Navigating Veterinary and Human Anatomy Teaching

A. S. Saber

Faculty of Veterinary Medicine, University of Sadat City, EGYPT

With 25 figures

received July, accepted for publication August 2025

Abstract

Beside the normal tools for studying compa-rative anatomy all over the world(Museum facilities, anatomy models, anatomical charts, Closed-circuit Television and virtual 3-D models), this article focuses on two new tools for teaching human and veterinary anatomy namely: the 3-D plastic printed models and using of AI and deep learning.

Keywords: veterinary anatomy teaching, 3-D plastic models, artificial intelligence (AI).

A paper was published in J. Vet. Anat. On "Teaching Veterinary Anatomy and Histology During Covid-19 Pandemic, Challenges and Solutions" (Saber, 2021). This paper focused on how it was managed, in Egypt, the official suspension of the study in the Universities since 14 March 2020. The challenges were: how to manage the lectures, how to prepare the practical lessons, and how to make the exams specially the practical ones.

The paper mentioned the different tools available including the anatomy

museums to teach anatomy avoiding the crowding of the students.

The normal tools for studying comparative anatomy all over the world are:

- Museum facilities which are a major source of learning anatomy for the students, as it displays dry specimens (bones, skeletons, anatomical models, anatomy charts, air-dried specimens, plasticine plates, corrosion casts), wet specimens (formalin preser-ved organs and animals and cross sections, plastinated organs with different ways) as well as CDs and different anatomical images).
- Anatomy modules (bringing the various teaching materials together to enhance self-directed integrated learning).
- Lighted colored anatomical charts fixed on the walls in the halls, corridors of the museums and anatomy department areas.
- Some faculties installed Closedcircuit Television (CCTV) in the dissecting rooms to overcome the crowding and large number of the students around each table.

- Some faculties have Virtual 3-D model to teach cow anatomy. The 3-D model shows the skeleton, heart, lungs, four-chamber stomach, spiral colon, liver, gall bladder, kidneys, uterus and ovaries, as well as the major blood vessels. (University of Illinois, USA).
- Other faculties (Royal "Dick" School of Veterinary Studies) developed an equine simulator which contains large intestines and other organs made of latex. These can be inflated to photographs.

Two new tools for teaching veterinary anatomy in Egypt will be focused on in this essay namely: the 3-D plastic printed models and the using of the Artificial Intellingence (AI) and deep learning.

(1) The 3D printing Models

3D printing is the construction of a three-dimensional object from a CAD (Computer Aided Design) model or a digital 3D model. It can be done in a variety of processes in which material is deposited, joined or solidi-fied under computer con-trol, with the material being added together (such as plastics, liquids or powder grains being fused), typically layer by layer. (Wikipedia).

Beside the virtual reality (VR), Augmented reality (AR) and 3D modeling software as well as adaptive learning

systems which have emerged and enhanced the knowledge delivery to students as accurate, adaptive and real in many a cases, another 3D modeling method should be added i.e. 3D printed models.

This method of producing plastic comparative anatomical organs was introduced in some faculties (Figs. 1-5)

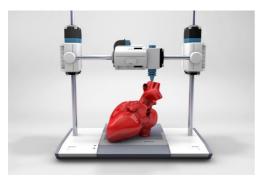


Fig. (1, a, b, c): 3-D Plastic Model of fowl's viscera, prepared and coloured by the author, kept in the Anatomy Museum of Faculty of Veterinary Medicine, University of Sadat City, Egypt

Fig. (2):3-D printer (Left), printing a heart model(right)

Fig. (3): some 3D plastic models (eye and heart) produced for comparative veterinary anatomy teaching

Fig. (4): some 3D plastic models (stifle joint, pelvic bone and muscles and hip joint and muscles) produced for comparative veterinary anatomy teaching

Fig. (5): some 3D plastic replicate human ear.

Using a 3D printer in teaching veterinary anatomy can be beneficial and innovative in several ways. Here are some potential benefits and technologies:

1. 3D anatomical models: Accurate 3D models of animals can be created, allowing students to study anatomical structures in greater depth. These

models can be modified to illustrate various anatomical aspects.

- 2. Hands-on training: A 3D printer can be used to create anatomical models that students can use for practical exercises, such as simulated surgery or studying internal structures.
- 3. Enhanced understanding: 3D models can help enhance students' understanding of the spatial relation-ships between different anatomical structures, leading to a deeper under-standing of veterinary anatomy.
- 4. Personalized education: Custom models can be created to meet individual student needs or to represent unusual anatomical cases.
- 5. Cost savings: Using a 3D printer can be a more cost-effective alternative to using animal cadavers or traditional anatomical formalin-preserved or plastinated models.
- 6. Modernized educational curricula: Using a 3D printer can help modernize veterinary anatomy curricula to become more interactive and sophis-ticated.
- 7. Scientific research: 3D printing can be used in scientific research to create accurate anatomical models to study animal anatomy in new ways.
- 8. Interdisciplinary collaboration: The use of 3D printing can lead to greater collaboration between veterinary anatomists, engineers, and artists, leading to a more holistic approach to education and research.

(2) Al in Teaching Veterinary Anatomy

Recently, artificial intelligence (AI) platforms and systems integrations have exploded into being. It is too early to tell what influences AI may have on the educators teach and the way students learn, with its potential to influence the scalling, speed, and consistency of working, it seems highly likely that the use of AI in anatomy education will increase (Lazarus et al., 2022).

Artificial Intellegance (AI) is making a big impact on teaching veterinary (and human) anatomy by providing inter-active immersive, and persolanized learning expeirences. Some key ways AI is beying used include:

1) 3D Visualization & Virtual Dissection

- **a.** Al-powered platforms like **Visible Body** and **Anatomage** allow students to explore animal anatomy in #D rotate structures, and "dissect" virtually without using real specimens.
- **b.** Virtual reality (VR) and augmented reality (AR) enhance understanding by allowing hands-on interactions with digital models.

2) Al Tutors & Adaptive Learning

a. Al-driven system analyze students' progress and adapt lessons to focus on weak areas.

b. Chatbots and Al tutors provide instant feedback and answer questions on anatomy topics.

3) Automated Image Analysis & Diagnostics

Al assists in recognizing anatomical structures in radiographs, CT scans, and MRIs, helping students and professionals learn how to interpret medical imaging.

4) Simulating-Based Learning

- **a.** Al-powered simulation allow students to practice procedures like ultrasounds, injections, or surgeries in a risk-free virtual environment.
- **b.** Some Al models simulate physiological responses, giving a more realistic experience.

5) Enhanced Research & Know- Access

- **a.** Al can summerize complex anatomical research making it easier for students to grasp difficult concepts.
- **b.** Al-powered search engins (like Semantic Scholar) help students find relevant anatomy resources faster.

Some Al-powered tools teaching and learning veterinary (and human anatomy):

Examples of some Al-powered tools for teaching and learning veterinary anatomy will be pointed out in the following:

1) <u>3D Visulization & Virtual Dissectional</u>

a.Visible Body (Fig.6): Offers 3D interactive anatomy models for animals and human.

Fig. (6): Visible Body and Virtual Dissectional tools for learning anatomy

b. Anatomage Table (Fig. 7): A virtual dissection table with detailed 3D animal anatomy.

Anatomage offers a life-size digital representation of the human and the animalbody, allowing the visualization, manipulation, and virtual dissection of complex anatomical structures, using detailed 3D (three-dimen-sional) models.

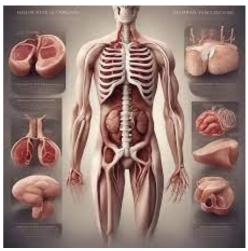


Fig (7): Anatomage virtual dissection table for human and veterinary anatomy

c. Zygote Body (fig. 8): Provides interactive 3D models of anatomical structures, mainly for human anatomy.

Fig (8): Zygot Body interactive 3D models for human anatomy

2) Al-Powered Learning Platforms

a. Elsevier's Complete Anatomy (Fig. 9): Al driven adaptive learning with detailed anatomical models.

Fig (9): Elsevier's Complete Anatomy platform for human anatomy

b. Bio-Digital Human (and Veterinary) (Fig. 10): Interactive 3D anatomy platform with Al-powered insights.

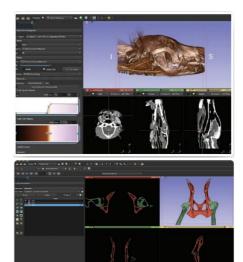


Fig (10): Bio-Digital human and veterinary anatomy 3D platform.

3) Al-Assisted Image Analysis & Diagnostics

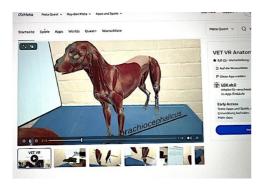
- **a. Asteris Keystone (Fig. 11):** Al-assisted veterinary imaging and radiology platform.
- Designed specifically for veterinary radiologists, this advanced technology provides detailed views of anatomical structures from multiple planes, facilitating accurate interpre-

tations and informed decision-making in your clinical practice.

Fig (11): Asteris Keystone veterinary imaging and radiology platform.

- **b. VetCT (Fig. 12):** Uses Al to assist in inter-preting CT and MRI scans for veterinary students and professionals.
- Established in 2009 in Cambridge, UK, VET.CT provides vet-to-specialist clinical support services through teleradiology, specialist consultancy services, and novel educational strategies for veterinary medicine.

Fig (12): Vet.CT provides vet-to-specialist clinical support services through teleradiology, and other veterinary consultancy services.


- **4) Index AI imaging-** AI-powered diagnostics and imaging analysis for veterinary education.
- 5) Simulation-Based Lerning
- **a. Simbionix Vet VR (Fig.13)**: Al and VR-based veterinary surgery simu-lations.

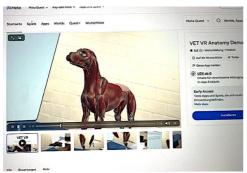


Fig (13): Simbionix Vet VR, veterinary surgery simulator.

- **b. Vet VR (Fig.14):** A Vet VR learning tool for veterinary anatomy and procedures.
- Learning veterinary anatomy, especially the complex musculo-skeletal and neurovascular systems, can be a daunting task. Traditional methods using textbooks, 2D images, or static models often fall short in conveying the depth and intricacies of animal anatomy. VET VR Anatomy addresses this challenge by offering an immersive 3D experience that makes understanding anatomy easier and more efficient.
- By using VET VR, veterinary students and professionals save valuable time and energy, focusing on truly understanding anatomy rather than wrestling with outdated, static learning methods. VET VR brings anatomy to life, offering a modern, efficient solution to a traditionally difficult area of veterinary education.

Fig (14): A Vet VR learning tool for veterinary anatomy and procedures.

6) Al Chatbots & Tutors

- a. ChatGPT (Customized for Vet Med)- can assist with veterinary anatomy Q&A and case studies.
- **b. Quizlet Al Tutor (Fig. 15):** Uses Al to creat custom anatomy flashcards. And quizzes.
- Quizlet has over 700 million flashcard sets created by students and teachers.
 Search to find relevant content for your class or if you would rather make your own, Quizlet makes set creation fast with Magic Notes or our predictive word and suggested images features.

Fig (15): Quiszlet Al Tutor for creating anatomy flashcards. And quizzes.

c. Anki with Al Plugins (Fig. 16): Alenhanced spaced repetition learning for vetrinary anatomy terms.

How to make flashcards with jungle Anki AI?

- jungle's advanced Al algorithms analyze your content and automatically create concise, effective anki flashcards, saving you hours of manual work.
- import your study content

upload your textbooks, lecture notes, or any study material you want to convert into anki flash-cards. Jungle processes various file formats to extract key information.

review and export to anki
quickly review the generated flashcards, make any necessary edits,
and export them directly to your
anki deck for seamless integration
into your study routine.

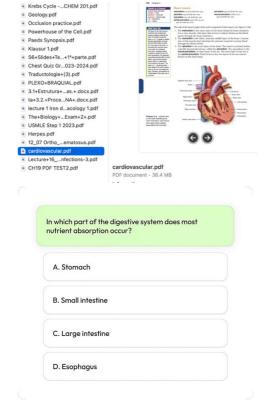


Fig (16): Anki with Al Plugins, coverts textbooks and lectures notes to flash-cards

Free Al Tools for Veterinary Anatomy

1) Al Vet Coach

- Al Vet Coach is a specialized virtual assistant designed to support and enhance the learning experience of students interested in veterinary science.
- Its primary function is to engage users in educational activities through interactive games, quizzes, and scenario-based exercises.

- Al Vet Coach offers a unique blend of entertainment and education, aiming to make the study of veterinary science more engaging and accessible.
- in the study of animal anatomy through crossword puzzles, where terms and definitions are used as clues. Another scenario involves decision-making games that simulate real-world veterinary cases, allowing users to apply their knowledge in a virtual environment.

Core Functions of Al Vet Coach

1) Crossword Puzzles (Fig. 17)

Example: A crossword puzzle focusing on the terminology related to the cardiovascular system of dogs. Users are prompted with definitions, and they must fill in the correct term.

Scenario: Used in a classroom setting, a veterinary instructor assigns the cross-word as homework to reinforce students' under-standing of key concepts covered in lectures.

2) Matching Games (Fig. 18)

Example: A game where users match common symptoms with the diseases they are associated with. This can include matching 'polydipsia' with 'diabetes mellitus'.

e.a.: Match the anatomical terms on the left with the correct descriptions/loca-tions on the right.

1234567		
1 A _ _ _	_1_	
2 _ _ _ _	_1_	
3 _ _ _	_1_	
4 _ _ _ _	_1_	
5 _ _ _ _	_ [_	
6 _ _ _ _	_1_	
7 _ _ _ _	_ _	

Across

- The science of diagnosing and treating diseases in animals (11)
- A common parasite found in dog intestines (8)
- . A sterile field is crucial during this procedure (9)

Down

- The process of determining the cause of a disease (10)
- Common imaging tool in veterinary radiology (3)
- A species commonly treated in small animal practice (3)
- · Abbreviation for feline infectious peritonitis (3)

Fig (17): Example of a Crossword Puzzle

You'll be filling in words horizontally (Across) and vertically (Down).

e.g.: Grid Layout (7x7 Sample Puzzle)

Column 1: Anatomical Term	Column 2: Description/Location
1. Stiffe	A. The upper lips of a dog, especially pronounced in breeds like Blood- hounds.
2. Withers	B. The area at the base of the neck, between the shoulder blades.
3. Dewclaw	The equivalent of the human wrist; part of the forelimb.
4. Pastern	 The joint on the hind leg corresponding to the human knee.
5. Flews	A vestigial digit found on the inside of the leg above the paw.
6. Hock	F. The part of the hind leg that corresponds to the human ankle.
7. Carpus	G. The area of the forelimb between the wrist and the toes.

Fig (18): Example of Matching Games in animal anatomy

3) Anatomy Quizzes (Fig. 19)

Example: Quizzes that challenge users to identify parts of animal anatomy on diagrams or photos, such as identifying the parts of the equine hoof.

Scenario: During a study group session, veterinary students use this feature to test each other's knowledge on equine anatomy.

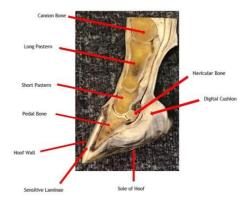


Fig (19): Example of veterinary anatomy quizze

4) Scenario-Based Decision-Making Games

Example: A game that presents a case of a cat with chronic kidney disease, asking the user to choose the best management approach based on the infor-mation provided.

Scenario: In a continuing education workshop, practicing veterinarians use this function to discuss and explore different management strategies for chro-nic conditions.

5) Case Studies

Example: Interactive case studies where users walk through the diagnosis and treatment process for various animal cases, such as a dog with heartworm disease.

Scenario: Veterinary medicine students collaborate on these case studies to apply their clinical reasoning skills in a safe, educational environment.

6) Role-Plays and Mock Interviews

Example: Role-playing exercises that simulate client-veterinarian inter-actions, with a focus on improving communi-cation skills.

Scenario: Used in veterinary commu-nication courses to help students practice delivering difficult news to pet owners, such as a terminal diagnosis.

2) EasyAnatomy (fig. 20)

Dissection without a cadaver

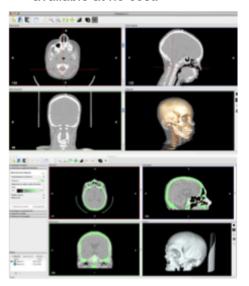
Virtual dissection lets the student explore and dissect outside the lab. Peel away layers, hide components, isolate regions, and visualize the spatial relationship between anatomical structures.

 Designed for: Pre-Vet Students, Pre-Clinical Students, and Clinical Students

1) <u>vet-Anatomy by IMAIO (Fig.</u> 21)

vet-Anatomy is a high-quality atlas of veterinary anatomy based on medical imaging, created under the supervision of Dr. Susanne AEB Boroffka, dipl. ECVDI, PhD and Antoine Micheau, MD. It's based on the same framework as the popular award-winning e-Anatomy, but dedicated to animals.

(fig. 20): EasyAnatomy tool for learning veterinary anatomy



(fig. 21): vet-Anatomy is a high-quality atlas of veterinary anatomy based on medical imaging

2) InVesalius (Fig.22)

- InVesalius is a free medical soft ware used to generate virtual reconstructions of structures in the human body. Based on two-dimensional images, acquired using computed tomography or magnetic resonance imaging equipment, the software generates virtual three-dimensional models correspondent to anatomical parts of the human body.
- Available for the Microsoft Windows, GNU/ Linux and Apple Mac OS X plat-forms.
- InVesalius was developed at CTI (Renato Archer Information Technology Center), a research

institute of the Brazilian Science and Technology Center and is available at no cost.

(fig. 22): InVesalius is a free medical software used to generate virtual reconstructions of structures in the human body.

3) WikiVet (Fig.23)

- WikiVet is a wiki of veterinary content based on the Media-Wiki platform. The web-site is a collaborative initiative between various veterinary schools, and its content covers the entire veterinary curriculum. WikiVet is a part of the WikiVet Educational Foundation (UK registered charity number 1160546).
- Full access to WikiVet requires a free registration, which is available to veterinarians, veterinary students and veterinary technicians. Except for content relating specifically to the veterinary curriculum, articles are authored by students or veterinarians, and

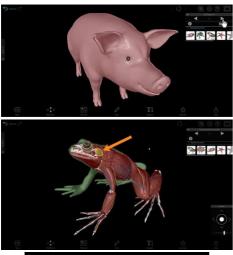
- subsequently peer reviewed by subject specialists.
- WikiVet is desinged to be used in one of three main ways, either for reference, revision or for learning.

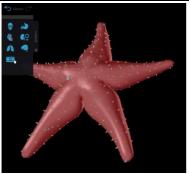
Fig. (23): Logo of WikiVet

Furthermore, there are two more sites also generated to ease the study and learning of human and veterinary anatomy. Namely, HoloAnatomy and Visible Body Lesson Plan.

a. HoloAnatomy: A virtual view of the human body (fig.24)

Fig. (24): HoloAnatomy software:Studies have shown that the HoloAnatomy® Software is not only effective and time-saving, but preferable over cadaveric dissection in some aspects.


For human anatomy educators, one of the biggest challenges is helping students truly understand the body's intricate structures and spatial relationships. Textbooks and cadavers provide critical foundations, but they have limitations-flat images lack depth, and dissec-tion can't always reveal intricate structures. That's where immersive technology can bridge the gap.


Since 2014, HoloAnatomy® has helped educators transform medical learning through collaborative immersion. Now, with the Holo-Anatomy 2.0 Preview, AlensiaXR is introducing a modernized platform that gives

instructors even more flexibility and innovative tools to engage students and deepen understanding.

b. Visible Body Lesson Plan(Fig.25)

In this blog post, we'll walk through a lesson plan that asks students to compare and contrast different animals using the four animal models in VB Suite: the earthworm, sea star, frog, and pig.

Fig. (25): Comparing Animal Anatomy: A Visible Body Lesson Plan in pig, frog and sea star.

Conclusion

The implementation of AI in teaching and learning veterinary anatomy as well as human anaomy has advantages: accessibility, standar-dization, and motivation of students but there are also issues: the cost, the ethical issue, and requirements for IT skills (Sahu, 2025).

References and recommended reading

Barry, D.S., Marzouk, F., Chulak-Oglu, K., Bennett, D., Tierney, P., & O'Keeffe, G.W. (2016): Anatomy education for the YouTube generation. American Association of Anato-mists, 9(1), 90-96.

Bond, A.P., Kelsey, A., & Aitken, G. (2023): The future of anatomy teaching post-pandemic: An academic viewpoint. Anatomical Sciences Education, 16(6), 1121–1133.

DeBose, K. (2020): Virtual anatomy: expanding veterinary student learning. Journal of the Medical Library Association, 108(4), 647–648.

EI-hady,E.(2014): Future trends of veterinary educatiin of some muscles of the goat. Ph.D. thesis. Zagazig University. Fac. Vet. Med., Anatomy and Embryology department

Erolin, C., Reid, L., & McDougall, S. (2019): Using virtual reality to complement and enhance anatomy education. Journal of Visual Communication in Medicine, 42(3), 93-101.

French, H.M., Dascanio, J.D., Peterson, E.W., Gilbert, G.E., Wright, C.C., Wickman, D.D., & Bauman, E.B. (2018): Development and student evaluation of an anato-mically correct high-fidelity calf leg model. Journal of Veterinary Medical Education, 45(1), 126–130.

Guimarães, B., Firmino-Machado, J., Tsisar, S., Viana, B., Pinto-Sousa, M., Vieira-Mar-ques, P., Cruz-Correia R., & Ferreira, M.A. (2019): The role of anatomy computer-assisted learning on spatial abilities of medical students. Anatomical Scien-ces Education, 12(2), 138-153.

Janick, L., DeNovo, R., & Henry. R. (1997): Plastinated canine gastro-intestinal tracts used to facilitate teaching of endoscopic technique and anatomy. Acta Anatomica, 158(1), 48–53.

Khalil, M., Meguid, E., & Elkhider, I. (2018: Teaching of anatomical sciences: A blended learning approach. Clinical Anatomy, 31 (3), 323-329.

Kinnison, T., Forrest, N.D., Frean, S.P., & Baillie, S. (2009): Teaching

bovine abdominal anatomy: Use of a haptic simulator. Anatomical Sciences Education, 2(6), 280-285.

Korf, H., Wicht, H., Snipes, R., Timmer-mans, J., Paulsen, F., Rune, G., Baumgart -Vogt, E. (2008): The dissection course-nece-ssary and indispensable for teaching anatomy to medical students. Annals of Anatomy-Anatomischer Anzeiger, 190 (1), 16-22.

Latorre, R., García-Sanz, M.P., Moreno, M.J., Hernández, F.M., Gil, F., López, O., Ayala, M.D., Ramírez, G., Vázquez, J.M., Arencibia, A., & Henry, R.W. (2007): How useful is plastination in learning anatomy? Journal of Veterinary Medical Education, 34(2), 172-176.

Lazarus, MD, Truong, M, Douglas, P, & Selwyn, N. (2022): Artificial intelligence and clinical anatomical education: Promises and perils. Anatomical Sciences Education, 00, 1–14.

Leung, B.C., Williams, M., Horton, C., & Cosker, T.D. (2020): Moder-nising anatomy teaching: Which resources do students rely on? Journal of Medical Education and Curricular Development, 7, 2382120520955156.

Linton, A., Garrett, A.C., Ivie, K.R. Jr, Jones, J.D., Martin, J.F., Delcambre, J.J., & Magee, C. (2022): Enhancing

anatomical instruction: Impact of a virtual canine anatomy program on student outcomes. Anatomical Scien-ces Education, 15(2), 330–340.

Khayri,s.(2014): Enhancement of Education of Neuroanatomy of the goat. Ph.D. thesis. Zagazig University. Fac. Vet. Med., Anatomy and Embryology department

Linton, A., Schoenfeld-Tacher, R., & Whalen, L.R. (2005): Developing and implementing an assessment method to evaluate a virtual canine anatomy program. Journal of Veterinary Medical Education, 32(2), 249–254.

Longhurst, G.J., Stone, D.M., Dulohery, K., Scully, D., Campbell, T., & Smith, C.F. (2020): Strength, Weakness, Opportunity, Threat (SWOT) analysis of the adaptations to anatomical education in the United Kingdom and Republic of Ireland in response to the Covid-19 pandemic. Anatomical Sciences Education, 13(3), 301-311.

Mahdy, E.A., El-Basset, A., Gad, E.B., Abd El-Raouf, M. and Konsowa, M.M. (2025): A mixed prospective study of the vasculature of the goat's eye via a blended learning approach. *Iraqi Journal of Veterinary Sciences, Vol. 39, No. 2, 2025 (341-352)*

McLachlan, J.C., Bligh, J., Bradley, P., & Searle, J. (2004): Teaching anatomy without cadavers. Medical Education, 38(4), 418-424.

Moro, C., Štromberga, Z., Raikos, A., & Stirling, A. (2017): The effectiveness of virtual and augmented reality in health sciences and medical anatomy. Anatomical Sciences Education, 10, 549-559.

Moselhy, A. A. (2015): Educational studies on the respiratory system of the goat. Ph.D.thesis. Zagazig University. Fac. Vet. Med . Anatomy and embryology department.

Nouh,D.S.(2021): Educational studies on the cardiovascular syste of the goat. Ph.D. thesis . Zagazig university. Fac. Vet. Med. Anatomy and Embryology department.

Nouh, D.S (2014): New educational methods in veterinary anatomy (Avian Skeleton). M.V.Sc. Thesis. Zagazig University. Fac. Vet. Med. anatomy and embryology department.

Noyes, J.A., Carbonneau, K.J., & Matthew, S.M. (2022): Comparative effectiveness of training with simulators versus traditional instruction in veterinary education: Meta-analysis and systematic review. Journal of Veterinary Medical Education, 49, 25–38.

Papa, V., & Vaccarezza, M. (2013): Teaching anatomy in the XXI century: New aspects and pitfalls. The Scientific World Journal, 2013.

Saber, **Ashraf Sobhy (2021):** Teaching Veterinary Anatomy During Covid-19 Pandemic Time, Challenges and Solutions. J. Vet. Anat., Vol. 14, No. 1, (2021) 25 – 40.

Saber, A.S.; Shoghy, K.M. and Mohammed, S.A. (2016): Plasticine Modeling as Alternative in Teaching Veterinary Anatomy . J. Vet. Anat., Vol. 9, No. 1:47 – 61.

Samy A. Azer and Sarah Azer (2016): 3D Anatomy Models and Impact on Learning: A Review of the Quality of the Literature. 31. Health Professions Education 2, :80-98.

Sack, O. (1960): Anatomical teaching aids. Journal of the American Veterinary Medical Association, 136, 306-309.

Sahu, Santosh Kumar (2025): Al-Assisted Veterinary Anatomy Education: Enhancing Precision and Engagement in the Class-room.

https://www.arccjournals.com/blog/aiassisted-veterinary-anatomy-education-enhancing-precision-and-engagement-in-the-classroom Smith, C.F., Alderton, D.L., Clifford, K.M., & Wells, G. (2020): A good death – Can the concept be applied to anatomy? Anatomical Sciences Education, 13(5), 657-663.

Snell, J.R., Green, R., Stott, G., & Van Baerle, S. (1991): A veterinary digital anatomical database. Proceedings. Symposium on Computer Applications in Medical Care, 762–765.

Turney, B.W. (2007): Anatomy in a modern medical curriculum. The Annals of The Royal College of Surgeons of England, 89(2), 104-107.

Vaĭnauskas, S., & Vaĭnauskene, I. (1970): Preparation of visual aids for teaching anatomy. Veterinaria, 12, 94.

Wenthe, V.M., Schwarz, R., Waibl, H., & Neurand, K. (1995): Die photo-CD--ein neues medium in der veter-inäranatomie [Photo- CD--a new medium in veterinary anatomy]. Deutsche Tierarztliche Wochenschrift, 102(5), 200–202.

Zerlotini, M., Paula, T., Ramos, M., Silva, F., Santana, M., Figueira, M., Silva, L., Silva, V., & Bustamante, L., (2020): Establishment and opera-tionalization of a low-budget plastina-tion laboratory in the veterinary morphology section the Federal University of

Navigating Veterinary Anatomy Teaching

Saber, A.S.

Vicosa, Minas Gerais, Brazil. Journal of Plastination, 32(1), JP-20-02.

https://www.imaios.com/en/vet-anatomy/dog/dog-stifle2

Author Address:

Saberashraf 2@yahoo.com