The Adequacy of Nutrient Intake Among Saudi Employees with Metabolic Syndrome, Comparative Study

Helal H. Al Hilal¹, Samir M. Ahmed¹, Soheir F. Nour¹, and Mohamed S. Ismail²

ABSTRACT

This study aimed to assess nutrient intake and their adequacy in Saudi adults with metabolic syndrome (MetS); participants were randomly recruited from Ministry of Health clinics in Riyadh; the sample included 350 adults aged 30 to 60 years (150 and 200 without MetS) socioeconomic and lifestyle data were anthropometric indices measured, and fasting blood samples obtained for biochemical assays; dietary intake was assessed using three nonconsecutive 24-hour recalls; there were no significant differences between groups in age, marital status, education, or family size; compared with controls, MetS participants were more physically inactive (86.7%) did not practice sports compared to (68.0%) for control groups (p < 0.001) and reported lower sports frequency and duration (1.8 \pm 1.8 vs 2.6 \pm 1.9 times per week, t = 2.38, p = 0.018; 27.1 ± 22.1 vs 36.2 ± 26.2 minutes per session, t = 1.92, p = 0.050); MetS subjects had higher weight (95.62 \pm 16.21 vs 77.60 \pm 12.18 kg), BMI $(35.80 \pm 6.10 \text{ vs } 28.10 \pm 4.50 \text{ kg/m}^2)$, and waist circumference (115.64 \pm 11.70 vs 92.80 \pm 10.30 cm); they also had higher fasting blood glucose (154.2 \pm 52.7 vs 100.3 \pm 14.2 mg/dL), HbA1c (7.34 \pm 2.24 vs 5.40 \pm 0.50%), triglycerides (171.6 \pm 70.1 vs 118.3 \pm 60.2 mg/dL), and LDL-C (137.3 \pm 41.5 vs 108.1 \pm 34.2 mg/dL), while HDL-C was lower (47.8 \pm 12.8 vs 54.6 \pm 11.7 mg/dL); energy intake $(1629.9 \pm 575.1 \text{ vs } 2114.6 \pm 529.8 \text{ kcal})$, protein $(57.0 \pm 22.9 \pm 575.1 \text{ vs } 2114.6 \pm 529.8 \text{ kcal})$ vs 79.1 \pm 24.3 g), carbohydrates (225.1 \pm 93.8 vs 311.4 \pm 87.4 g), fiber $(4.3 \pm 2.0 \text{ vs } 6.0 \pm 2.3 \text{ g})$, vitamins A and C, calcium, magnesium, and other micronutrients were all lower in MetS participants; total fat intake was also significantly lower in MetS participants than controls (55.8 \pm 24.2 vs 61.4 \pm 24.1 g/day; 70.3% vs 85.4% of requirements; p = 0.013); in conclusion, Saudi adults with MetS reported lower intakes of essential nutrients and exhibited an unhealthy lifestyle.

Keywords: Metabolic Syndrome, Diet, Glucose, Blood Lipids, Obesity, BMI, Calories, Protein, Vitamin C.

INTRODUCTION

Metabolic Syndrome (MetS), also known as insulin resistance syndrome or "Syndrome X," is a cluster of metabolic and physiological abnormalities that can occur simultaneously in an individual. These abnormalities increase the risk of developing cardiovascular disease (CVD), type 2 diabetes mellitus

(T2DM), obesity, atherogenic dyslipidemia, and hypertension. MetS had been defined using various criteria, including the International Diabetes Federation (IDF), Adult Treatment Panel (ATP) III, and World Health Organization (WHO). IDF emphasizes central obesity as a fundamental component. According to ATP III, three or more risk factors determine MetS (Ranasinghe et al., 2017 and Al-Rubeaan et al., 2018). Metabolic syndrome is strongly associated with an increased risk of stroke and cardiovascular events (Hayden, 2023). Dietary imbalances, especially high energy intake, fats, and cholesterol, play a critical role in its development (Zhang et al., 2025). Early detection of MetS is crucial for effective management and prevention of its associated conditions. Lifestyle modifications, including dietary improvements and increased physical activity, have been shown to reduce and manage MetS risk factors (Deng et al., 2025). In recent decades, Saudi Arabia has undergone rapid economic and social development, leading to significant shifts in dietary intake patterns. There has been a notable increase in the consumption of energy-dense, processed foods high in fat, sugar, and salt. This lifestyle shift contributes substantially to increase epidemic of non-communicable diseases in the region, particularly metabolic syndrome (Alyousef et al., 2025). National data indicate that approximately 40% of Saudi adults aged 30 to 70 years suffer from MetS. Key contributing factors include hypertension, elevated blood glucose, high triglycerides, low HDL cholesterol, and especially abdominal obesity. The risk of MetS increases with age, sedentary behavior, and high-fat, high-sugar diets (Alhajri et al., 2025). Meta-analyses also link MetS to greater mortality, with its prevalence rising alongside increases in body mass index (BMI) (Garralda-Del-Villar et al., Approximately one in four adults globally has MetS, with higher prevalence rates reported in the Middle East. For example, rates vary from 17% in Oman to over 40% in the United Arab Emirates, depending on the criteria used (Al-Rubeaan et al., 2018). Behavioral factors such as physical inactivity and unhealthy diets significantly contribute to the escalating prevalence of MetS worldwide. Certain medications may exacerbate

DOI: 10.21608/asejaiqjsae.2025.460218

Received, August 20, 2025, Accepted, September 30, 2025.

¹ Dept. of Home Economic (Food and Human Nutrition),

Faculty of Agriculture Alexandria University.

² Dept. of Nutrition and Food Sciences, Faculty of Home Economics, Menoufia University, Shibin El Kom, Egypt.

MetS components by influencing weight, blood pressure, and metabolic parameters (Deng et al., 2025). Recent studies in Saudi Arabia highlight gender differences in MetS characteristics: women tend to have higher rates of obesity and elevated blood sugar, while men show higher triglycerides and lower HDL cholesterol levels, influenced by biological and lifestyle factors (Alyousef et al., 2025). Socioeconomic factors such as income and education also impact MetS risk, with higher income and education levels associated with reduced risk of MetS (Eldakhakhny et al., 2023).

Therefore, the present study was conducted to assess nutrient intake and their adequacy in Saudi adults with metabolic syndrome (MetS).

SUBJECTS AND METHODS

Subjects

Study Population

The study population consisted of Saudi employees working at the Ministry of Health (MOH) in Riyadh region.

Sample Selection

Only Male Saudi Ministry of Health (MOH) employees aged 30 to 60 years who provided informed consent and had at least three risk factors for metabolic syndrome (MetS) were enrolled. Employees without MetS served as control group.

Written informed consent was obtained from all the subjects. Also "Exclusion criteria were: non-Saudi nationality; physical or intellectual disability; cancer; pregnancy or lactation; ascites or edema; end-stage liver or renal disease. Participants were selected by cluster sampling from staff at the Ministry of Health headquarters, the Directorate of Health Affairs, and government hospitals in Riyadh.

Methods

Metabolic Syndrome Diagnosis

Metabolic Syndrome (MetS) was diagnosed based on the National Cholesterol Education Program Adult Treatment Panel III (NCEP ATP III) criteria, which requires at least three of the following abnormalities:

- •Increased waist circumference (≥102 cm for men).
- •Elevated triglycerides (≥1.7 mmol/L).
- •Low HDL cholesterol (men ≤1.03 mmol/L).
- •Elevated fasting glucose (≥5.6 mmol/L or diagnosed diabetes).
- •Hypertension (SBP ≥130 mmHg or DBP ≥85 mmHg or on antihypertensive treatment).

Study Design

Cases were patients with metabolic syndrome (MetS) and control groups were without MetS, all identified from clinic records.

Data Collection

Data were obtained using a validated questionnaire covering demographics (age, marital status, education, employment, household size); medical and family history (e.g., hypertension, diabetes), medication and supplement use, and special regimens; lifestyle (types and duration of physical activity and sports; screen time for television, internet, mobile, and computer; and daily sleep duration); anthropometric and biochemical history; and dietary intake including a 24-hour dietary recall.

"Body weight was measured using a calibrated digital scale to the nearest 0.1 kg with participants in light clothing and without shoes. Standing height was measured without shoes using a wall-mounted stadiometer to the nearest 0.1 cm. Each measurement was taken twice and the average was recorded".

Body mass index (BMI) was calculated as weight divided by height squared (kg/m²). Waist circumference (WC) was measured on a horizontal plane midway between the iliac crest and the lower rib margin to the nearest 0.1 cm using a non- stretchable measuring tape.

An automated sphygmomanometer measured blood pressure (BP) after an adequate rest period.

Fasting blood samples were collected from each subject to determine fasting blood glucose, HbA1c, and lipid profiles (triglycerides [TG], total cholesterol [TC], HDL cholesterol [HDL- C], and LDL cholesterol [LDL- C]). Analyses were performed after at least 12 hours of fasting using an automated analyzer (ARCHITECT c8000; Abbott Diagnostics).

Nutrient intakes were estimated using three non-consecutive 24-hour dietary recalls (Subar *et al.*, 2020). Nutrient data were demined using food composition tables for Arab Gulf countries (Gulf Health Council, YEAR) and compared with standard dietary requirements.

Requirements for minerals and vitamins were based on Requirements for vitamins and minerals were based on Dietary Reference Intakes (DRIs) (Otten *et al.*, 2006). Sodium and potassium based on the updated DRIs (National Academies of Sciences, Engineering, and Medicine, 2019). Percentages of nutrient intake were computed as the ratio of observed intake to the respective standard requirement.

All data were statistically using SPSS version 22. Results are presented as frequency and percentage or as mean \pm standard deviation (SD). Independent - samples

t-tests were used to assess differences between groups, and chi-square tests were used to compare categorical variables between patients and controls.

Ethical considerations

Participants took part voluntarily and were fully informed about the study objectives and procedures. Each participant received a written consent form explaining the questionnaire content; individuals who refused to sign the consent were excluded from the study. The study was approved by the Department of Home Economics, Faculty of Agriculture, Alexandria University.

RESULTS AND DISCUSSION

Table 1 compares demographic and socioeconomic variables between the control group (n=200) and the MetS group (n=150). All participants were government employees residing in Riyadh, minimizing site-related variability. No statistically significant differences were observed in age, marital status, education, or family size between groups, supporting sample comparability and reducing potential confounding.

This suggests that these basic demographic factors are similarly distributed across groups, providing a solid foundation for our comparative analysis.

The socioeconomic class was found to differ significantly (χ^2 =24.73, p<0.001). A larger proportion of individuals with MetS belong to the low socioeconomic class (45.3% vs. 19.0% in Control), while fewer MetS participants are in the high class (17.3% vs. 25.1%).

The lower socioeconomic characteristics was strongly associated with the presence of metabolic syndrome in this population. Such associations are consistent with broader research suggesting that socioeconomic disadvantages increase metabolic syndrome risk through pathways involving lifestyle, stress, diet, and access to healthcare. In contrast, demographic characteristics like age, and education level alone do not show significant differences here, highlighting the strong influence of socioeconomic context on metabolic health (Azizi et al., 2019).

Table 2 provides a comparative analysis of lifestyle and physical activity between the control group (n=200) and the MetS patient group (n=150).

The findings revealed a highly significant difference in physical activity levels (p < 0.001), with a markedly larger proportion of MetS patients (86.7%) indicating no engagement in sports compared to the Control group (68.0%). This observation aligns with established research linking physical inactivity to an increased risk of MetS through mechanisms such as obesity and insulin resistance. Additionally, significant differences are observed in the modes of transportation utilized by the two groups (p < 0.001). The control group exhibited a greater frequency of sports participation, averaging 2.6 ± 1.9 sessions per week, in contrast to the MetS group, which averaged 1.8 ± 1.8 sessions per week (t = 2.38, p = 0.018). Furthermore, the duration of sports sessions was longer in the Control group, with an average of 36.2 ± 26.2 minutes per session, compared to 27.1 ± 22.1 minutes in the MetS group (p = 0.050).

Table 1. Frequency distribution of studied subjects according to demographic data.

X7 * - 1.1.	Catalana	(0/) C t 1	(0/) M-4C	(0/) T-4-1	Cl.:	
Variable	Category	(%) Control	(%) MetS	(%) Total	Chi-square	p-value
		(n=200)	(n=150)	(n=350)	(χ^2)	
	20-29	(17.5%)	(16.7%)	(17.1%)	0.525	0.913
Age (years)	30–39	(31.0%)	(30.7%)	(30.9%)		
	40–49	(32.5%)	(36.0%)	(34.0%)		
	50-60	(19.0%)	(16.7%)	(18.0%)		
	Single	(7.0%)	(5.3%)	(6.3%)	0.418	0.811
Marital	Married	(87.0%)	(88.0%)	(87.4%)		
Status	Divorced/Widowed	(6.0%)	(6.7%)	(6.3%)		
Education	Secondary	(50.0%)	(53.3%)	(51.4%)	0.378	0.539
Level	Bachelor's Degree	(50.0%)	(46.7%)	(48.6%)		
	Less than 4	(25.0%)	(22.0%)	(23.7%)	0.625	0.732
Family Size	4 to 6	(70.0%)	(63.3%)	(67.1%)		
	More than 6	(5.0%)	(14.7%)	(9.1%)		
Socioecono	Low	(19.0%)	(45.3%)	(30.3%)	24.73	0.000 ***
mic Class	Moderate	(50.0%)	(37.3%)	(44.6%)		
	High	(31.0%)	(17.3%)	(25.1%)		

Significance: *** P < 0.001 (highly significant)

Category	,	Control (n=200)	MetS (n=150)	"Test"	p-value
		mean ± SD (n)	$mean \pm SD(n)$		
Practice	None	136 (68.0%)	130 (86.7%)		0.001
sports	Mild sports	43 (21.5%)	12 (8.0%)		
(%)	Moderate sports	19 (9.5%)	5 (3.3%)		
	Hard sports	2 (1.0%)	3 (2.0%)		
Overall (x	χ^2 , df = 3)			$\chi^2 = 24.7$	p < 0.001
Sports fre	quency (times/week)	2.6 ± 1.9	1.8 ± 1.8	t = 2.38	0.018 *
Sports du	ration (minutes/time)	36.2 ± 26.2	27.1 ± 22.1	t = 1.92	0.050 *
Screen tin	ne (hours/day)	2.4 ± 1.9	2.1 ± 1.8	t = 2.22	0.027 *
Sleeping 1	hours (hours/day)	7.1 ± 1.5	8.2 ± 7.11	t = 6.83	0.000 ***

Table 2. Lifestyle and physical activity by MetS status: sports participation distribution (%) and continuous measures (mean \pm SD).

Notably, the average daily screen time was significantly higher in the Control group $(2.4 \pm 1.9 \text{ hours})$ than in the MetS group $(2.1 \pm 1.8 \text{ hours})$, p = 0.027). Additionally, there was a significant difference in sleep duration, as the MetS group averaged more sleep hours $(8.2 \pm 7.1 \text{ hours})$ compared to the Control group $(7.1 \pm 1.5 \text{ hours})$, p < 0.001).

Physical inactivity is a significant risk factor for the development of Metabolic Syndrome (MetS). Various studies have demonstrated the association between low physical activity levels and increased risk of MetS. A study on Korean adult men found that vigorous physical activity (VPA) significantly reduced the risk of MetS by 64.7% (Yuan and Kim, 2023). A systematic review and meta-analysis revealed that both intermediate and high levels of sedentary time were associated with increased MetS risk (Wu et al., 2022). In a study of Saudi adults, spending over six hours daily in sedentary behavior doubled the odds of having MetS, underscoring the detrimental effects of prolonged inactivity (Alkathem et al., 2024). In an Indian foothill population, physical inactivity was linked to higher triglyceride levels in males and increased blood pressure and glucose levels in females (Goyal et al., 2022).

Table 3 presents a comparative analysis of anthropometric indices between healthy controls and

MetS patients. The mean age difference observed is not statistically significant (p=0.057). However, patients with MetS demonstrate significantly higher mean weight, Body Mass Index (BMI), and waist circumference (WC) compared to the control group (p < 0.001), indicating a greater degree of adiposity and central obesity, which are key characteristics of MetS. Additionally, the control groups is slightly taller than the MetS patients, a difference that is statistically significant (p=0.001). The elevated BMI and waist circumference in MetS patients underscore their increased metabolic risk associated with abnormal fat distribution.

Research indicates that Body Mass Index (BMI) and Waist Circumference (WC) serve as significant indicators of the risk for Metabolic Syndrome (MetS). Variations in these measurements are correlated with the likelihood of developing the syndrome. Investigations in Saudi Arabia (AbouZaid *et al.*, 2019) and Egypt (Eed *et al.*, 2021) have established a strong correlation between BMI and MetS. Additionally, a recent study involving middle-aged and elderly individuals in China demonstrated that reductions in both BMI and WC were associated with a significantly lower risk of MetS, reflected by a hazard ratio of 0.338 (Zhang *et al.*, 2024).

Table 3. Age and anthropometric characteristics among MetS status (mean \pm SD).

_	_			
Variable	Control (n=200) mean \pm SD	MetS (n=150) mean \pm SD	t-value	p-value
Age (years)	47.0 ± 9.9	45.2 ± 10.3	1.95	0.057
Weight (kg)	77.60 ± 12.18	95.62 ± 16.21	13.44	<0.001***
Height (cm)	166.58 ± 9.0	163.72 ± 9.42	-3.33	0.001***
BMI (kg/m²)	28.1 ± 4.50	35.80 ± 6.10	15.59	<0.001***
Waist (cm)	92.80 ± 10.30	115.64 ± 11.70	22.18	<0.001***

^{***}p < 0.001 indicate levels of statistical significance.

^{*} p < 0.05, *** p < 0.001 indicate levels of statistical significance.

"Table 4 illustrates significant differences in metabolic and lipid profiles between the control group and MetS group. The values observed in the control group predominantly reside within established normal clinical reference ranges. Conversely, the MetS group displays markedly elevated levels of blood glucose, HbA1c, triglycerides, total cholesterol, LDL, and VLDL, which indicate the metabolic and cardiovascular risk factors typically associated with MetS. In contrast, the MetS cohort exhibits significantly lower HDL cholesterol levels and related ratios.

Prior research indicates that lipidomic profiles may function as biomarkers for the early detection and ongoing monitoring of MetS (Jové *et al.*, 2014). Key findings from various studies emphasize the alterations in lipid metabolism related to MetS.

In agreement with our findings, Trivedi *et al.* (2024) reported that individuals with MetS present notably elevated triglyceride levels (up to 214.16 mg/dL) compared to controls (118.55 mg/dL). Additionally, they observed higher total cholesterol levels in MetS patients (203.35 mg/dL) when compared with controls (183.0 mg/dL) (Trivedi *et al.*, 2024). Furthermore, these authors documented a substantial reduction in high-density lipoprotein (HDL) cholesterol among individuals with MetS (38.16 mg/dL) relative to control subjects (46.66 mg/dL).

Moreover, MetS subjects show increased concentrations of glycerolipids alongside decreased levels of ether lipids and sphingolipids, thereby indicating a dysregulation in lipid metabolism (Serna *et al.*, 2024). The lipid profiles characteristic of MetS are associated with an increased risk of cardiovascular diseases. This condition is defined by atherogenic dyslipidemia, which is characterized by elevated

triglycerides and diminished HDL levels (Bostan *et al.*, 2021).

Table 5 presents a comparison of the intake of macronutrients (energy, protein, fat, carbohydrates, fiber) and micronutrients (vitamins A, C, thiamin, riboflavin, sodium, potassium, calcium, phosphorus, magnesium, iron, zinc, copper) between a healthy control group and individuals diagnosed with Metabolic Syndrome (MetS) in Saudi Arabia. The analysis reveals significantly lower intake levels across nearly all nutrients among the MetS group, specifically in energy, protein, carbohydrates, fiber, vitamin C, thiamin, sodium, potassium, calcium, and magnesium. The substantial t-values and consistently high significance level (less than 0.001) insure the pronounced differences between the two groups.

The diminished intake of energy and nutrients among patients with MetS may indicate altered dietary habits, metabolic changes, or potential dietary restrictions. Conversely, the control group reflects a higher consumption of vitamins and minerals, suggesting a more balanced and nutrient-dense diet.

These findings are corroborated by studies conducted by Julibert et al. (2019), which observed that individuals with MetS exhibited lower intakes of energy, carbohydrates, and fiber than their non-MetS counterparts. Of this study, the dietary assessment indicated significant nutrient inadequacies within the MetS group, including insufficient consumption of calories, protein, carbohydrates, fiber, vitamin C, calcium, magnesium, and other micronutrients. Nearly half of the MetS subjects reported consuming less than 50% of the recommended intake levels for calories, proteins, and carbohydrates. Such nutritional deficiencies mav further exacerbate metabolic imbalances through mechanisms involving oxidative stress and impaired glucose metabolism.

Table 4. Biochemical variables among MetS and control groups (mean \pm SD).

	_				
Variable	Reference values*	Control (n=200)	MetS (n=150)	t-value	p-value
Fasting blood glucose (mg/dL)	70-110	100.3 ± 14.2	154.2 ± 52.7	11.4	0.000 ***
HbA1c (%)	4.2 - 6.5	5.4 ± 0.5	7.34 ± 2.24	8.6	0.000 ***
Triglycerides (mg/dL)	35-135	118.3 ± 60.2	171.6 ± 70.1	6.5	0.000 ***
Total cholesterol (mg/dL)	\leq 200	186.4 ± 42.8	219.4 ± 48.6	5.8	0.000 ***
HDL (mg/dL)	45-65	54.6 ± 11.7	47.8 ± 12.8	-4.5	0.000 ***
LDL (mg/dL)	< 130	108.1 ± 34.2	137.3 ± 41.5	6.1	0.000 ***
VLDL (mg/dL)	25-50	23.7 ± 12.1	34.3 ± 14.0	6.5	0.000 ***
HDL/TC ratio	_	0.30 ± 0.1	0.23 ± 0.1	-8.3	0.000 ***
HDL/LDL ratio	_	0.60 ± 0.3	0.39 ± 0.2	-5.8	0.000 ***
LDL/TC ratio	_	0.60 ± 0.1	0.62 ± 0.1		0.000 ***

Significance *** p < 0.001.

^{*}Reference values are based on standard clinical ranges and NCEP ATP III.

		()		0 1
Variable	Control (n=200) mean ±	MetS (n=150) mean ± SD	t-value	p-value
	SD (% Std.)	(% Std.)		
Energy (kcal)	$2114.6 \pm 529.8 \ (81.3\%)$	$1629.9 \pm 575.1 \ (57.2\%)$	-9.4	0.000 ***
Protein (g/day)	$79.1 \pm 24.3 \; (104.8\%)$	$57.0 \pm 22.9 \ (60.9\%)$	-10.1	0.000 ***
Fat (g/day)	$61.4 \pm 24.1 \ (85.4\%)$	$55.8 \pm 24.2 \ (70.3\%)$	-2.5	0.013 ***
Carbohydrates (g/day)	$311.4 \pm 87.4 (75.7\%)$	$225.1 \pm 93.8 \ (51.2\%)$	-10.2	0.000 ***
Fiber (g/day)	6.0 ± 2.3	4.3 ± 2.0	-8.5	0.000 ***
Vitamin A (μg/day)	$1927.0 \pm 1206.1 \ (251.9\%)$	$1142.2 \pm 931.9 \ (150.2\%)$	-7.8	0.000 ***
Vitamin C (mg/day)	$71.1 \pm 53.6 \ (89.7\%)$	$45.2 \pm 42.2 \ (56.5\%)$	-5.7	0.000 ***
Thiamin (mg/day)	$0.84 \pm 0.3 \ (74.0\%)$	$0.70 \pm 0.25 \ (60.9\%)$	-5.8	0.000 ***
Riboflavin (mg/day)	$1.8 \pm 0.8 \ (149.6\%)$	$1.6 \pm 0.7 (137.6\%)$	-2.1	0.038 **
Sodium (mg/day)	2295.0 ± 897.3	1730.8 ± 886.6	-6.8	0.000 ***
Potassium (mg/day)	$2318.7 \pm 637.3 \ (49.3\%)$	$1669.2 \pm 622.6 \ (35.5\%)$	-11	0.000 ***
Calcium (mg/day)	$540.8 \pm 199.7 \ (52.7\%)$	$406.9 \pm 189.4 (39.7\%)$	-7.3	0.000 ***
Phosphorus (mg/day)	$1131.9 \pm 297.7 \ (161.7\%)$	$879.0 \pm 297.0 \ (125.6\%)$	-9.1	0.000 ***
Magnesium (mg/day)	$195.0 \pm 55.0 \ (55.9\%)$	$134.7 \pm 62.6 \ (38.4\%)$	-11	0.000 ***
Iron (mg/day)	$15.2 \pm 5.8 \ (187.7\%)$	$12.2 \pm 5.5 \ (152.2\%)$	-5.3	0.000 ***
Zinc (mg/day)	$11.3 \pm 5.3 \ (126.8\%)$	$10.4 \pm 4.5 \; (117.3\%)$	-2	0.047 *
Copper (mg/day)	$2035.3 \pm 619.7 (226.1\%)$	$1728.9 \pm 561.2 \ (192.1\%)$	-5.5	0.000 ***

Table 5. Mean and standard deviation for nutrient intakes (daily) and t - values of Mets and control groups.

% Std.: percentage of the standard requirement for each nutrient. *p < 0.05, **p < 0.01, ***p < 0.001.

Reference standards based on Dietary Reference Intakes (DRIs).

These conclusions align with previous studies conducted by Julibert *et al.* (2019), as well as those in Saudi Arabia (AbuZaid *et al.*, 2019) and other populations within the Middle East (Eed *et al.*, 2021), which highlight the suboptimal intake of protective nutrients and the overconsumption of processed foods.

Furthermore, a considerable body of research indicates a pronounced deficiency of calcium intake among patients with MetS (Delavar *et al.*, 2008; Al-Daghri *et al.*, 2013 and Shin *et al.*, 2015). Investigations involving both animal and human subjects have demonstrated that adequate dietary calcium and dairy product consumption may play a role in reducing body weight and preventing obesity, which is linked to the development of Metabolic Syndrome (Olguin *et al.*, 2014; Shin *et al.*, 2015 and Ismail & Al Qahiz, 2016).

Table 6: Distribution of MetS patients and control subjects according to nutrient intake adequacy.

The data indicated that a substantial proportion of individuals with MetS (45.3%) ware categorized in the lowest energy intake quartile (<50%), in contrast to only 4.0% of the Control group. Conversely, the majority of Controls (55%) reside within the higher intake quartiles (75-100% and \geq 100%). This observation suggests that individuals with MetS generally exhibit a lower total energy intake despite their health condition.

Nearly half of the MetS participants (48.0%) consume less than 50% of the recommended protein intake, while the majority of Controls (52.0%) meet or exceed 100% of their requirements. This finding points to suboptimal protein consumption within the MetS group.

Concerning carbohydrate intake, it is noteworthy that 64.0% of MetS cases fall into the lowest quartile (<50%), compared to a mere 9.0% among Controls, thereby emphasizing the considerably lower carbohydrate intake among MetS participants.

Regarding Vitamin A, a significant percentage of MetS individuals (25.3%) are in the lowest intake quartile (<50%), whereas only 4.0% of Controls are similarly classified. Most Controls (87.0%) consume \geq 100% of the recommended Vitamin A, compared to 41.3% among those in the MetS group.

For Vitamin C, a substantial majority of MetS subjects (68.0%) fall within the lowest quartile (<50%), in contrast to 29.0% of Controls.

Calcium intake reveals a stark disparity, with 85.3% of individuals within the MetS group consuming less than 50% of the recommended amount. Controls exhibit a more uniform distribution, although none reach or exceed the 100% intake threshold.

Most participants from both groups can meet or exceed the recommended iron intake (QIV > 100%), albeit the MetS group demonstrates slightly lower percentages.

Table 6. (%) Distribution of MetS Patients and Control Subjects According to Nutrient Intake Adequacy

Nutrient	Quartile	Control (n=200) (%)	MetS (n=150) (%)	Total (n=350) (%)
Energy	QI (<50%)	8 (4.0%)	68 (45.3%)	76 (21.7%)
	QII (50–75%)	82 (41.0%)	64 (42.7%)	146 (41.7%)
	QIII (75–100%)	74 (37.0%)	15 (10.0%)	89 (25.4%)
	QIV (≥100%)	36 (18.0%)	3 (2.0%)	39 (11.1%)
	QI (<50%)	6 (3.0%)	72 (48.0%)	78 (22.3%)
Protein	QII (50–75%)	42 (21.0%)	58 (38.7%)	100 (28.6%)
	QIII (75–100%)	48 (24.0%)	17 (11.3%)	65 (18.6%)
	QIV (≥100%)	104 (52.0%)	3 (2.0%)	107 (30.6%)
	QI (<50%)	18 (9.0%)	96 (64.0%)	114 (32.6%)
Carbohydrates	QII (50–75%)	76 (38.0%)	42 (28.0%)	118 (33.7%)
	QIII (75–100%)	74 (37.0%)	10 (6.7%)	84 (24.0%)
	QIV (≥100%)	32 (16.0%)	2 (1.3%)	34 (9.7%)
	QI (<50%)	8 (4.0%)	38 (25.3%)	46 (13.1%)
Vitamin A	QII (50–75%)	6 (3.0%)	22 (14.7%)	28 (8.0%)
	QIII (75–100%)	12 (6.0%)	28 (18.7%)	40 (11.4%)
	QIV (≥100%)	174 (87.0%)	62 (41.3%)	236 (67.4%)
	QI (<50%)	58 (29.0%)	102 (68.0%)	160 (45.7%)
Vitamin C	QII (50–75%)	48 (24.0%)	32 (21.3%)	80 (22.9%)
	QIII (75–100%)	36 (18.0%)	12 (8.0%)	48 (13.7%)
	QIV (≥100%)	58 (29.0%)	4 (2.7%)	62 (17.7%)
	QI (<50%)	84 (42.0%)	128 (85.3%)	212 (60.6%)
Calcium	QII (50–75%)	82 (41.0%)	20 (13.3%)	102 (29.1%)
	QIII (75–100%)	34 (17.0%)	2 (1.3%)	36 (10.3%)
	QIV (≥100%)	0 (0.0%)	0 (0.0%)	0 (0.0%)
Iron	QI (<50%)	4 (2.0%)	8 (5.3%)	12 (3.4%)
	QII (50–75%)	8 (4.0%)	12 (8.0%)	20 (5.7%)
	QIII (75–100%)	18 (9.0%)	24 (16.0%)	42 (12.0%)
	QIV (≥100%)	170 (85.0%)	106 (70.7%)	276 (78.9%)

CONCLUSION

This study revealed that nutrient intake and their adequacy in Saudi adults with metabolic syndrome (MetS) from Ministry of Health clinics in Riyadh. The socioeconomic class was found to differ significantly. A larger proportion of individuals with MetS belong to the low socioeconomic class in Control), while fewer MetS participants are in the high class. A highly significant difference in physical activity levels with a markedly larger proportion of MetS patients indicating no engagement in sports compared to the Control group. Physical inactivity was a significant risk factor for the development of Metabolic Syndrome (MetS). The elevated BMI and waist circumference in MetS patients underscore their increased metabolic risk associated with abnormal fat distribution. The MetS group displays markedly elevated levels of blood glucose, HbA1c, triglycerides, total cholesterol, LDL, and VLDL, which indicate the metabolic and cardiovascular risk factors

typically associated with MetS. In contrast, the MetS cohort exhibits significantly lower HDL cholesterol levels and related ratios. The diminished intake of energy and nutrients among patients with MetS may indicate altered dietary habits, metabolic changes, or potential dietary restrictions. Conversely, the control group reflects a higher consumption of vitamins and minerals, suggesting a more balanced and nutrient-dense diet.

REFERENCES

AbuZaid, O.I., B.M. Al-Dhaif, F.E. Alqunais and M.S. Ismail. 2019. Impact of metabolic syndrome on nutrients intakes among Saudi females. J. Pak Med. Assoc. 69: 330-336.

Al-Daghri, N.M., N. Khan, K.M. Alkharfy, O.S. Al-Attas, M.S. Alokail, H.A. Alfawaz, A. Alothman and P.M. Vanhoutte. 2013. Selected dietary nutrients and the prevalence of metabolic syndrome in adult males and females in Saudi Arabia: a pilot study. Nutr. 5: 4587-4604.

- Alhajri, A.S., T. Alanzi, W. Alzahrani, H.A. Alshehab, E. Alanzi, E. Alhajri, N. Aljamaan, F.A.A. Aldandan, Z. Almumttin, M. Alnwaisser and Z. Abdullah Almajed. 2025. The relationship between physical activity level, dietary patterns, and metabolic syndrome: an empirical study in Saudi Arabia. Nutr. Health 02601060241305179.
- Alkathem, J.A., W.A.H. Almousa, A.M. Alanazi, Z.J. AlQurain, M.B. Almushageh and M. Al Mohaini. 2024. Sedentary lifestyle and dietary habits as predictors of metabolic syndrome amongst middle-aged adults: a cross-sectional analysis. J. Adv. Trends Med. Res. 1: 691-695.
- Al-Rubeaan, K., N. Bawazeer, Y. Al Farsi, A.M. Youssef, A.A. Al-Yahya, H. AlQumaidi, B.M. Al-Malki, K.A. Naji, K. Al-Shehri and F.I. Al Rumaih. 2018. Prevalence of metabolic syndrome in Saudi Arabia-a cross sectional study. BMC Endocr. Disord. 18, 16.
- Alyousef, A.A., P. Subash-Babu, G.M. Alshammari, K.B. Alabdulkareem, A.E.A. Yagoub, M.A. Alomar, A.J. Alrashed, M.A. Mohammed and M.A. Yahya. 2025. Sex differences in prevalence of metabolic syndrome components and contributing factors among psychiatric patients in Saudi Arabia. Front. Public Health 13, 1579145.
- Azizi, F., F. Hadaegh, F. Hosseinpanah, P. Mirmiran, A. Amouzegar, H. Abdi, G. Asghari, D. Parizadeh, S.A. Montazeri, M. Lotfaliany and F. Takyar. 2019. Metabolic health in the Middle East and North Africa. Lancet Diabetes Endocrinol. 7: 866-879.
- Bostan, C., A. Kaya and Z. Yigit. 2021. Differences between morbid obesity with metabolic syndrome and overweight Turkish adult participants in multiple atherosclerotic cardiovascular disease risk factors. Angiol. 72: 131-137.
- Delavar, M.A., L.M. Sann, K.G. Lin, S.T.B.S. Hassan and P. Hanachi. 2008. Total calcium intake and metabolic syndrome in middle aged women, Babol, Iran. World Appl. Sci. J. 5: 193-198.
- Deng, Y., Q. Yang, C. Hao, H.H. Wang, T. Ma, X. Chen, F.W. Ngai and Y.J. Xie. 2025. Combined lifestyle factors and metabolic syndrome risk: a systematic review and meta-analysis. Int. J. Obes. 49: 226-236.
- Eed, R., H. Helal, T. Afefy, W. Shehabeldin and M. Ismail. 2021. The adequacy of nutrients intakes among persons with metabolic syndrome, case-control study. J. Home Econ. 31: 1-19.
- Eldakhakhny, B., S. Enani, H. Jambi, G. Ajabnoor, J. Al-Ahmadi, R. Al-Raddadi, L. Alsheikh, W.H. Abdulaal, H. Gad, A. Borai and S. Bahijri. 2023. Prevalence and factors associated with metabolic syndrome among non-diabetic Saudi adults: a cross-sectional study. Biomedicines 11, 3242.
- Garralda-Del-Villar, M., S. Carlos-Chillerón, J. Diaz-Gutierrez, M. Ruiz-Canela, A. Gea, M.A. Martínez-González, M. Bes-Rastrollo, L. Ruiz-Estigarribia, S.N. Kales and A. Fernández-Montero. 2018. Healthy lifestyle and incidence of metabolic syndrome in the SUN cohort. Nutrients 11, 65.

- Goyal, R., M. Singhai, T. Mahmood and V. Saxena. 2022. Association between the physical activity and metabolic syndrome in residents of a foot-hill area in India. Diabetes Metab. Syndr.: Clin. Res. Rev. 16, 102471.
- Hayden, M.R. 2023. Overview and new insights into the metabolic syndrome: risk factors and emerging variables in the development of type 2 diabetes and cerebrocardiovascular disease. Med. 59, 561.
- Ismail, M.S. and M. Al Qahiz. 2016. Can dietary calcium consumption be beneficial in body weight loss regimen?. Merit Res. J. Med. Med. Sci. 4: 282-289.
- Jové, M., A. Naudí, M. Portero-Otin, R. Cabré, S. Rovira-Llopis, C. Bañuls, M. Rocha, A. Hernández-Mijares, V.M. Victor and R. Pamplona. 2014. Plasma lipidomics discloses metabolic syndrome with a specific HDL phenotype. FASEB J. 28: 5163-5171.
- Julibert, A., M.D.M. Bibiloni, D. Mateos, E. Angullo and J.A. Tur. 2019. Dietary fat intake and metabolic syndrome in older adults. Nutr. 11, 1901.
- National Academies of Sciences, Engineering, and Medicine. 2019. Dietary reference intakes for sodium and potassium. National Academies Press.
- Olguin, M.C., M.D. Posadas, G.C. Revelant, D.O. Marinozzi, V.B. Labourdette, M.I. Zingale and M.R. Venezia. 2014. Milk improved the metabolic syndrome in obese beta rats. Medicina (B. Aires) 74: 24–28.
- Otten, J.J., J.P. Hellwig and L.D. Meyers. 2006. Dietary reference intakes: the essential guide to nutrient requirements. National Academies Press.
- Ranasinghe, P., Y. Mathangasinghe, R. Jayawardena, A.P. Hills and A. Misra. 2017. Prevalence and trends of metabolic syndrome among adults in the Asia-pacific region: a systematic review. BMC Public Health 17, 101.
- Serna, M.F., M.F. Suarez-Ortegón, E. Jiménez-Charris, I. Echeverri, M.P. Cala and M. Mosquera. 2024. Lipidomic signatures in Colombian adults with metabolic syndrome. J. Diabetes Metab. Disord. 23: 1279-1292.
- Shin, S.K., M.K. Kim, Y.H. Lee, D.H. Shin, M.H. Shin, B.Y. Chun and B.Y. Choi. 2015. The cross-sectional relationship between dietary calcium intake and metabolic syndrome among men and women aged 40 or older in rural areas of Korea. Nutr. Res. Pract. 9: 328-335.
- Subar, A.F., N. Potischman, K.W. Dodd, F.E. Thompson, D.J. Baer, D.A. Schoeller, D. Midthune, V. Kipnis, S.I. Kirkpatrick, B. Mittl and T.P. Zimmerman. 2020. Performance and feasibility of recalls completed using the automated self-administered 24-hour dietary assessment tool in relation to other self-report tools and biomarkers in the interactive diet and activity tracking in AARP (IDATA) study. J. Acad. Nutr. Diet. 120: 1805-1820.
- Trivedi, A.P., M.N. Patel, K.R. Panchal and D.S. Patel. 2024. Comparative biochemical analysis of non-diabetic individuals with and without metabolic syndrome: a crosssectional study. South East. Eur. J. Public Health XXV: 1177–1181.

Wu, J., H. Zhang, L. Yang, J. Shao, D. Chen, N. Cui, L. Tang, Y. Fu, E. Xue, C. Lai and Z. Ye. 2022. Sedentary time and the risk of metabolic syndrome: a systematic review and dose–response meta-analysis. Obes Rev. 23, e13510.

Yuan, H. and M.K. Kim. 2023. Prevalence of metabolic syndrome and related factors based on smoking status and physical activity in Korean adult men. Korean J. Health Promot. 23: 75-84. Zhang, B., H. Shi, W. Cai, B. Yang and W. Xiu. 2025. Metabolic syndrome in children and adolescents: definitions, epidemiology, pathophysiology, interventions, and challenges. Front. Endocrinol. 16, 1512642.

Zhang, X., Y. Wang, Y. Li, J. Gui, Y. Mei, X. Yang, H. Liu, L.L. Guo, J. Li, Y. Lei and X. Li. 2024. Four-years change of BMI and waist circumference are associated with metabolic syndrome in middle-aged and elderly Chinese. Sci. Rep. 14, 10220.

الملخص العربي

مقدار كفاية المأخوذ من المغذيات بين الموظفين السعوديين المصابين بالمتلازمة الأيضية، دراسة مقارنة هلال هذال هلال، سمير محمد أحمد، سهير فؤاد نور، ومحمد صالح إسماعيل

(TG) والدهون الثلاثية (0.5 ±5.4 مقابل 4.34)، والدهون الثلاثية (171.6±70.1 مقابل 60.2±118.3 ملغ/ديسيلتر)، والكولسترول الضار (LDL-c) الضار 41.5±137.3 (LDL-c) ملغ/ديسيلتر)، مع انخفاض معنوي في الكوليسترول الجيد 47.8±12.8)(HDL-c) مقابل 47.8±12.8 ملغ/ديسيلتر المدخول الغذائي من وكان الضابطة، الطاقة (575.1±629.9 مقابل 529.8±2114.6 سعر /يوم)، والبروتين (57.0 ± 22.9 مقابل 79.1 ±24.3جم/يوم)، والكربوهيدرات (93.8±225.1±93.8 مقابل 311.4 ± 87.4 جم/يوم)، والألياف (4.3 \pm 2.0 مقابل \pm 6.0 جم/يوم)، وفيتامين ج، والكالسيوم، والمغنيسيوم، والعناصر الدقيقة أقل معنوباً لدى المجموعة المرضية؛ كما أن إجمالي تناول الدهون لدى المشاركين في متلازمة الأيض أقل معنوباً مقارنةً بالمجموعة الضابطة ($24.2 \pm 55.8 \pm 50.4 \pm 61.4 \pm 61.4$ جم /يوم؛ 24.7مقابل ٨٥.٤٪ من الاحتياجات؛ قيمة P=0.013). نستتج أن مرضى المتلازمة الأيضية يعانون من قلة واضحة في المأخوذ الغذائي لجميع العناصر الأساسية، وبمارسون نمط حياة غير صحى.

الكلمات المفتاحية: متلازمة الأيض، النظام الغذائي، الجلوكوز، دهون الدم، السمنة، مؤشر كتلة الجسم، السعرات الحرارية، البروتين، فيتامين ج.

هدفت هذه الدراسة إلى تقييم كمية العناصر الغذائية المستهلكة ومدى كفايتها لدى الموظفين السعوديين المصابين بالمتلازمة الأيضية (MetS) مقارنة بالأصحاء. تم اختيار جميع المشاركين عشوائياً من وزارة الصحة في الرباض، وضمّت الدراسة ٣٥٠ مشاركاً تتراوح أعمارهم بين ٣٠ و ٦٠ عامًا (150 حالة MetS و ٢٠٠٠ مجموعة ضابطة)، تم جمع البيانات الاجتماعية والاقتصادية وأنماط الحياة، وأجري تقييم المؤشرات الجسمية، مع تحليل العينات البيوكيميائية. طُبّق استرجاع الغذاء لمدة 24 ساعة على مدى 3 أيام. لم توجد فروق معنوبة بين المجموعتين في العمر أو الحالة الاجتماعية أو المستوى التعليمي أو حجم الأسرة. سُجّات نسبة قلة النشاط البدني الأعلى لدى مرضى MetS (86.7%)مقارنة بالضوابط (p<0.001) ، وعدد مرات ومدة ممارسة الرياضة أقل عند المصابين (£1.1 مقابل 1.9±۲.٦ مرة/أسبوع، t=2.38 به p=0.018 (t=2.38 مقابل 36.2±26.2 دقيقة، 1.92 t=1.92؛ أما الوزن (95.62±16.21 كجم)، ومؤشر كتلة الجسم (٣٥.٨٠) ومحيط (٢.١٠±٣٥.٨٠) ومحيط الخصر (11.70±115.64 مقابل 10.30±92.8سم) فكانت أعلى عند مرضى MetS. كذلك سجلوا معدلات أعلى في جلوكوز الدم (52.7±154.2 مقابل 100.3 ± 14.2 علام السكرى(HbA1c) ملغ/ديسيلتر)، والهيموغلوبين