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CrossMark

LIMATE change and reduced seasonal rainfall are among the most important factors

intensifying water stress in rainfed agricultural systems. The aim of this study is to investigate
the effect of climate change on the Water Requirement Satisfaction Index (WRSI) for rainfed wheat
in Tabriz during the future time period up to 2100. The LARS-WG statistical model was used to
generate future climate data, which was calibrated and run with CNRM-CM6-1 and MPI-ESM1-2-
LR, under three SSP126, SSP245, and SSP585 scenarios. These models were selected due to their
high ability to reconstruct the region's climate data and are able to simulate changes in temperature
and precipitation. Subsequently, the Long short-term memory (LSTM) and Forex Loss Function-
LSTM (FLF-LSTM), as deep learning models, were used to predict reference evapotranspiration
(ET,) values. The LSTM model, as a recurrent neural network-based model, has the ability to identify
complex patterns in climate time series. Moreover, the FLF-LSTM model, using a composite loss
function, provided more accurate performance compared to the classic LSTM. The error metrics
reveal that the FLF-LSTM model outperformed the standalone LSTM in terms of accuracy and
reliability, with a root mean square error of 0.71 and a mean bias error of 0.06 during the test period.
Additionally, examination of the WRSI in the future time periods and considering climate change
scenarios showed that WRSI will have a downward trend under the influence of increased
temperature and decreased precipitation. This means an increase in water stress in different growth
stages of rainfed wheat. However, the use of supplementary irrigation in sensitive growth stages,
especially during the grain filling stage, was able to improve the WRSI and reduce the negative
impact of climate change.
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Introduction

Ensuring the water supply needed for the
agricultural sector as the largest consumer of water
resources is one of the main concerns of the
authorities. The increasing demand for agricultural
products due to the increasing population trend and
the reduction of available water resources have led
to environmental crises. Therefore, examining the
optimization of water consumption in the
agricultural sector will be of importance. Given the
severe limitation of water resources available to the
agricultural sector, providing solutions to increase
water use efficiency will be crucial. One of the
solutions to address the problem of meeting the
water needs in the agricultural sector is deficit
irrigation of irrigated lands or increasing the
production of rain-fed crops through supplementary
irrigation. Deficit irrigation is a strategy in which
less water than the potential evapotranspiration and
maximum yield is used, resulting in the
conservation of limited water resources (English

and Raja, 1996) and an increase in water use
efficiency (Fereres and Soriano, 2007). The purpose
of supplementary irrigation is also the application
of a limited amount of water during the end of
rainfall to maintain plant growth. However, this
amount of water alone is not sufficient for adequate
production (Tavakoli and Oweis, 2004), and its
amount is also determined based on the climatic
conditions of the cropping season (Oweis and
Hachum, 2009). However, in selecting the
appropriate time for supplementary irrigation,
attention to the critical growth stages of the crop in
relation to water stress is important. In fact,
supplementary irrigation refers to the consumption
of a limited amount of water in the crop plant
during the time of rainfall shortage to provide
sufficient water for plant growth in order to
increase and stabilize the vyield. Therefore, the
essential feature of the supplementary irrigation is
the complementary nature of rainfall along with the
application of irrigation. In areas where the amount
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and temporal distribution of rainfall is unfavorable,
supplementary irrigation is recommended for
optimal production of rain-fed crops (Oweis 1997).
In recent years, research findings have shown that
implementing  supplementary irrigation  has
increased the yield of rain-fed cereals (Erekul et al.,
2012). One of the limitations in the implementation
of supplementary irrigation is providing the
required water. In addition, the limitation of water
resources has resulted in the available water in the
agricultural sector being less than the water needs
of the cultivated crops. Therefore, attention to the
optimal distribution of limited water throughout the
growing season, considering the sensitivity of crops
to stress at different growth stages, can be
considered as an appropriate tool to increase water
use efficiency . Tarnawski and et al. (2018) studied
the sensitivity of the modified water satisfaction
index model to the amount of rainfall,
agrometeorological hazards of corn production in
the Tanzania region. They used water WRSI
simulation to identify water-stressed areas in the
Tanzanian corn cultivation region with other fixed
factors (diversity, fertilizer use, pests, diseases, etc.)
and reported the relationship between the WRSI,
seasonal rainfall and average soil moisture with
national corn yield.

Climate change and its impacts on rainfed
agriculture and water resources have become an
important research topic in recent decades (Sadek
& Saba, 2011; Abo-Yousef, et al., 2024). Numerous
studies around the world have shown that rising
temperatures and declining rainfall directly affect
the vyield of rainfed crops and plant water
requirements. One of the most important indicators
for assessing the level of plant water requirements
under different climatic conditions is the Water
Satisfaction Index (WRSI). WRSI is widely used in
assessing water stress and predicting plant water
requirements under climate change conditions.
Doorenbos and Kassam (1979) first introduced the
WRSI and used it to predict the performance of
agricultural crops under drought and water scarcity
conditions. This index has found widespread
application, especially in dry and semi-dry regions
where rainfed agriculture is prevalent. Additionally,
Lobell et al. (2011) conducted research on the
impact of climate change on rainfed agriculture and
their results showed that climate changes in South
Asia and North Africa have led to a decrease in the
yield of rainfed crops, especially under water
scarcity and drought conditions. Furthermore,
Schlenker and Roberts (2009) showed that the
performance of rainfed crops in severe drought
conditions decreases using climate change models
and this decrease in performance is more evident
especially in tropical and arid regions. Chen et al.
z(2025) has shown that CNRM-CM6-1,
HadGEM3-GC31-LL, MPI-ESM1-2-LR and MRI-
ESM2-0 from the CMIP6 project have been
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effective in simulating plant water needs and
assessing the impacts of climate change in different
agricultural regions. These models are capable of
simulating temperature and precipitation changes in
different agricultural regions and can help more
accurate prediction of plant water needs and water
resource management. So, the aim of this study is
the assessment of the effect of climate change on
rainfed wheat Water Requirement Satisfaction
Index under representative concentration pathways
scenarios (RCP 4.5 and RCP 8.5) to tackle future
agricultural challenges. For such a purpose, we
present an innovative Forex Loss Function-Long
Short-Term Memory (FLF-LSTM) model, a deep
learning model with the aim of improving the
accuracy of evapotranspiration and allowing one to
determine particular supplementary irrigation
needs. The innovation of this research is to combine
new machine learning approaches with new climate
scenarios to acquire more sophisticated water
management policies and allow climate adaptation
in the future.

The precipitation and temperature were deliberately
chosen as the driving inputs of the above-described
LSTM and FLF-LSTM networks. They are the
most important climatic drivers of water taken up
by crops and are annually provided through past
observation and future climatic scenario outcomes,
respectively. Using them allows simplifications of
model structures, program clarity, and reduction of
uncertainty in the input, almost entirely under long-
term scenarios where sufficient data of the
microclimatic variables like wind speed, relative
humidity, and solar radiation are not always
available. With choosing precipitation and
temperature, the study maintain a balance among
model accuracy and practical applicability under
long-term climatic studies.

Materials and Methods

Study area

The study area of the current research is Tabriz
plain, located in East Azerbaijan Province in the
northwest of Iran (Figure 1). This region is located
at a geographic position of about 38 degrees north
latitude and 46.3 degrees east longitude and has a
cold semi-arid climate. The annual rainfall in this
region is about 250 millimeters and the annual
average temperature is about 12 degrees Celsius
(Khosravi et al., 2020). Agriculture in this region is
mainly carried out as rain-fed. Due to the high
dependence of rain-fed agriculture on precipitation,
the evaluation of the impact of climate change on
water supply indicators such as WRSI in this region
is of high importance . Therfore, daily climatic data
including precipitation, minimum and maximum
temperature, solar radiation, relative humidity, and
wind speed for the baseline time period of 1990-
2020 were collected from the Tabriz meteorological
station.



EVALUATING THE IMPACT OF SUPPLEMENTARY IRRIGATION ON THE WRSI INDEX OF RAINFED SCENARIOS ... 1025

46°0'E 46°12'E 46°24'E 46°36'E

38°24'N

1
200" 1P12'N 30°24'N 45°36'N 60%48'N 76°00'N
38°6'N

37°48'N

30°24'S15°12'S  0°00"  I5PI2'N 30°24'N 45°36'N 60°48'N  76°00'N
T T T T T T

0°00" 17°07°E  34°14°E SI1°22'E 68°29'E  85°36'E  102°43'E 45°48'E

Tabriz

Dem_'Tabriz

384N

s Low=1280 m
S—

38°%6'N

318N

Height=3633 m

45°0'E 50°0'E. 55°0'E 60°0'E.

0°00" 17°07'E  34°14'E | 51°22'E 68°29'E  85°36'E  102°43'E *~  45°48'E

46°0'E 46°12'E 46°24'E 46°36'E

45°36'E 46°48'E 48°0'E

Iran

40°0'N
T
40°0N

39°0'N
T

36°0'N
T
36°0'N

32°0'N
T

32°0N

28°0'N
T
28°0N

°0'N

10N

[ o 50 100 km
—_—

38°0'N
T

3TN
T

East Azerbaijan

s
39°0'N

L
380N

25 0 25 50 km
et + 1

45°0'E S0°0'E 55°0'E 60°0'E

45°36'E 46°48'E 48°0'E

Fig. 1. The location of the study area (Talebi and Samadianfard, 2024).

The LARS-WG model

The LARS-WG model is a statistical model based
on the simulation of daily climate data, which can
produce data with similar statistical characteristics
in the future time periods using the statistical
distributions of observed climate data. The model
should be calibrated with baseline data and then it
may be used for the future period to simulate
climate data (Semenov & Stratonovitch, 2010).
Once calibrated, the model generates synthetic
weather data that mirrors the historical record’s
statistical features, such as means, variances, and
frequencies of extreme events. This methodology
enables researchers to analyze potential climate
impacts on a local scale, providing a more detailed
understanding of how climate change could
manifest in specific regions. The outputs produced
by LARS-WG are invaluable for diverse
applications, including agricultural planning, water
resource management, and ecological studies. By
simulating daily precipitation, temperature, and
solar radiation, the model aids in assessing
agricultural yields under future climate scenarios,
guiding adaptive strategies in crop management to
ensure food security. Moreover, its capability to
replicate daily weather sequences makes it useful
for hydrological modeling, predicting future water
availability challenges. Furthermore, LARS-WG’s
role in downscaling broad-scale climate models into

localized predictions enhances its utility in
environmental assessments.

The MPI-ESM1-2-LR and CNRM-CM6-1 are two
prominent climate models that play critical roles in
forecasting future climate scenarios under varying
greenhouse gas emissions pathways (Giorgetta et
al., 2013). The MPI-ESM1-2-LR, developed by the
Max Planck Institute for Meteorology, is part of the
Earth System Model series that incorporates
interactions across the atmosphere, ocean, land
surface, and biosphere. This model boasts advanced
atmospheric dynamics and coupling techniques,
enabling it to simulate climate processes with high
precision, making it integral for studies that assess
long-term  climate stability and variability.
Conversely, the CNRM-CM6-1, developed by the
Centre National de Recherches Météorologiques, is
part of the sixth phase of the Climate Model
Intercomparison Project (CMIP6). It features
refined parameterizations for cloud processes and
improved resolution in atmospheric components,
allowing for more accurate predictions of rainfall
patterns and extreme weather occurrences
(Voldoire et al., 2019). Both models are crucial for
examining the impacts of climate change on global
and regional scales, providing nuanced insights into
temperature and precipitation trends (Kouadio, L.,
etal., 2023).
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Estimation of reference evapotranspiration with
LSTM and FLF-LSTM models

In this research, two deep learning models based on
recurrent neural networks were used to accurately
estimate the reference evapotranspiration (ET,) in
the Tabriz region: the LSTM model and the FLF-
LSTM model. These two models were used to
predict ET, using multi-year climate data and to
increase the accuracy of the WRSI prediction.
Instead of using the Penman-Monteith formula,
these two models were used to estimate the ET,
more accurately (Zhang et al., 2023; Chen et al.,
2023).

LSTM and FLF-LSTM models

LSTM is a type of recurrent neural network (RNN)
that has the ability to store and recall information
over long time periods. This feature has made
LSTM a powerful tool for analyzing time series
such as temperature, humidity, wind speed,
radiation, and other climatic parameters. The
internal structure of LSTM consists of a memory
cell, an input gate, an output gate, and a forget gate,
which allow the model to model complex temporal
dependencies well. In this study, daily climatic data
including maximum and minimum temperature,
solar radiation were used as inputs and the daily
ET, value was considered as the model output. The
models were trained based on historical data. Then,
using simulated climate data, ET, for future periods
was predicted. The LSTM model was implemented
in the Python environment. The data were divided
70% for training and 30% for testing, and error
criteria were used to evaluate the prediction
accuracy. Additionally, the Forex Loss Function-
LSTM (FLF-LSTM) is an advanced version of the
LSTM neural network that is designed to improve
the accuracy in predicting continuous time series.
The main feature of this model is the use of the
custom Forex Loss function. This loss function
assigns different weights to underestimation and
overestimation errors, instead of uniform error
evaluation.

In climate applications such as ET, forecasting,
underestimation errors can have greater negative
impacts on agricultural decision-making. The Forex
Loss Function accounts for this asymmetry and, by
adjusting a weighting parameter (o), allows the
model to be more sensitive to a particular type of
error during training. The implementation of this
model was utilized by Python environment and
deep learning libraries like TensorFlow and Keras.
Climate data, including temperature, solar radiation,
relative humidity, and wind speed, were defined as
model inputs. The model trained with the Forex
Loss Function demonstrated better performance in
accurately reconstructing evapotranspiration
patterns and reducing forecast error compared to
the standard LSTM model (Zhang et al. 2022). The
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o parameter is the weighting factor for the
underestimation error, which is determined using
the Grid Search method. To tune the o parameter in
the Forex Loss function, the Grid Search method
with cross-validation was employed. Different o
values in the range of 0.3 to 0.7 were tested, and the
model was trained for each value. After statistical
analysis of the results, the value of 0=0.6 was
selected as the optimal value with the lowest RMSE
and MAE.

Crop coefficient (K.) and root development
depth

In this study, the Growing Degree Day (GDD) was
used to determine the plant's phenological stages
and calculate the crop coefficient (K.). The GDD
index specifies the cumulative heat required for the
plant’s growth and development from the
germination stage to full maturity. GDD was
calculated using the following equation

GDD = meTmE T, (M)

where, T,ax is daily maximum temperature ('C),
Tomin is daily minimum temperature ('C) and Thaze
denotes base or threshold temperature below which
plant growth is negligible or zero. The Ty ze iS ONe
of the key parameters in calculating the GDD
index. This parameter represents the temperature
threshold below which plant growth is stopped or
occurs very slowly. Accurate selection of the Ty zze

value for each crop is of high importance, as it
directly affects the accuracy of growth modeling
and phenological requirements. Regarding wheat,
McMaster and Wilhelm (1997) considered the base
temperature for winter wheat equivalent to zero
degrees Celsius. This value has also been
empirically confirmed by Bauer et al. (1984) in the
Great Plains region of the United States. So, in this
study, the Ty... Was also considered to be zero.
The GDD for wheat may vary depending on the
climatic and geographical conditions of the region.
In some areas, like Tabriz with a semi-arid climate
and specific temperature and precipitation
conditions, the GDD for wheat may be higher than
the usual values mentioned for other regions. In
regions with with hotter summers and a longer
growing season, the plant will require higher
temperatures to reach the maturity stage. Therefore,
in these areas, a higher GDD value for wheat can be
reported. According to climate reports, in the
Tabriz, the GDD for wheat during the growth
period may reach 2,200 or even more, especially if
the growing season is longer and the temperature
conditions are more favorable for the plant. This
higher value indicates a longer growing season in
Tabriz, where wheat requires higher temperatures
to reach the maturity stage. For each stage, the
appropriate K. was extracted from reliable sources
(such as FAO56) and used in the calculation of the
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crop evapotranspiration (ET.). Furthermore, with
the increase in GDD throughout the season, the root
depth development was also increased. The root
depth development started at 0.4 meters at the
beginning of growth and gradually expanded to
approximately 1.04 meters at the final maturity
stage, which was effective in calculating the
available soil moisture storage.

This GDD-based approach allowed for a more
precise timing of K, allocation and root depth in the
WRSI model, especially under climate change
conditions where the growing season length and air
temperature  undergo  significant  changes.
Moreover, the K, was determined in a stage-wise
manner using the GDD. The phenological growth
stages of the plant (germination, vegetative growth,
flowering, and maturity) were differentiated using
GDD thresholds, and appropriate K. values were
assigned for each stage (Allen et al., 1998).
Additionally, the root depth development was
calculated linearly using the GDD values, which
plays a key role in determining the available water
storage capacity for the plant.

For the calculation of Total Available Water
(TAW) in wheat, the root depth is one of the critical
parameters. A root depth of 1 meter was considered
for wheat, but this value may vary depending on the
environmental conditions and irrigation. A linear
model was used to calculate the daily root growth.

Water Requirement Satisfaction Index (WRSI)

The Food and Agriculture Organization of the
United Nations (FAO) has developed the Water
Requirement Satisfaction Index (WRSI) as a usable
model to estimate agricultural production using
rainfall in areas of the world facing water scarcity
(Frere and Popov, 1986). In rainfed agriculture, the
source of the required soil moisture is rainfall plus
available soil water. If rainfall exceeds the plant's
water requirement, it is used to replenish the
available soil moisture, and if it exceeds the
capacity to refill the soil water content, it is lost as
runoff and deep percolation. However, if the plant's
water requirement exceeds the rainfall, the
available soil water will be used to compensate for
the rainfall deficit, and if insufficient, a moisture
deficit will be recorded. In this study, the basis for
the moisture balance calculations was considered as
10-day time steps. At the end of the growing
season, the WRSI is expressed as a percentage of
the total water requirement satisfied by rainfall and
available soil moisture. Therefore, WRSI is an
indicator of water availability performance for the
crop in 10-day time steps during the growing
season, which is a function of rainfall,
evapotranspiration, soil type, and crop type. The
value of this index varies from 0, where the crop's
water requirement is never satisfied, to 100%,
where the water requirement is fully satisfied

(Sultan et al., 2010). Quantitative values such as
40% or 50% indicate crop failure (Verdin and
Klaver, 2002). Silva et al. (2010) classified WRSI
into three categories: values above 50% have low
climatic risk, between 40-50% have moderate
climatic risk, and less than 40% have high climatic
risk. The WRSI is used to analyze the extent to
which the plant's water requirement is met during
the growing season and is calculated from the
following formula (Verdin and Klaver, 2002).

ﬂwi_ = Ri. + Si. - ETC[ (2)

where AW; is the moisture deficit (negative sign) or
moisture surplus (positive sign) in the i-th decade in
millimeters, E; is the rainfall in the i-th decade in
millimeters, 5; is the available moisture at the
beginning of the i-th decade in millimeters, and
ETg, is the evapotranspiration of the crop under
standard conditions in the i-th decade in
millimeters.  To  calculate  the  standard
evapotranspiration values, the FAO Penman-
Monteith method and crop coefficients throughout
the growing season were used, and the standard
evapotranspiration was calculated using the
following equation (Allen et al., 1998):

ET, = ETg, XK, 3)

where ETg, and ET,, are the reference and standard
evapotranspiration of the crop in the i-th decade in
millimeters, respectively, and K. is the crop
coefficient. It should be noted that the daily crop
coefficients during the growing season were
calculated by combining the information from FAO
publication 56 and regional data. If there is an
agricultural ~ water  deficit, the cumulative
agricultural water satisfaction will be calculated
using equation 4, and otherwise using equation 5.

G‘u"lfs-l == C‘NSL_l + ETC[ + ﬂwl (4)

G‘u"lfs-l == C‘NSL_l + ETC[ (5)
The excess water also escapes the plant's reach
through runoff and/or deep percolation, and
ultimately the soil moisture available was corrected
using equation 6 :

Si+1 =5 +R; —ET (6)
It should be noted that the range of variations in
available soil moisture will vary between the
minimum value of zero and the maximum value of
the soil water holding capacity (considering the root
depth). The agricultural water satisfaction index
for the desired n-th decade was obtained from
equation 7.

WRIS, CWSp

= Efl:__ETn:-l

(7
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Finally, the average WRSI during the growing

season was obtained using equation 8.
WRSI =¥, 5 1 ®)
= L= EL,ET;; n

The WRSI values were classified and analyzed into
four main categorie. 1) WRSI > 80, full water
supply, suitable growth conditions. 2) 60 < WRSI <
80, mild stress, possible minor yield reduction. 3)
40 < WRSI < 60, moderate stress, significant yield
reduction. 4) WRSI < 40, severe stress, possible
serious crop damage.

Supplementary irrigation

Supplementary irrigation refers to additional
irrigation that is applied when rainfall is not
sufficient to meet the water needs of the crop. This
type of irrigation can be used at different stages of
plant growth (Fouad, 2018). But for rainfed wheat,
supplementary irrigation is usually more important
at specific stages of growth. In semi-arid climatic
conditions like the Tabriz region, rainfed
agriculture faces serious challenges due to limited
rainfall, poor temporal distribution of precipitation,
and consecutive droughts. In such conditions, the
use of supplementary irrigation as a management
approach plays a key role in maintaining and
sustaining production (Pala et al., 2007; Farre &
Faci, 2006).

Autumn irrigation, especially at the time of sowing
or immediately after, is carried out to provide
moisture in the seed establishment zone. This type
of irrigation increases the germination percentage,
uniform plant establishment, and reduces early-
season stresses. The study by Soltani et al. (2012)
showed that applying one irrigation in the fall led to
an increase in the density of germination and
ultimately an increase in the final yield of rainfed
wheat. Moreover, the report by Zhang et al. (2006)
indicates that initial irrigation, especially under
uncertain autumn rainfall conditions, can play a key
role in compensating for the risk of delayed
germination. Moreover, Spring irrigation s
typically applied during the critical grain filling
stage or early flowering stage. This growth stage is
one of the most sensitive periods of the plant to
drought stress, which directly affects thousand-
grain weight, number of grains per spike, and final
yield (Farre & Faci, 2006). Additionally, Pala et al.
(2007) reported that applying a single irrigation
during the grain filling stage in rainfed wheat
increased yield by up to 30%. Furthermore,
analytical data based on the WRSI shows that in
most growing seasons, this index value falls below
50% in the spring, confirming the need for
supplementary irrigation.
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Evaluation metrics

To evaluate model performance, multiple widely
recognized statistical metrics were employed. These
include Root Mean Square Error (RMSE), Mean
Absolute  Error (MAE), Coefficient  of
Determination (R?), Mean Bias Error (MBE), Nash-
Sutcliffe Efficiency (NSE), and Willmott’s Index of
Agreement (WI). The statistical quantities are
computed as follows:

TR (pi-0p*
RMSE = ‘nll_l:-n— ©)
n [
MAE = 22201 (10)
2 _ It ,(0;-0i)(Pi-Fy) ]:
R™= [Eln:._':ﬂ'l—ﬁ:I:Eflz__(p-l_fn-l:.: (11)
1 )

MBE = ~XL,(F; — 0;) (12)
NSE — 1 — T, (0-py)? N
- T (0i-0i)2 (13)
Wi=1- [ Yo (Pi-0)° ] 3
B Ei_n:'_l:lpi._ﬁl'flﬂi._ﬁl:': ( )

where 0; denotes observed values, ﬁi their
mean, P; the corresponding predicted values,
and n the number of observations.

Results and discussion

The current research evaluates supplementary
irrigation schedules under the SSP2-4.5 scenario
utilizing two climate models: CNRM-CM6-1 and
MPI-ESM1-2LR. The methodology incorporates
advanced computational modeling techniques to
simulate the effects of forecasted climate changes
on the water requirements of rainfed wheat. WRSI
is employed as the primary metric to assess decadal
variations in water demand. Initially, GDD are
calculated to estimate crop phenology, using
temperature data to capture the cumulative heat
required for wheat development. The computation
of WRSI involves integrating climatic inputs,
including precipitation and potential
evapotranspiration, to model the water balance over
the growing season. The models generate decadal
forecasts of WRSI, factoring in climatic variability
and its impact on water needs. These forecasts are
organized into designated decadal periods (2021-
2100), providing a framework for comprehensive
comparisons as climatic conditions evolve. To
determine the supplementary irrigation required,
simulations identify the shortfall in water
availability by comparing forecasted WRSI with
target values necessary for optimal crop yield. The
added supplementary irrigation is calculated by
estimating the depth of water needed to bridge this
gap. Following the application of supplementary
irrigation, the modified WRSI reflects adjustments
in water demand satisfaction, confirming the
effectiveness of irrigation interventions. Data
analysis is facilitated through Python, employing
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libraries such as pandas for data manipulation and
numpy for numerical computations. An iterative
cycle of model testing and refinement ensures that
simulations account for climate-induced variability
in water demand. To predict the water requirements
of rainfed crops under climate change conditions,
the LSTM and FLF-LSTM models were used.
These models were able to make accurate
predictions of evapotranspiration (ET) and crop
water requirements in future years. The results
showed that the FLF-LSTM model provided higher
accuracy in the relevant predictions compared to
LSTM. The LSTM model, which is designed for
time series predictions, performed well in
simulating changes in evapotranspiration and water
requirements of rainfed crops. Composite loss
functions in time series prediction models,
especially in the field of climate, have seen
significant growth. In this regard, Wang et al.
(2021) improved the performance of LSTM models
in predicting complex time series by designing a
composite loss function including MSE along with
derivative components. They showed that adding
components such as gradient-based terms to the
loss function can reduce structural error and
improve the generalization of the model. In the
present study, the Forex Loss Function was used as
a custom loss function, which includes not only
numerical error but also differences in data

gradients and model oscillation stability. This loss
function was able to increase the model accuracy
compared to the basic LSTM version, especially in
predicting ET, under climate change conditions. In
Table 1, the comparison between the performance
of the base LSTM model and the modified FLF-
LSTM in estimating daily ET, values over the
baseline time period of 1990-2020 showed that the
hybrid FLF-LSTM model illustrated better
performance. This result is in line with the findings
of the study by Wang et al. (2021) and emphasizes
that adding structural dimensions to the loss
function will be very effective in modeling
phenomena that are inherently trending and
oscillating, such as evapotranspiration. In another
study, Chen et al. (2023) used a composite loss
function and LSTM models to forecast
evapotranspiration in arid regions of China and
showed that adding structural components to the
loss function improves the prediction accuracy by
more than 15%. The findings of this study also
confirm that the performance of the hybrid FLF-
LSTM, which has better ability to reconstruct the
patterns of daily changes and the temporal
continuity of the data. Therefore, it can be
concluded that the use of composite FLF not only
reduces the numerical error of the model, but also
helps to reconstruct a more realistic climate
behavior.

Table 1. Error meters of implemented LSTM and FLF-LSTM maodels.

FLF-LSTM

Test Metrics

Train Metrics

RMSE 0.71
MAE 0.54
R’ 0.93
MBE 0.06
NSE 0.93
Wi 0.98

Table 1. Error meters of

Test Metrics  Train Metrics
0.71 0.72 0.72
0.53 0.55 0.55
0.93 0.93 0.93
0.04 0.02 0.002
0.93 0.93 0.93
0.98 0.98 0.98

In evaluating the impact of climate change on
rainfed agriculture in semi-arid regions like Tabriz,
the correct selection of the climate model (GCM)
and greenhouse gas emission scenario plays a key
role in increasing the accuracy of predictions. In
this study, two selected models from CMIP6 were
examined in three different scenarios of SSP1-2.6,
SSP2-4.5, and SSP5-8.5. Also, the CNRM and MIP
models, due to their dynamic structure, have been
able to better represent regional phenomena in the
mountainous areas of Iran and has reconstructed the
temperature and rainfall variations of Tabriz with
higher consistency. In the examination of emission
scenarios, the SSP2-4.5 is recommended as a
moderate and more realistic option compared to
other scenarios by most global sources and
domestic studies. While SSP1-2.6 is highly

optimistic and dependent on severe international
actions to reduce greenhouse gases, and SSP5-8.5
depicts the most severe uncontrolled emission path,
the SSP2-4.5 offers the most likely path for
medium and long-term predictions based on current
trends and limited mitigation actions. Therefore, for
the continuation of climate analysis in the Tabriz
region, including the simulation of sensitive indices
such as WRSI, it is recommended to use the
CNRM-CM6-1 model along with the SSP2-4.5
scenario as the basis for prediction and risk
analysis.

The WRSI is a performance indicator per available
water during the growing season and a suitable
criterion for evaluating the performance under
water scarcity conditions. Figure 2 shows the
changes in the WRSI for wheat over an 80-year
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statistical period of 2020-2100. According to the
results, the average WRSI for wheat in each of the
ten studied agricultural years was 65 percent. It
should be noted that the calculated values of the
WRSI for wheat were calculated solely using
rainwater and soil moisture in the root development
zone, and any supplementary irrigation pattern
would increase the WRSI index.

In the current study, considering the data generated
under climate change, decreasing rainfall trends,
increasing temperature, increasing ET,, and
decreasing soil moisture resulted in a decrease in
the WRSI value in future periods. These changes
were analyzed at the regional level, and water stress
trends for rainfed crops were investigated in
different time periods. In all scenarios, the increase
in temperature and the decrease in precipitation
caused a decrease in WRSI for rainfed crops. In the
pessimistic scenarios, the WRSI during different
growth periods decreased, indicating an increase in
water stress and a negative impact on crop yield.
These findings suggest that future climate change,
especially in semi-arid regions like Tabriz, can pose
a serious threat to rainfed agriculture. By
comparing the ten-year changes in
evapotranspiration, temperature, precipitation, and
the WRSI in Figure 2, it can be concluded that the
MPI model is less affected by climatic fluctuations
compared to CNRM, and the changes in both
models are more influenced by precipitation
fluctuations, producing a similar trend. Therefore,
implementing  supplementary irrigation  to
compensate for the lack of precipitation, especially
in times of stress, will greatly help improve the
WRSI and, consequently, improve yield, as shown
in Tables 2 and 3 for both models and three
scenarios, before and after irrigation, in the form of
a ten-year average.

It can be comprehended from Figure 2 that the
WRSI values in the absence of supplementary
irrigation show a decrease over time in all climate
scenarios including SSP1-2.6, SSP2-4.5, and SSP5-
8.5. In the pessimistic scenario SSP5-8.5, the WRSI
decrease is more severe and approaches critical
values in the final decades (2090-2100). This trend
is due to rising temperatures, decreasing
precipitation, increasing ET,, and decreasing soil
moisture. In the early decades such as 2021-2030,
the WRSI value is within the acceptable range
(above 60%) in most models, but a decreasing trend
is evident in the middle and final decades So, the
supplementary irrigation, especially during the
grain filling stage, is recommended for rainfed
wheat. When WRSI is severely reduced,
supplementary irrigation can play a crucial role in
maintaining crop yield and reducing water stress-
related damages. The percentage increase in WRSI
due to supplementary irrigation was reported to be
over 25% in some cases, indicating the plant's
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positive response to moisture supply during critical
growth stages. With the application of
supplementary irrigation, the WRSI values
increased in all scenarios and models. An increase
of 10 to 20% or more was observed in many
decades, highlighting the wvital role of
supplementary irrigation in reducing water stress
effects. Specifically, in the MPI-ESM1-2-LR model
and the SSP5-8.5 scenario, the WRSI value without
irrigation was around 0.55, which increased to
about 0.69 with irrigation. Figures 3 and 4 show the
trend of changes in the WRSI values before and
after supplementary irrigation.

In Figure 3, the baseline scenario is observed where
the WRSI reflects natural precipitation patterns and
inherent variations. Differences across growing
seasons reveal how rainfed wheat is impacted by
varying levels of precipitation, with some periods
showing deficits that might stress crop
development. In contrast, Figure 4 demonstrates the
effects of implementing supplementary irrigation,
highlighting how these interventions help stabilize
the WRSI index. This strategy softens natural
rainfall fluctuations and secures adequate moisture
levels essential for optimal crop growth.
Furthermore, examination of these figures reveals
the critical role of supplementary irrigation in
leveling the variability seen in Figure 3. The
supplementary irrigation appears to buffer against
the peaks and troughs of the index, indicating a
more consistent and reliable crop water supply.
Particularly during drought-prone periods or in the
late stages of the growing season, supplementary
irrigation seems to prevent drops in water demand
satisfaction, suggesting enhanced resilience and
potential yield stability. Additionally, Figure 5
presens 10-year changes in WRSI before and after
supplementary irrigation for all examined climate
change scenarios.

At Figure 5, the WRSI exhibits significant
fluctuations when crops rely solely on natural
rainfall, indicating periods of potential water stress
that can affect plant growth and yield stability.
After the implementation of supplementary
irrigation, the WRSI trend reflects marked stability.
The index values are notably closer to optimal
levels, highlighting how irrigation can mitigate the
challenges presented by natural rainfall variability.
Furthermore, Tables 2 and 3 present the
supplementary irrigation schedules based on the
WRSI values as calculated by the CNRM-CM6-1
and the MPI-ESM1-2LR models, respectively,
under the SSP2-4.5 scenario. These tables detail the
WRSI values before and after irrigation
applications, the supplementary irrigation amounts
in millimeters, and specify the autumn irrigation
requirements for each decade across the century.
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Fig. 2. Ten-year changes

in evapotranspiration, temperature, precipitation, and water demand satisfaction index.
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Fig. 5. 10-year changes in WRSI before and after supplementary irrigation.

The comparison between the two tables indicates a
clear difference in irrigation needs as dictated by
the different climate models. In both tables, the
CNRM-CM6-1 and MPI-ESM1-2LR models
predict varying WRSI values over the decadal
years, reflecting each model’s distinct climate
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forecasts. The variations in supplementary
irrigation values indicate efficiency in water
management strategies tailored to each model’s
predictions, reflecting on the capability to maintain
acceptable WRSI levels.
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Table 2. the supplementary irrigation schedule based on WRSI values with the CNRM-CM6-1 model and
considering the SSP2-4.5 scenario.

Deca  Autumn Supplementa WRS Improv Deca  Autumn Supplementa WRS Improv

2021 - - 60 0.78  0.82 2061 - 50 0.78  0.81
2022 - - 60 0.72  0.77 2062 - 60 0.69 0.73
2023 - - 50 0.81 0.84 2063 - 50 0.78  0.80
2024 - - 50 0.76  0.77 2064 - 40 0.71  0.72
2025 - 20 50 0.32  0.60 2065 15 45 0.31  0.57
2026 - - 60 0.79 0.83 2066 - 50 0.79  0.82
2027 - - 50 0.80 0.83 2067 - 40 0.81 0.83
2028 - - 70 0.71  0.79 2068 - 70 0.71  0.78
2029 - - 80 0.51 0.64 2069 - - 80 047 059
2030 - - 50 0.83 0.85 2070 - - 40 0.82 0.84
2031 - 15 55 0.50 0.70 2071 - 20 50 048 0.69
2032 - - 50 0.83 0.86 2072 - - 40 0.85 0.87
2033 - - 50 0.81 0.84 2073 - - 40 0.82 0.83
2034 - - 60 0.59 0.63 2074 - - 50 0.56 0.61
2035 - 15 55 0.37  0.67 2075 - 20 50 0.36  0.60
2036 - - 50 0.83 0.86 2076 - - 50 0.85 0.87
2037 - - 60 0.66 0.71 2077 - - 60 0.58 0.63
2038 - - 70 0.66 0.72 2078 - - 60 0.59 0.64
2039 - 25 55 046 0.70 2079 - 20 50 044  0.68
2040 20 50 0.59 0.73 2080 - 10 40 0.53  0.69
2041 - 60 0.75 0.79 2081 - - 40 0.76  0.78
2042 - 60 0.61 0.68 2082 - - 60 0.59  0.65
2043 - 60 0.75 0.79 2083 - - 50 0.75 0.79
2044 - 50 0.64 0.67 2084 - - 40 0.61 0.64
2045 20 50 0.30 0.59 2085 - 15 45 029  0.59
2046 - 60 0.75 0.80 2086 - - 50 0.75  0.78
2047 - 50 0.78  0.81 2087 - - 40 0.78  0.81
2048 - 70 0.66 0.75 2088 - - 60 0.65 0.73
2049 - 80 044 059 2089 - - 70 0.44  0.58
2050 - 50 0.75 0.78 2090 - - 40 0.76  0.77
2051 15 55 044  0.68 2091 - 15 45 042  0.66
2052 - 60 0.81 0.85 2092 - - 40 0.85 0.87
2053 - 50 0.78  0.81 2093 - - 40 0.79  0.81
2054 - 60 0.53  0.59 2094 - - 50 0.53  0.59
2055 15 65 035 0.59 2095 - 20 50 0.34 0.56
2056 - 60 0.82 0.85 2096 - - 50 0.82 0.85
2057 - 70 0.53  0.60 2097 - - 50 0.53  0.59
2058 15 55 0.54 0.73 2098 - 15 45 0.54 0.70
2059 20 60 0.40  0.67 2099 - 20 50 0.38  0.66
2060 15 55 0.52  0.69
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Table 3. the supplementary irrigation schedule based on WRSI values with the MPI-ESM1-2LR  model
andconsidering the SSP2-4.5 scenario.

Autumn

Autumn

e i S g g Suwe WD, Sy e e
2 60 078 082 o1 60 078 081
2 70 073 0.79 w062 L 70 071 077
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o 60 077 080 2064 50 076 079
ool 15 65 034 0.8 005 20 50 031 0.61
ey 70 077 083 2066- 60 078 083
o 60 080 084 2067 60 079 083
s - 80 0.71 0.80 068 . 70 0.71 0.79
- 80 0.54 066 000 80 050 063
00 60 0.81 0.85 2070 50 083 085
20 60 0.51 0.73 e 55 049 071
- 60 081 085 am- 60 084 087
o 60 080 084 2073 60 079 083
it - 70 0.61 0.68 o 70 058 064
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20 60 044  0.69 20020 60 042 0.68
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For rain-fed wheat around Tabriz, baseline
productivity falls within 900-1200 kg/ha. That is
average productivity under today's climatic
conditions with favorable precipitation and thermal
regime in the grow season supportive of wheat
development. Yet, where global change is
amplified, future decreases in the WRSI suggest
severe threats are being presented to future
development of wheat within the area. Averaged
across under the medium and high emission paths
of greenhouse gases under the scenarios of RCP 4.5
and RCP 8.5, respectively, wheat yield decreases of
15-30% are projected through the year 2100.
Decreases in WRSI under warmer temperature and
reduced precipitation enhance water stress during
the critical development phase of wheat, more
notably during flowering and grain development.
This decline in yield shows the susceptibility of
rainfed wheat systems to climate change and the
imperative for adaptation measures. The findings in
this research highlights the need for proper water
management, particularly in areas such as Tabriz,
where water is already in short supply and highly
unreliable. Supplemental irrigation during key
growth periods, for instance, at the grain-filling
stage, would be critical in sustaining or enhancing
yield potential. Research has proved that
supplementary irrigation in small quantities even
during years of drought can successfully mitigate
water stress, enhance crop performance and
stability, and enhance yield.

Moreover, the findings of the current study showed
that the WRSI is directly affected by climate
change, particularly the reduction in rainfall and the
increase in evapotranspiration and temperature in
the future. Analysis of the 80-year time series of
2021-2100 illustrated that in all examined climate
scenarios including SSP1-2.6, SSP2-4.5, and SSP5-
8.5, the WRSI value has decreased in the final
decades. This decrease was more severe in the
SSP5-8.5 scenario, which represents the highest
level of greenhouse gas emissions, and in some
cases reached below 50%, which, according to the
FAO classification, indicates moderate to severe
water stress conditions for the crop (Sultan et al.,
2010). Tarnavsky et al. (2018) also reported
similar results, showing that with the decrease in
rainfall and the increase in temperature, the WRSI
value decreased, and the performance of rainfed
crops was under stress. So, supplementary irrigation
during critical growth stages such as flowering and
grain filling was also suggested as an effective
solution to reduce water stress, which is fully
consistent with the results of the present
research . Accordingly, in the current research, the
application

of supplementary irrigation, especially during the
critical growth stages of rainfed wheat led to a

significant improvement in WRSI in all decades. In
many years, the WRSI index increased by 10 to 30
percent due to one or two irrigation events, and in
some specific cases, even an increase above 90%
was recorded. These findings indicate that ensuring
moisture availability during the critical growth
periods of the plant can play a decisive role in the
sustainability of crop yields. Additionally, Farre
and Faci (2006) and Pala et al. (2007) stated that a
supplementary irrigation at the grain filling stage in
rainfed conditions can increase wheat yield by up to
30%, and this effect is even greater in drier years.
In the present study, the percentage improvement in
the WRSI index after irrigation in some dry decades
also reached over 30%, indicating the importance of
the targeted irrigation strategy in critical growth
periods of rainfed plants. Also, comparative
analysis between climate models showed that the
WRSI index in the MPI-ESM1-2-LR model had a
more uniform but decreasing trend in severe
scenarios, while the CNRM-CM6-1 model
simulated higher WRSI values in the SSP2-4.5
scenario, which is consistent with the results of
Zareian et al. (2024) and Hosseini-Moghari et al.
(2021) regarding the higher accuracy of the CNRM
model in semi-arid climates of Iran. Overall, the
results of this study emphasize that in the coming
decades, without management interventions such as
supplementary irrigation, the rainfed agricultural
sector in dry and semi-arid regions, especially in
northwestern Iran, will face serious challenges. The
use of targeted supplementary irrigation based on
WRSI analysis can be used as an effective strategy
to reduce climate risk and maintain sustainable
performance of rainfed crops.

Conclusion

The obtained results of the current research
highlight the crucial role of supplementary
irrigation in  sustaining rainfed agriculture,
particularly in regions like Tabriz, where climate
change impacts are noticeable. This study analyzes
climate scenarios from 2021 to 2100, utilizing
Representative Concentration Pathways scenarios
including SSP2-4.5 and SSP5-8.5. Also, LSTM and
its advanced variant, the FLF-LSTM, provided
robust tools to predict the WRSI with improved
accuracy. This model integration enabled a
comprehensive understanding of water demand
shifts under varying climate scenarios. The
obtained results emphasizes the greater importance
of supplementary irrigation during the grain filling
stage for rainfed wheat. At this stage, the plants
demand maximum water to develop high-yielding
grains.  The  research  identifies  critical
supplementary irrigation values necessary to
counteract water deficits anticipated for these
crucial growth phases. Furthermore, the results
reveal that the future impacts of climate change,
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especially under the pessimistic SSP5-8.5 scenario,
could severely threaten rainfed agriculture in
Tabriz. Reduced rainfall and increased temperatures
will likely lead to decreased WRSI and crop yields.
Yet, by employing supplementary irrigation
strategies, these negative effects can be mitigated.
Improved WRSI metrics, achieved through targeted
water applications, demonstrate the potential to
stabilize and even enhance yields under drought
conditions. Conclusively, the research highlights
the imperative of adopting supplementary irrigation
as an integral component of future agricultural
strategies in climate-sensitive regions.
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