies inherent
in many intrusion scenarios.

To address this limitation, hybrid architectures
incorporating Long Short-Term Memory (LSTM) networks
have gained attention for their sequential processing
capabilities [3]. Nonetheless, challenges such as dataset
imbalance and minority attack classes continue to hinder
detection accuracy.

To mitigate these issues, this study incorporates the
Synthetic Minority Oversampling Technique (SMOTE) to
balance the dataset and applies focal loss to improve the
learning of minority classes during model training. The
study compares two deep learning-based NIDS approaches:
a CNN model enhanced with Stochastic Gradient Pooling,
and a hybrid CNN-LSTM model integrated with an
attention mechanism.

The aim is to evaluate their performance on the KDD
Cup 99 dataset [4] and to demonstrate the benefits of
sequential modeling and attention-based  feature
enhancement. This study offers several key contributions:
(1) It presents a hybrid CNN-LSTM model with a soft
attention mechanism for detecting complex and rare attack
patterns; (2) It tackles class imbalance using SMOTE and
focal loss; (3) It provides a detailed comparison against a
CNN baseline model; and (4) It analyzes how temporal
modeling and attention mechanisms improve classification
accuracy, especially for minority attack types. While
similar architectures have been proposed in previous
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studies, this work introduces novel enhancements,
including a custom attention mechanism and advanced
balancing techniques, leading to improved model
robustness and detection performance.

2 Related Work

Recent advancements in deep learning have significantly
enhanced Intrusion Detection Systems (IDS), particularly
through hybrid architectures that combine convolutional
and recurrent neural networks. Several studies have
explored the use of CNNs for extracting spatial features
from traffic data, while others have demonstrated the
efficacy of Long Short-Term Memory (LSTM) networks in
capturing temporal patterns within network flows.

Aljawarneh et al. [5] introduced a CNN-RNN hybrid
model that improved detection performance, particularly
for minority classes. Similarly, Yin et al. [6] highlighted the
potential of LSTM networks in temporal analysis, reporting
notable improvements over traditional machine learning
techniques. Nonetheless, these models often encountered
limitations related to class imbalance and lacked
sophisticated attention mechanisms to emphasize critical
features in long sequences.

To address such challenges, various studies have
employed techniques like the Synthetic Minority
Oversampling Techniqgue (SMOTE) or incorporated
advanced loss functions such as focal loss. For instance, Liu
et al. [7] showed that integrating focal loss with CNN
architectures enhances sensitivity to rare attack classes.
Expanding on this approach, Al-Omar and Trabelsi [8]
proposed an attention-based CNN-LSTM model, achieving
over 95% accuracy on the UNSW-NB15 dataset and further
validating the benefits of attention mechanisms.

Sinha et al. [9] proposed a hybrid LSTM-CNN model
applied to the BoT-loT dataset, attaining a classification
accuracy of 99.87%, which reinforced the strength of
combining spatial and temporal features in intrusion
detection. Yang et al. [10] advanced this line of research by
integrating Inception-CNN, BiGRU, and attention layers,
achieving robust performance across imbalanced attack
categories. Meanwhile, Jouhari and Guizani [11]
emphasized real-time efficiency by introducing a
lightweight CNN-BIiLSTM model tailored for IloT
environments, delivering high accuracy with minimal
computational overhead.

Building upon prior contributions, our study presents a
novel CNN-LSTM architecture that integrates a custom soft
attention mechanism between stacked LSTM layers, and

employs both SMOTE and focal loss to address class
imbalance. The objective is to enhance the detection of
underrepresented attack types, such as Remote-to-Local
(R2L) and User-to-Root (U2R), using the KDD Cup 99
dataset.

Unlike existing studies that often focus on individual
techniques, this work uniquely combines four critical
components—CNNSs for spatial feature extraction, LSTMs
for temporal modeling, attention for feature refinement, and
dual imbalance mitigation—into a cohesive deep learning
framework. To the best of our knowledge, this combination
has not been jointly explored in previous IDS research. The
proposed model demonstrates enhanced capability in
detecting rare and subtle intrusion patterns, positioning it as
a robust and novel contribution in the field.

3 Methodology

This section outlines the steps followed in building and
evaluating the proposed intrusion detection models. It
includes data preprocessing, feature selection, handling
class imbalance, and the architecture details of the CNN and
CNN-LSTM models.

The methodological choices in this study were guided by
the nature of intrusion detection data. CNN was selected for
its ability to capture local spatial patterns in traffic features,
making it suitable for processing structured input
representations. LSTM networks were chosen to model
temporal dependencies inherent in sequential traffic flows,
enabling better recognition of patterns across time steps. An
attention mechanism was integrated to prioritize the most
relevant time features, enhancing focus on informative
parts of the input. To address the severe class imbalance in
the dataset, the SMOTE technique was employed to
synthetically oversample minority classes, and focal loss
was used to penalize hard-to-classify examples. These
combined techniques aimed to improve the robustness and
generalization ability of the detection model.

3.1 Data preprocessing

To begin, the training and testing datasets were loaded
and merged for consistent preprocessing. Duplicate records
were removed to avoid bias. Non-numeric features were
encoded using label Encoding. The original 22 attack types
and the "normal” label were grouped into five categories:
Normal, Denial of Service (DoS), Probing (Probe), R2L,
and U2R. Feature values were normalized using
StandardScaler to improve model performance and
convergence [12].
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3.2 Feature selection

To improve efficiency and model generalization,
Information Gain (Mutual Information) was used to select
the top 20 features with the highest predictive power. This
selection reduced dimensionality and eliminated redundant
data [13].

3.3 Class imbalance
The original KDD dataset exhibited a pronounced class
imbalance, with the majority of instances belonging to the

Normal and DoS categories.

Table 1. Class distribution before and after SMOTE,
showing balanced categories.

Class Before SMOTE After SMOTE
DoS 55,994 (39.82%) 75,942 (20.00%)
Normal 75,942 (54.01%) 75,942 (20.00%)
Probe 6,112 (4.35%) 75,942 (20.00%)
R2L 2,497 (1.78%) 75,942 (20.00%)
U2R 70 (0.05%) 75,942 (20.00%)

As shown in Table 1, classes such as R2L and U2R are
severely underrepresented, accounting for only 1.78% and
0.05% of the samples, respectively. To address this issue,
the Synthetic Minority Oversampling Technique (SMOTE)
was applied exclusively to the training data, while the test
set remained unchanged to ensure unbiased evaluation [14].
SMOTE generates synthetic samples for minority classes
by interpolating between an instance x;and one of its nearest
neighbors Xmn:

Xnew=Xi + J X(xm-Xi), 0 €[0,1]

This process increases the number of samples in rare
classes until each class contains 75,942 instances, achieving
balanced class representation across all categories.
Importantly, the test set distribution remained unchanged to
ensure a realistic and unbiased evaluation of the model’s
generalization performance, thereby avoiding data leakage
between training and evaluation phases.

In addition to SMOTE, the model was trained using focal
loss, a modified cross-entropy loss that emphasizes hard-to-
classify samples. It is formulated as:

FL (p) = —at (1 — pt)” log(pt)

Where pyis the predicted probability for the true class, o
is a balancing factor, and vy is the focusing parameter that
controls the weight given to hard examples. Focal loss is
particularly beneficial for underrepresented attack types
such as R2L and U2R.

As depicted in Fig. 1, the combined use of SMOTE and
focal loss effectively mitigated the class imbalance
problem. This strategy enhanced the model’s robustness,
promoted fairer training, and significantly improved
detection performance for minority attack categories,
especially R2L and U2R, which are often the most
challenging to classify.

DS

Fig. 1. Class distribution before and after SMOTE, showing
balanced representation of rare classes
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3.4 CNN model with stochastic gradient pooling

The CNN model used several convolutional layers
followed by Stochastic Gradient Pooling (SGP). The
architecture was trained with focal loss, class weighting,
and SMOTE-balanced data. The confusion matrix and
performance results are shown in Fig. 2.
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Fig. 2. Confusion matrix of the baseline CNN model,
highlighting poor detection of R2L and U2R
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As seen in Fig. 2, the CNN model performs well in
identifying the majority classes (DoS and Normal), but
exhibits reduced accuracy for minority classes such as R2L
and U2R. This suggests the model’s limited ability to
capture temporal and contextual patterns associated with
rare attacks [15-16].

3.5 CNN-LSTM model with attention mechanism

To better capture the temporal behavior in network traffic,
a second model was developed based on a hybrid
architecture that integrates CNN and LSTM layers,
augmented with a custom attention mechanism [17]. The
attention mechanism employed in this study consists of a
soft attention [18] layer placed between two stacked LSTM
layers. The first LSTM layer is configured with
return_sequences=True to produce a sequence of hidden
states. The attention layer then computes context vectors by
assigning weights to each time step, emphasizing the most
informative parts of the input sequence. This output is fed
into a second LSTM layer to refine temporal features before
reaching the final classification stage. This design allows
the model to capture essential temporal dependencies,
which are crucial for detecting subtle intrusion patterns that
traditional methods often fail to recognize.

The performance of the CNN-LSTM model with
attention is illustrated in Fig. 3, which illustrates improved
classification accuracy for minority classes such as R2L and
U2R. This supports the effectiveness of the proposed
architecture in handling subtle and underrepresented
intrusion patterns.
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Fig. 3. Confusion matrix of the CNN-LSTM model,
showing improved detection of R2L and U2R

The architecture of the proposed CNN-LSTM model
comprises several convolutional layers, followed by LSTM
units and a custom attention mechanism. The convolutional
layers are designed to extract spatial features from the input
sequences, while the LSTM units capture temporal
dependencies within the data. The attention layer is applied
after the LSTM output to emphasize the most informative
components [19] of the sequence prior to final classification.
This integration enhances the model’s capacity to detect
complex and subtle patterns in network traffic, which is
particularly beneficial for identifying intrusions belonging
to minority classes.

Figure 4 illustrates the architecture of the CNN-LSTM
model with attention, highlighting its core components:
convolutional layers for spatial feature extraction, LSTM
units for learning temporal relationships, and an attention
mechanism to focus on critical time steps before
classification.

To optimize model performance, hyperparameters such
as learning rate, batch size, number of epochs, and dropout
rate were manually tuned based on validation performance.
Several configurations were evaluated iteratively, and the
final settings were selected to minimize overfitting while
ensuring convergence. Due to computational constraints, an
exhaustive grid search was not used; instead, tuning was
performed through empirical experimentation on a held-out
validation set.

3.6 Implementation details

The models were implemented using TensorFlow and
Keras frameworks, following recent implementations of
deep LSTM architectures in traffic video analytics [20].
The CNN architecture includes two convolutional layers
with 64 and 128 filters, respectively, each followed by
MaxPooling and Dropout (rate 0.4). The CNN output is
reshaped and passed to two stacked LSTM layers with 128
units each. A soft attention mechanism is applied between
the LSTM layers [21] to focus on informative time steps.
The final classification layers consist of two dense layers
with 256 and 128 units using ReLU activation, followed by
Dropout (rates 0.4 and 0.3), and a Softmax output layer for
multi-class prediction.

The training was conducted with the following setup:

Optimizer: Adam

Learning rate: 0.0005

Loss function: focal loss

Batch size: 128

Epochs: 100 (with early stopping)

Validation split: 10% of the training data
SMOTE: Applied only on training data to balance
class distribution
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Fig. 4. Architecture
with attention

of the proposed CNN-LSTM model

3.7 Evaluation metrics

To evaluate the performance of the proposed models,
several standard metrics for multi-class classification were
employed. Let the confusion matrix be defined in terms of
the following variables:

e TP: True Positives (correctly classified positive
instances).

e TN: True Negatives (correctly classified negative
instances).

e FP: False Positives (negative instances incorrectly
classified as positive).

e FN: False Negatives (positive instances
incorrectly classified as negative).

Based on these values, the metrics are formulated as follows:

TP+TN

Accuracy = __(TPATN)
(TP+TN+FP+FN)

Accuracy provides a global indicator of the model’s overall

correctness across all classes.

TP

Precision =
(TP+FP)

Precision reflects the reliability of positive predictions,
which is crucial in IDS to minimize false alarms.

TP

Recall (Sensitivity) = aPE)

Recall quantifies the ability to capture actual attacks,
ensuring that intrusion attempts are not overlooked.

F1-score = 2X(Precision X Recall)

(Precision+Recall)

The F1-score balances Precision and Recall, making it
particularly useful in imbalanced datasets such as intrusion
detection.

These metrics were computed for each class, and macro-
averaging was employed to provide an overall performance
assessment across all classes, treating each class equally
regardless of its prevalence.

These evaluation metrics serve as direct indicators of the
effectiveness of the proposed methodology [13], [19]. The
high accuracy and F1-score achieved by the CNN-LSTM
model with attention underscore its strong generalization
capability and its effectiveness in detecting both majority
and minority classes.

Moreover, the model’s precision and recall values
highlight its capacity to reduce false positives and
accurately identify true positives, particularly in rare attack
scenarios such as R2L and U2R. These results underscore
the importance of incorporating temporal modeling (via
LSTM), attention mechanisms, and class imbalance
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handling techniques (via SMOTE and focal loss) to
improve detection performance in complex intrusion
detection settings.

While this study primarily focused on standard metrics
such as accuracy, precision, recall, and F1-score, future
work may include additional evaluation measures—such as
ROC-AUC and PR-AUC—for a more comprehensive
assessment. Although not implemented in this study, future
experiments will incorporate ROC-AUC and PR-AUC
metrics to provide a more nuanced evaluation, especially in
imbalanced scenarios. Furthermore, in-depth analysis based
on confusion matrices can yield valuable insights into class-
wise prediction behavior and overall model robustness.

4 Experimental Results

The CNN-LSTM model was evaluated on an
independent test dataset following training on a SMOTE-
balanced dataset with focal loss.

4.1 Model convergence

As part of the training strategy, the Focal loss function
was employed to mitigate class imbalance and enhance
optimization. The training and validation curves of the
model exhibit consistent convergence, as illustrated in Fig.
5. The accuracy curves indicate stable learning behavior
with no signs of overfitting. Similarly, the loss curves
display a smooth and continuous decline, as shown in Fig.
6, confirming the effectiveness of the optimization process
over the training run.
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Fig. 5. Training and validation accuracy over epochs,
showing consistent convergence
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Fig. 6. Training and validation loss over epochs, indicating
effective optimization

4.2 Test set performance

Both the baseline CNN model and the proposed CNN-
LSTM model with attention were evaluated on the same
unseen test set to provide a fair comparison of their
generalization performance [13]. The CNN model served
as a baseline, whereas the CNN-LSTM model incorporated
temporal learning and an attention mechanism to enhance
detection performance, particularly for minority attack

types.

Table 2 compares the baseline CNN model with the
proposed CNN-LSTM with attention. The proposed model
shows improvements across all metrics, proving the benefit
of adding temporal features and attention to intrusion
detection. The CNN-LSTM significantly outperforms the
baseline CNN, especially in recall and F1-score, which are
crucial for detecting rare attacks such as R2L and U2R.

It also maintains high accuracy for all categories, with
strong gains in R2L and U2R detection, and solid
performance on Normal, DoS, and Probe traffic.

Overall, the CNN-LSTM with attention achieves a final
accuracy of 97.09%, compared to 90.79% for the baseline
CNN, highlighting its effectiveness in handling class
imbalance and improving detection of rare intrusions.

Table 2. Test performance comparison between CNN and
CNN-LSTM models.

Metrics CNN CNN-LSTM
Accuracy (%) 90.79 % 97.09 %
Precision (%) 95.44 % 98.08 %

Recall (%) 90.79 % 97.09 %
F1 Score (%) 92.62 % 97.46 %
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4.3 Error analysis

To gain deeper insight into the model’s limitations, an
error analysis was performed by examining the distribution
of False Positives (FP) and False Negatives (FN) across
each class in the test set. A detailed breakdown of these
errors is provided in Table 3.

Table 3. Error analysis showing false positives and false
negatives per class.

Class False Positives False Negatives
DoS 58 31
Normal 38 374
Probe 92 36
R2L 188 22
U2R 94 3

Classification errors per class are summarized in Table
3. The Normal class shows a high number of false negatives
(FN), indicating frequent misclassification of benign traffic
as attacks, possibly due to overlapping feature patterns. In
contrast, the R2L and U2R classes exhibit elevated false
positives (FP), suggesting that normal connections were
sometimes mistaken for rare intrusions.

As illustrated in Fig. 7, while most classes have low error
rates, misclassifications are most prominent in the Normal
class, followed by R2L and U2R, highlighting areas for
further refinement.

Error Analysis: False Positives and False Negatives per Class
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Fig. 7. Class-wise error distribution of the CNN-LSTM
model, highlighting false negatives in Normal and false
positives in R2L and U2R

These results demonstrate that while the model performs
well in detecting various attack types, especially rare ones
such as U2R, further refinements are necessary to reduce

false positives and enhance the distinction between normal
and malicious traffic.

The following section discusses the implications of
these findings and examines the key factors contributing
to the model’s performance.

5 Discussion

The experimental results confirm the significant benefits
of incorporating temporal modeling and attention
mechanisms within deep learning architectures for
intrusion detection. Compared to the baseline CNN model,
the proposed CNN-LSTM with attention yields notable
improvements across all key evaluation metrics,
particularly for minority attack classes such as R2L and
U2R.

The integration of SMOTE and focal loss effectively
addresses class imbalance by oversampling minority
classes and emphasizing hard-to-classify instances during
training. These enhancements contribute to improved
generalization on unseen test data, as reflected in the higher
accuracy, recall, and F1-score achieved by the model. The
LSTM layers capture sequential dependencies in network
traffic, while the attention mechanism refines the model’s
focus on critical time steps, ultimately enhancing its
classification capability.

5.1 Interpretation of results

The CNN-LSTM  model demonstrated  strong
generalization capability, as evidenced by the smooth
convergence of training and validation curves and its
superior classification performance on the test set. It
consistently achieved high true positive rates across most
categories. Most notably, it identified U2R attacks—the
rarest class—more accurately than the baseline CNN,
which frequently misclassified such instances [22],
consistent with findings in recent hybrid deep learning
studies [9], [10], [11]. This highlights the effectiveness of
temporal sequence modeling and attention mechanisms in
capturing subtle patterns associated with rare attack types.

While the primary comparison in this study focuses on
the CNN-LSTM model with attention versus a baseline
CNN model, it is worth noting that previous research has
explored classical machine learning approaches for
intrusion detection, including Support Vector Machines
(SVM), Random Forests (RF), and k-Nearest Neighbors (k-
NN). However, these traditional models often fall short in
capturing complex temporal and contextual dependencies,
particularly in imbalanced datasets [2], [5], [16]. In contrast,
the proposed deep learning architecture demonstrates
significant improvements in detecting rare and nuanced
attack types, as demonstrated by the consistently higher
accuracy and F1-scores. This suggests that integrating
temporal modeling and attention mechanisms offers a more
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robust and scalable alternative to traditional classifiers in
contemporary intrusion detection systems.

5.2 Error Patterns and Class Behavior

Despite the model’s overall strong performance, error
analysis revealed notable misclassification patterns. The
normal class had the highest number of false negatives,
indicating frequent confusion with certain attack types,
possibly due to overlapping feature distributions between
benign and malicious traffic.

Conversely, the R2L and U2R classes exhibited elevated
false positive rates, likely influenced by synthetic patterns
introduced through SMOTE. Although SMOTE effectively
rebalanced class distributions, it may have contributed to
overfitting in rare classes [14].

These findings highlight the need for improved feature
engineering and more selective oversampling strategies to
reduce false alarms and enhance the model’s ability to
distinguish between normal and attack traffic.

6 Conclusion

This study presented a comparative analysis between a
baseline CNN model and an enhanced CNN-LSTM
architecture with an attention mechanism for network
intrusion detection using the KDD Cup 99 dataset. Both
models addressed class imbalances through SMOTE and
were trained using focal loss to improve sensitivity to hard-
to-classify samples.

Experimental results showed that the CNN-LSTM model
consistently outperformed the baseline CNN across all key
evaluation metrics, achieving an accuracy of 97.09% and
an Fl-score of 97.46%. The inclusion of LSTM layers
enabled the model to capture temporal dependencies in
network traffic, while the attention mechanism improved its
focus on the most informative features.

Notably, the proposed model demonstrated significant
improvements in detecting rare attack types such as R2L
and U2R, which are typically difficult for conventional
classifiers. Error analysis further confirmed a reduction in
misclassification rates across both majority and minority
classes.

Overall, the CNN-LSTM with attention architecture
proved to be a robust and effective solution for building
intelligent, data-driven intrusion detection systems capable
of handling class imbalance and identifying subtle attack
patterns.

In addition, potential real-time applications of the
proposed CNN-LSTM model are envisioned. For example,
the model could be integrated into intrusion detection
modules of 10T gateways or cloud-based network
monitoring systems, where low latency and high
throughput are essential. Future work will focus on
deploying the model within real-time streaming

frameworks to evaluate inference latency, computational
efficiency, and scalability under realistic network traffic
conditions.

7 Limitations and Future Work

Although the proposed CNN-LSTM with attention
model demonstrated strong performance across most
evaluation metrics, several limitations should be
acknowledged. First, reliance on the KDD Cup 99
dataset—despite its widespread use—poses a challenge to
generalizability, as it does not adequately represent modern
network traffic or recent attack types. Second, while
SMOTE effectively rebalanced the dataset, it may have
introduced synthetic patterns that contributed to higher
false positive rates, particularly in minority classes such as
R2L and U2R. Third, the model was evaluated in an offline
setting, without consideration of real-time deployment
constraints such as inference latency and resource
consumption. Furthermore, cross-validation techniques
such as k-fold cross-validation will be applied in future
work to improve the robustness of performance evaluation.

Future evaluations will also consider more contemporary
and representative datasets such as CICIDS2017 and
UNSW-NB15 to improve generalizability to modern attack
scenarios. Additionally, incorporating online learning
capabilities or deploying the model within streaming
architectures could facilitate assessment under real-time
operational conditions. Further optimization of the attention
mechanism and refinement of oversampling strategies may
help reduce false alarms and enhance generalization of
evolving attack patterns. Incorporating cross-validation
techniques is also recommended to provide more reliable
and robust performance estimates.
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