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A R T I C L E  I N F O    A B S T R A C T   
Keywords:  Accurately distinguishing between children and adults based on smartphone interaction behaviors is essential for enabling 

safe and personalized digital experiences. This study addresses the need for automated child-adult detection by leveraging 

advanced interaction analysis techniques. We employed two distinct neural network architectures (MLP and DL4j) to 

classify users as children or adults. These models were trained and evaluated using three datasets: Tap-Gesture, Stroke-

Gesture, and the Combined-Gestures dataset comprising both interaction types. Using a diverse dataset of 198 participants 

across various ages and demographics, the models extracted a set of discriminative features from raw touch data, achieving 

high classification accuracy across all datasets. The results highlight the effectiveness of our models: the MLP model 

achieved its best performance on the stroke dataset with an AUC of 90% and an EER of 19.04%, while the DL4j model 

reached an AUC of 91% and an EER of 17.33% on the same dataset. This research offers valuable insights for the 

development of personalized applications, security systems, and accessibility tools, contributing to the creation of safer and 

more inclusive digital environments. 
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1. Introduction 

Smartphones have become an important device, serving as essential tools for communication, education, entertainment, and daily tasks. As mobile 

devices increasingly integrate into the lives of users of all ages, personalizing interactions to suit different age groups has become an important focus. 

Children, in particular, represent a growing segment of smartphone users [1], so automatic personalization, which can be performed automatically by 

detecting whether the user is a child or an adult, can improve the quality of digital interaction. Content, features, and security measures can be tailored 

to specific age groups (e.g., children and adults) to create a more secure and appropriate digital environment. For example, social networks can protect 

children from inappropriate content by automatically detecting it, rather than relying on traditional age verification methods, such as birth date entry, 

which can be bypassed by entering a false date [2]. Touch gesture analysis provides a more robust and accurate solution. Similarly, parental controls 

can be activated for children to ensure a safe and appropriate digital experience, particularly in households with shared devices between children and 

adults [3]. Additionally, accessibility features can be optimized based on age, enhancing user experience and independence [4]. 

This paper utilizes touch gesture patterns to distinguish between adult and child users using novel deep learning models. Our models can 

accurately classify users based solely on their touch behavior by analyzing how they interact uniquely with their devices. We collected a diverse dataset 

containing touch gestures from different users of different ages to train and evaluate our models. This paper introduces two deep learning models, a 

Multilayer Perceptron (MLP) and a DeepLearning4j (DL4J) network with an LSTM layer. These models extract features from the raw touch data, enabling 

them to identify differences between adult and child gestures. The experimental results demonstrate the effectiveness of our approach, achieving high 

accuracy in classifying users. This research can be beneficial for the future of AI systems. By enabling precise user age classification, our model can 

contribute to the development of more personalized, secure, and accessible digital experiences for users of all ages. 

Few studies have explored using deep learning for the detection of child users based on their behavior. One notable study [5] focused on analyzing 

gestures such as scrolling, swiping, and pinching. By representing these gestures as images, the researchers employed transfer learning techniques with 

pre-trained Convolutional Neural Networks (CNNs) to extract meaningful features and accurately classify users based on their age. Another study by 

Lin et al. [6] took a different approach, collecting multi-finger interactions, accelerometer, and gyroscope data while participants played mobile games. 
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Deep Neural Networks (DNNs) and CNNs were utilized to classify users into age groups with high accuracy. While [7]  adopted a more holistic approach, 

collecting unrestricted touchscreen interactions and various sensor readings. A combination of heuristic feature selection and deep learning was 

employed to identify relevant features and classify users into age groups.  

Machine learning techniques have been widely explored for age estimation based on user behavior on touch-based devices. Tolosana et al. [8] 

investigated children’s interactions with tablets, analyzing gestures such as tapping, dragging, zooming, and coloring. They utilized Support Vector 

Machines (SVM) for classification, demonstrating the potential of gesture features to distinguish age groups. Ruiz Garcia et al. [9,10] build on this study 

by expanding the feature set and analyzing a larger dataset of children’s tablet interactions, employing Hidden Markov Models (HMM) to improve 

classification accuracy. Hossain and Pulfery [11,12] examined touch gestures, including hold time, finger size, and pressure, using Support Vector 

Regression (SVR) for age estimation and Logistic Regression for age group classification. Similarly, Zaccagnino et al. [13] explored a broader range of 

gestures, such as scrolling, swiping, tapping, dragging, pinching, and keystrokes, and applied classifiers like Random Forest for age detection. Recent 

work by Sait et al. [14] focused on different gestures, such as tapping, swiping, typing, zooming, and measuring finger size, using gyroscope readings. Using 

K-Nearest Neighbors (KNN), they demonstrated the feasibility of classifying users based solely on finger size. Complementing these efforts, Vatavu et al. 

[15] adopted a Bayes’ rule classifier to distinguish single and multiple touch events. Hernandez Ortega et al. [16] and Acien et al. [17] explored the use 

of SVM classifiers with the Sigma-Lognormal model, extracting features from gestures such as dragging, dropping, tapping, and strokes to improve 

classification accuracy. Moreover, Rasheed et al. [18] explored different machine learning models to extract and classify features from six distinct touch 

gestures, while Li et al. [19] introduced the iCare system, which utilizes multiple classifiers to identify children based on tap and stroke gestures.  

Prior work demonstrates the effectiveness of touch interactions for age classification, but often relies on controlled settings and traditional ML. To 

address this, we propose a deep learning approach that classifies children and adults directly from raw touch gestures, using real-world data to achieve 

high accuracy. The contributions of this study are as follows: 

• A novel touch-based method for automated child/adult classification using deep learning is proposed. 

• Two neural network architectures for gesture-based user classification are designed and compared. 

• We collected a novel dataset of smartphone touch gestures from users across a wide age range, including children (3-12 years) and adults (19-

65 years). 

The rest of this paper is organized as follows: Section 2 details the methodology, including data collection, preprocessing, and model design. Section 

3 presents experimental results and evaluation. Section 4 discusses the implications and limitations of the findings. Section 5 concludes the paper and 

outlines directions for future research. 

2. Materials and Methods 

2.1.  Data Acquisition and Preprocessing 

To construct our dataset, we collected interaction data from 198 participants, including both children and adults, in accordance with ethical research 

standards as in [3,19]. For minors, informed parental consent was obtained before participation. Table 1 presents the age distribution of the participants. 

To capture realistic user interaction data, we developed a custom data collection framework and deployed it on a Google Pixel XL smartphone. 

Participants were asked to engage in typical smartphone tasks that simulate real-world usage scenarios, including watching videos, playing mobile 

games, and browsing social media applications. The framework was designed to log comprehensive touch interaction data, including Timestamps, 

Screen Cartesian coordinates (X, Y), Pressure levels, Application context, and Gesture metadata. 

An online preprocessing pipeline was implemented concurrently with data collection, which involved several stages to prepare the raw touch data 

for analysis. The pipeline first performed data cleaning by removing incomplete records and invalid touch events. Next, gesture segmentation separated 

continuous touch streams into individual gestures, which were then classified as either a tap or a stroke. A tap gesture is defined as a brief and isolated 

touch event where the finger contacts the screen momentarily without any significant movement. In contrast, a stroke gesture (also referred to as a 

slide or swipe) involves a continuous motion across the screen, with the user's finger dragging along the display surface. This was followed by 

normalization to scale numerical features to standard ranges. Finally, the pipeline performed feature extraction in real-time to calculate the spatial, 

temporal, and dynamic features described below.  

Following gesture collection and feature extraction, we constructed three distinct datasets: 

1. Tap-Gesture Dataset: Contains only tap gesture data. 

2. Stroke-Gesture Dataset: Contains only stroke gesture data. 

3. Combined- Gestures Dataset: Integrates both tap and stroke gestures data. 

Through careful participant selection, the design of comprehensive usage scenarios, and meticulous data preprocessing, we established a robust 

foundation for the subsequent feature extraction and model training processes. 

Table 1: Participants’ age distribution.  

Class Age No. of users 

Children 

3-5 

6-9 

10-12 

14 

60 

31 

Adults 

19-29 

30-39 

40-65 

45 

30 

18 
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2.2. Feature Extraction and Analysis 

Feature extraction serves as a critical step in transforming raw touch data into meaningful representations that capture age-related behavioral 

differences [15,18]. These differences stem from distinct motor control patterns, where developmental variations in coordination, precision, and 

cognitive processing lead to discernible disparities in how children and adults interact with touchscreens [19]. Motivated by these behavioral 

distinctions, this study focuses on extracting a targeted set of features designed to capture discriminative patterns across the spatial, temporal, and 

dynamic dimensions of touch interaction [20,21]. The selected feature categories are summarized in Table 2. A detailed description of the collected 

features is provided in the following subsections, including specific hypotheses for how each category distinguishes child and adult interaction patterns. 

Table 2: Extracted features for touch gesture. 

2.2.1. Spatial Features 

The spatial features include the x and y coordinates of touch points, capturing the real-time positions of the user’s touch on the screen. These 

coordinates are essential for identifying interaction patterns such as finger movements and gesture distances. 

• Distance Between Two Points: 

𝐷𝑖,𝑗 = √(𝑥𝑗 − 𝑥𝑖)
2 + (𝑦𝑗 − 𝑦𝑖)2   (1) 

 

, where (xi, yi) and (xj,yj) are the coordinates of two touch points. 

2.2.2. Temporal Features 

Temporal features reflect the timing aspects of user interactions. We extracted temporal features, such as interstroke duration (i.e., the time between 

consecutive gestures) and gesture duration (i.e., the total time of a single gesture). These features are essential as they help differentiate users based on 

the speed and frequency of their touch interactions. For instance, children may exhibit slower gestures compared to adults. 

• Gesture Duration represents the time between the first and last touch point: 

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =  𝑡𝑒𝑛𝑑  − 𝑡𝑠𝑡𝑎𝑟𝑡    (2) 

, where 𝑡𝑠𝑡𝑎𝑟𝑡  and 𝑡𝑒𝑛𝑑  are the times of the first and last touch, respectively. 

• Interstroke Duration represents the time between consecutive gestures: 

𝐼𝑛𝑡𝑒𝑟𝑠𝑡𝑟𝑜𝑘𝑒 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =  𝑡𝑠𝑡𝑎𝑟𝑡
(𝑛+1)

 −  𝑡𝑒𝑛𝑑
(𝑛)

                      (3) 

, where 𝑡𝑠𝑡𝑎𝑟𝑡
(𝑛+1)

 and 𝑡𝑒𝑛𝑑
(𝑛)

 represent the start time of the next gesture and the end time of the current gesture, respectively. 

2.2.3. Trajectory Features 

The trajectory features include measures of displacement, average curvature, and gesture length. These features track the path of the touch across 

the screen and are useful for distinguishing between users. Younger users, in general, tend to make less precise and shorter gestures with greater 

curvatures. 

• Displacement is the straight-line distance between the starting and end points of the gesture: 

𝐷𝑑𝑖𝑠𝑝 = √(𝑥𝑒𝑛𝑑 − 𝑥𝑠𝑡𝑎𝑟𝑡)2 + (𝑦𝑒𝑛𝑑 − 𝑦𝑠𝑡𝑎𝑟𝑡)2        (4) 

, where (𝑥𝑠𝑡𝑎𝑟𝑡 , 𝑦𝑠𝑡𝑎𝑟𝑡) and (𝑥𝑒𝑛𝑑, 𝑦𝑒𝑛𝑑) are the starting and ending positions of the gesture, respectively. 

• Average Curvature represents the amount of deviation of the touch line from being a straight line, and is calculated based on the following formula: 

𝐾 =
|𝑋′𝑌′′−𝑌′𝑋′′|

(𝑋′2+𝑦′2)
3
2

                                                                  (5) 

, where X and Y are row vectors of points in the stroke, and K represents the row vector of curvatures for each point in the stroke, and then we 

calculate the average of K to represent 𝑆𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 as follows: 

Feature category Extracted features 

Spatial Up and down (x, y) coordinates 

Temporal Interstroke duration, gesture duration 

Trajectory Displacement, average curvature, gesture length 

Pressure & size Up, down, minimum, maximum, average 

Acceleration & Velocity Maximum velocity, average velocity 
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𝑆𝑐𝑢𝑟𝑣𝑒𝑡𝑢𝑟𝑒 =
1

𝑁
∑ 𝐾𝑖

𝑛
𝑖=1              (6) 

• Gesture Length represents the total distance covered during the gesture: 

𝐿𝑔𝑒𝑠𝑡𝑢𝑟𝑒 = ∑ 𝐷𝑖,𝑖+1
𝑁−1
𝑖=1            (7) 

, where Di,i+1 is the distance between consecutive touch points, and N is the total number of touch points in the gesture. 

2.2.4. Pressure and Size Features 

We captured pressure and size data during each touch interaction, including measures of up, down, minimum, maximum, and average pressure applied 

on the screen. These features offer insights into how the user interacts with the device physically, with children potentially using less pressure and 

having smaller touch areas than adults. 

• Maximum Pressure: 

                                                                  𝑃𝑚𝑎𝑥  =  𝑚𝑎𝑥(𝑃1, 𝑃2, . . . , 𝑃𝑛)                                                   (8) 

, where Pi represents the pressure at the i-th touch point, and n is the total number of touch points in the gesture. 

• Average Pressure: 

                                                             𝑃𝑎𝑣𝑔 =
1

𝑛
∑ 𝑃𝑖

𝑛
𝑖=1                                                                     (9) 

, where Pi is the pressure at the i-th touch point.  

2.2.5. Acceleration and Velocity Features 

Finally, we extracted acceleration and velocity features, including the maximum velocity and average velocity of the touch gestures. These metrics 

are essential for identifying differences in gesture dynamics, such as children generally exhibiting faster, less controlled movements than adults. 

• Velocity is the rate of change in position:  

                                                                                      𝑉 = √(𝑋′)2 + (𝑌′)2                                    (10) 

, where X and Y are the row vectors of points in the stroke and V is the row vector of velocities at each point. 

• Acceleration is the rate of change of velocity: 

𝑎(𝑡) =
𝑑𝑉(𝑡)

𝑑𝑡
                                                                     (11) 

, where 𝑎(𝑡) is the acceleration at time t, and 
𝑑𝑉(𝑡)

𝑑𝑡
 is the first derivative of velocity. 

• Maximum Velocity: 

                                                                                    𝑉𝑚𝑎𝑥 =  𝑚𝑎𝑥(𝑉1, 𝑉2, . . . , 𝑉𝑛)                                           (12) 

, where Vi is the velocity at the i-th time point.  

• Average Velocity: 

𝑉𝑎𝑣𝑔 =
1

𝑛
∑ 𝑉𝑖

𝑛
𝑖=1                                                                (13) 

, where Vi is the velocity at the i-th time point. 

To improve the model's efficiency and accuracy, we applied feature engineering techniques to eliminate redundant features. This process reduces 

dataset dimensionality and enhances computational performance without compromising analytical accuracy. Pearson correlation analysis was used to 

detect and remove highly correlated features from the dataset. 

2.3. Model Architecture and Implementation 

To classify touch interaction data as originating from either a child or an adult, we implemented and evaluated two distinct neural network 
architectures using the Weka framework. The hyperparameters for both models were optimized through an iterative process of empirical testing, where 
various configurations were evaluated to select the values that yielded the best performance on our validation set. Both models were independently 
trained and evaluated on the Tap-Gesture, Stroke-Gesture, and Combined-Gestures datasets. Performance was assessed using standard classification 
metrics, which are detailed in the results section. 

2.3.1. Network 1: Multilayer Perceptron (MLP) 

The first model utilized a traditional Multilayer Perceptron (MLP) architecture, chosen for its proven effectiveness in learning non-linear 

relationships from feature vectors. The MLP was configured with multiple hidden layers to enable progressive abstraction of touch interaction patterns. 

The specific hyperparameters, finalized through empirical testing, are summarized in Table 3. The model was trained on the preprocessed datasets to 

identify discriminative features that distinguish between child and adult touch interactions. 

Table 3:  MLP Model Configuration. 

Parameter Learning rate Momentum Hidden layers Epochs Batch size 

Value 0.1 0.2 5, 10, 20 500 500 
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2.3.2. Network 2: Deep Learning 4j (DL4j) 

The second model was implemented using the DeepLearning4j (DL4j) library and incorporated a Long Short-Term Memory (LSTM) layer. This 
architecture was selected for its capacity to capture temporal dependencies inherent in the sequential nature of touch gesture data. The network's 
configuration, optimized for stable training and effective sequence modeling, is detailed in Table 4. The DL4j model was trained on the same 
preprocessed datasets to capture more complex and sequential patterns in touch behavior than the MLP. 

Table 4: DL4j Model Configuration. 

3. Results  

3.1. Overview 

This section presents experimental results evaluating the effectiveness of the proposed model for classifying users as children or adults based on touch 

gesture data. The experiments were conducted using a labeled dataset of user interaction records, as described in Section 2.1. The primary objective is 

to assess the model’s ability to accurately distinguish between child and adult users by analyzing features derived from their interaction behaviors. To 

ensure the robustness and generalizability of the results, the dataset was partitioned into training, validation, and test sets. 

The evaluation process involves dividing the dataset into training, validation, and test sets, using a structured data partitioning strategy to prevent 

data leakage and ensure unbiased performance evaluation. The model is trained on the training set, validated during the training phase to monitor 

overfitting or underfitting, and finally evaluated on an independent test set to assess its generalization capability. 

To comprehensively evaluate the performance of our child/adult classification model, we employed a diverse set of standard evaluation metrics. 

Each metric offers distinct insights into specific aspects of the model’s behavior: 

• Accuracy: Measures the overall correctness of the model predictions. 

• Precision: Assesses the proportion of correctly identified positive instances among all instances predicted as positive. 

• Recall (Sensitivity): Evaluates the model’s ability to identify all actual positive instances. 

• F1-Score: Provides a harmonic mean of precision and recall, especially useful in cases of class imbalance. 

• AUC (Area Under the Curve): Measures the model’s ability to distinguish between the two classes across various threshold settings. 

• EER (Equal Error Rate): Identifies the point at which the false acceptance rate equals the false rejection rate, offering a balanced trade-off measure. 

These metrics collectively offer a comprehensive assessment of the model’s classification performance, robustness, and generalization ability. The 

results underscore the importance of feature selection and hyperparameter optimization, which contribute significantly to achieving competitive 

accuracy compared to existing approaches. 

3.2. MLP Model Results 

We evaluated the performance of the MLP model for child/adult classification across three datasets: Tap-Gesture, Stroke-Gesture, and Combined-

Gestures datasets. Table 5 summarizes the classification performance in terms of Accuracy, Precision, Recall, F1-score, AUC, and EER. 

The MLP model exhibited its highest performance on the Stroke-Gesture dataset, achieving an accuracy of 82.83%, a precision of 83%, a recall of 

82.80%, an F1-score of 82.90%, an AUC of 90%, and an EER of 19.04%. Comparatively, performance on the Tap-Gesture and Combined-Gestures datasets 

was lower. The Tap-Gesture dataset achieved an accuracy of 74.79%, while the Combined-Gestures dataset reached 77.43% accuracy in child/adult 

classification, as shown in Table 5 and Figure 1. 

These results indicate that for the MLP model, stroke gestures carry more distinguishing information for child-adult detection compared to tap 

gestures or their combination. 

3.3. DL4j Model Results 

The DL4j model demonstrated overall superior performance in child/adult classification compared to the MLP model, particularly on the Stroke-

Gestures dataset. The model's performance across the three datasets is summarized in Table 6. 

It achieved its best results on the Stroke-Gesture dataset with an accuracy of 84.61%, a precision of 84.30%, a recall of 84.60%, an F1-score of 

84.30%, an AUC of 91%, and an EER of 17.33%. The Tap-Gesture dataset produced a slightly lower performance with an accuracy of 75.46%, while the 

Combined-Gestures dataset yielded an accuracy of 77.33%. These results, as visualized in Figure 2, confirm the effectiveness of the DL4j architecture in 

capturing complex interaction patterns. 

The DL4J model’s consistent advantage over the MLP model indicates that more advanced architectures are better equipped to capture the intricate 

patterns present in touch gesture data. 

Parameter Optimizer Learning Rate Epochs Input Layer Hidden Layer Output Layer 

Value Adam 0.001 10 
Dense 

(22 neurons, ReLU) 
LSTM 

(10 neurons, ReLU) 
Dense 

(2 neurons, Softmax) 



A. M. Elsify et al.                                                                                                                                            Labyrinth: Fayoum Journal of Science and Interdisciplinary Studies 3 (2025) 2 in press 

6 

 

Table 5: Performance of the MLP model for child/adult classification on the three datasets (Tap-Gesture, Stroke-Gesture, and Combined-Gestures). 

Dataset Accuracy Precision Recall F1-Score AUC EER 

Tap-Gesture 74.79% 74.80% 74.80% 74.80% 83.00% 25.11% 

Stroke-Gesture 82.83% 83.00% 82.80% 82.90% 90.00% 19.04% 

Combined-Gestures 77.43% 77.50% 77.40% 77.10% 87.00% 22.58% 

Table 6: Performance of the DL4j model for child/adult classification on the three datasets (Tap-Gesture, Stroke-Gesture, and Combined-Gestures). 

Dataset Accuracy Precision Recall F1-Score AUC EER 

Tap-Gesture 75.46% 75.40% 75.50% 75.40% 84.00% 24.59% 

Stroke-Gesture 84.61% 84.30% 84.60% 84.30% 91.00% 17.33% 

Combined-Gestures 77.33% 78.30% 77.30% 77.40% 87.00% 22.48% 

4. Discussion 

This study investigated the feasibility of using touch gesture data to distinguish between child and adult users on smartphones. Touch interaction 

data was collected from a diverse group of participants, and meaningful features were extracted to train two neural network models: a traditional 

Multilayer Perceptron (MLP) and a Deep Learning 4j (DL4j) model incorporating an LSTM layer. The superior performance of stroke gestures can be 

attributed to their richer dynamic characteristics. Unlike simple taps, strokes contain continuous motion information, including velocity profiles, 

acceleration patterns, and trajectory curvatures that more effectively reveal age-related differences in motor control. Children typically exhibit less 

smooth, more variable stroke motions with irregular velocities and greater curvature, reflecting the development of fine motor skills. These complex 

temporal-spatial patterns provide a more discriminative signature than the relatively uniform characteristics of tap gestures. 

Both neural network architectures (MLP and DL4j) demonstrated powerful performance in classifying users, with the DL4j model slightly 

outperforming the MLP. This improved performance can be attributed to the DL4j model's deeper architecture and the LSTM layer’s ability to capture 

temporal dependencies, allowing for more effective modeling of touch gesture sequences. However, the study is not without limitations. Although the 

dataset was diverse, its generalizability could be enhanced by including a larger number of participants across a broader range of age groups and 

demographic profiles. Moreover, the exclusive reliance on touch gesture data may restrict the model’s robustness in real-world scenarios, where other 

behavioral cues—such as typing patterns or screen navigation habits—may also provide valuable signals. 

5. Conclusions 

This study examined the potential of utilizing touch gesture data to distinguish between child and adult users on smartphones. Through the analysis 

of a diverse dataset of touch interactions, we demonstrated that stroke gestures provide a more informative and discriminative representation of user 

behavior compared to tap gestures or a combination of both. Two neural network architectures—Multilayer Perceptron (MLP) and Deep Learning 4j 

(DL4j)—were employed to classify users based on their touch behavior. While both models achieved promising results, the DL4j model consistently 

outperformed the MLP due to its ability to capture temporal dependencies through its LSTM layer. These findings have important implications for the 

development of more secure, adaptive, and personalized mobile systems, enabling devices to tailor settings, content, and interactions to the needs and 

preferences of individual users. For future work, further investigation could include exploring additional feature sets and leveraging alternative deep 

learning architectures, such as Convolutional Neural Networks (CNNs), to capture spatial patterns in touch data better. Moreover, applying data 

augmentation techniques may enhance the diversity of the training data and improve model generalization. Finally, the development of adaptive, user-

Figure 2: ROC curves evaluating DL4j model performance in 
child/adult classification using (a) stroke gestures, (b) tap 

gestures, and (c) combined gestures. 

Figure 2: ROC curves evaluating MLP model performance 

in child/adult classification using (a) stroke gestures, (b) 
tap gestures, and (c) combined gestures. 
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aware systems capable of learning and evolving with individual behavior over time would further enhance the accuracy and reliability of user 

classification in dynamic environments. Moreover, research should consider the integration of multimodal data, such as voice input, facial recognition, 

or motion sensor data, to build more comprehensive and accurate user classification systems. Such enhancements could significantly improve the 

applicability and reliability of child/adult detection in practical smartphone environments. 
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