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 LIMATE change and reduced seasonal rainfall are among the most important factors 

intensifying water stress in rainfed agricultural systems. The aim of this study is to investigate 

the effect of climate change on the Water Requirement Satisfaction Index (WRSI) for rainfed wheat 

in Tabriz during the future time period up to 2100. The LARS-WG statistical model was used to 

generate future climate data, which was calibrated and run with CNRM-CM6-1 and MPI-ESM1-2-

LR, under three SSP126, SSP245, and SSP585 scenarios. These models were selected due to their 

high ability to reconstruct the region's climate data and are able to simulate changes in temperature 

and precipitation. Subsequently, the Long short-term memory (LSTM) and Forex Loss Function-

LSTM (FLF-LSTM), as deep learning models, were used to predict reference evapotranspiration 

(ET₀) values. The LSTM model, as a recurrent neural network-based model, has the ability to identify 

complex patterns in climate time series. Moreover, the FLF-LSTM model, using a composite loss 

function, provided more accurate performance compared to the classic LSTM. The error metrics 

reveal that the FLF-LSTM model outperformed the standalone LSTM in terms of accuracy and 

reliability, with a root mean square error of 0.71 and a mean bias error of 0.06 during the test period. 

Additionally, examination of the WRSI in the future time periods and considering climate change 

scenarios showed that WRSI will have a downward trend under the influence of increased 

temperature and decreased precipitation. This means an increase in water stress in different growth 

stages of rainfed wheat. However, the use of supplementary irrigation in sensitive growth stages, 

especially during the grain filling stage, was able to improve the WRSI and reduce the negative 

impact of climate change.  
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Introduction 

Ensuring the water supply needed for the 

agricultural sector as the largest consumer of water 

resources is one of the main concerns of the 

authorities. The increasing demand for agricultural 

products due to the increasing population trend and 

the reduction of available water resources have led 

to environmental crises. Therefore, examining the 

optimization of water consumption in the 

agricultural sector will be of importance. Given the 

severe limitation of water resources available to the 

agricultural sector, providing solutions to increase 

water use efficiency will be crucial. One of the 

solutions to address the problem of meeting the 

water needs in the agricultural sector is deficit 

irrigation of irrigated lands or increasing the 

production of rain-fed crops through supplementary 

irrigation. Deficit irrigation is a strategy in which 

less water than the potential evapotranspiration and 

maximum yield is used, resulting in the 

conservation of limited water resources (English 

and Raja, 1996) and an increase in water use 

efficiency (Fereres and Soriano, 2007). The purpose 

of supplementary irrigation is also the application 

of a limited amount of water during the end of 

rainfall to maintain plant growth. However, this 

amount of water alone is not sufficient for adequate 

production (Tavakoli and Oweis, 2004), and its 

amount is also determined based on the climatic 

conditions of the cropping season (Oweis and 

Hachum, 2009). However, in selecting the 

appropriate time for supplementary irrigation, 

attention to the critical growth stages of the crop in 

relation to water stress is important. In fact, 

supplementary irrigation refers to the consumption 

of a limited amount of water in the crop plant 

during the time of rainfall shortage to provide 

sufficient water for plant growth in order to 

increase and stabilize the yield. Therefore, the 

essential feature of the supplementary irrigation is 

the complementary nature of rainfall along with the 

application of irrigation. In areas where the amount 
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and temporal distribution of rainfall is unfavorable, 

supplementary irrigation is recommended for 

optimal production of rain-fed crops (Oweis 1997). 

In recent years, research findings have shown that 

implementing supplementary irrigation has 

increased the yield of rain-fed cereals (Erekul et al., 

2012). One of the limitations in the implementation 

of supplementary irrigation is providing the 

required water. In addition, the limitation of water 

resources has resulted in the available water in the 

agricultural sector being less than the water needs 

of the cultivated crops. Therefore, attention to the 

optimal distribution of limited water throughout the 

growing season, considering the sensitivity of crops 

to stress at different growth stages, can be 

considered as an appropriate tool to increase water 

use efficiency. Tarnawski and et al. (2018) studied 

the sensitivity of the modified water satisfaction 

index model to the amount of rainfall, 

agrometeorological hazards of corn production in 

the Tanzania region. They used water WRSI 

simulation to identify water-stressed areas in the 

Tanzanian corn cultivation region with other fixed 

factors (diversity, fertilizer use, pests, diseases, etc.) 

and reported the relationship between the WRSI, 

seasonal rainfall and average soil moisture with 

national corn yield. 
 

Climate change and its impacts on rainfed 

agriculture and water resources have become an 

important research topic in recent decades (Sadek 

& Saba, 2011; Abo-Yousef, et al., 2024). Numerous 

studies around the world have shown that rising 

temperatures and declining rainfall directly affect 

the yield of rainfed crops and plant water 

requirements. One of the most important indicators 

for assessing the level of plant water requirements 

under different climatic conditions is the Water 

Satisfaction Index (WRSI). WRSI is widely used in 

assessing water stress and predicting plant water 

requirements under climate change conditions. 

Doorenbos and Kassam (1979) first introduced the 

WRSI and used it to predict the performance of 

agricultural crops under drought and water scarcity 

conditions. This index has found widespread 

application, especially in dry and semi-dry regions 

where rainfed agriculture is prevalent. Additionally, 

Lobell et al. (2011) conducted research on the 

impact of climate change on rainfed agriculture and 

their results showed that climate changes in South 

Asia and North Africa have led to a decrease in the 

yield of rainfed crops, especially under water 

scarcity and drought conditions. Furthermore, 

Schlenker and Roberts (2009) showed that the 

performance of rainfed crops in severe drought 

conditions decreases using climate change models 

and this decrease in performance is more evident 

especially in tropical and arid regions. Chen et al. 

z(2025) has shown that CNRM-CM6-1, 

HadGEM3-GC31-LL, MPI-ESM1-2-LR and MRI-

ESM2-0 from the CMIP6 project have been 

effective in simulating plant water needs and 

assessing the impacts of climate change in different 

agricultural regions. These models are capable of 

simulating temperature and precipitation changes in 

different agricultural regions and can help more 

accurate prediction of plant water needs and water 

resource management. So, the aim of this study is 

the assessment of the effect of climate change on 

rainfed wheat Water Requirement Satisfaction 

Index under representative concentration pathways 

scenarios (RCP 4.5 and RCP 8.5) to tackle future 

agricultural challenges. For such a purpose, we 

present an innovative Forex Loss Function-Long 

Short-Term Memory (FLF-LSTM) model, a deep 

learning model with the aim of improving the 

accuracy of evapotranspiration and allowing one to 

determine particular supplementary irrigation 

needs. The innovation of this research is to combine 

new machine learning approaches with new climate 

scenarios to acquire more sophisticated water 

management policies and allow climate adaptation 

in the future. 
 

The precipitation and temperature were deliberately 

chosen as the driving inputs of the above-described 

LSTM and FLF-LSTM networks. They are the 

most important climatic drivers of water taken up 

by crops and are annually provided through past 

observation and future climatic scenario outcomes, 

respectively. Using them allows simplifications of 

model structures, program clarity, and reduction of 

uncertainty in the input, almost entirely under long-

term scenarios where sufficient data of the 

microclimatic variables like wind speed, relative 

humidity, and solar radiation are not always 

available. With choosing precipitation and 

temperature, the study maintain a balance among 

model accuracy and practical applicability under 

long-term climatic studies. 
 

Materials and Methods 

Study area 

The study area of the current research is Tabriz 

plain, located in East Azerbaijan Province in the 

northwest of Iran (Figure 1). This region is located 

at a geographic position of about 38 degrees north 

latitude and 46.3 degrees east longitude and has a 

cold semi-arid climate. The annual rainfall in this 

region is about 250 millimeters and the annual 

average temperature is about 12 degrees Celsius 

(Khosravi et al., 2020). Agriculture in this region is 

mainly carried out as rain-fed. Due to the high 

dependence of rain-fed agriculture on precipitation, 

the evaluation of the impact of climate change on 

water supply indicators such as WRSI in this region 

is of high importance. Therfore, daily climatic data 

including precipitation, minimum and maximum 

temperature, solar radiation, relative humidity, and 

wind speed for the baseline time period of 1990-

2020 were collected from the Tabriz meteorological 

station.  
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Fig. 1. The location of the study area (Talebi and Samadianfard, 2024). 
 

 
The LARS-WG model  

The LARS-WG model is a statistical model based 

on the simulation of daily climate data, which can 

produce data with similar statistical characteristics 

in the future time periods using the statistical 

distributions of observed climate data. The model 

should be calibrated with baseline data and then it 

may be used for the future period to simulate 

climate data (Semenov & Stratonovitch, 2010). 

Once calibrated, the model generates synthetic 

weather data that mirrors the historical record’s 

statistical features, such as means, variances, and 

frequencies of extreme events. This methodology 

enables researchers to analyze potential climate 

impacts on a local scale, providing a more detailed 

understanding of how climate change could 

manifest in specific regions. The outputs produced 

by LARS-WG are invaluable for diverse 

applications, including agricultural planning, water 

resource management, and ecological studies. By 

simulating daily precipitation, temperature, and 

solar radiation, the model aids in assessing 

agricultural yields under future climate scenarios, 

guiding adaptive strategies in crop management to 

ensure food security. Moreover, its capability to 

replicate daily weather sequences makes it useful 

for hydrological modeling, predicting future water 

availability challenges. Furthermore, LARS-WG’s 

role in downscaling broad-scale climate models into 

localized predictions enhances its utility in 

environmental assessments. 

 

The MPI-ESM1-2-LR and CNRM-CM6-1 are two 

prominent climate models that play critical roles in 

forecasting future climate scenarios under varying 

greenhouse gas emissions pathways (Giorgetta et 

al., 2013). The MPI-ESM1-2-LR, developed by the 

Max Planck Institute for Meteorology, is part of the 

Earth System Model series that incorporates 

interactions across the atmosphere, ocean, land 

surface, and biosphere. This model boasts advanced 

atmospheric dynamics and coupling techniques, 

enabling it to simulate climate processes with high 

precision, making it integral for studies that assess 

long-term climate stability and variability. 

Conversely, the CNRM-CM6-1, developed by the 

Centre National de Recherches Météorologiques, is 

part of the sixth phase of the Climate Model 

Intercomparison Project (CMIP6). It features 

refined parameterizations for cloud processes and 

improved resolution in atmospheric components, 

allowing for more accurate predictions of rainfall 

patterns and extreme weather occurrences 

(Voldoire et al., 2019). Both models are crucial for 

examining the impacts of climate change on global 

and regional scales, providing nuanced insights into 

temperature and precipitation trends (Kouadio, L., 

et al., 2023). 
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Estimation of reference evapotranspiration with 

LSTM and FLF-LSTM models 

In this research, two deep learning models based on 

recurrent neural networks were used to accurately 

estimate the reference evapotranspiration (ET0) in 

the Tabriz region: the LSTM model and the FLF-

LSTM model. These two models were used to 

predict ET0 using multi-year climate data and to 

increase the accuracy of the WRSI prediction. 

Instead of using the Penman-Monteith formula, 

these two models were used to estimate the ET0 

more accurately (Zhang et al., 2023; Chen et al., 

2023). 

 

LSTM and FLF-LSTM models 

LSTM is a type of recurrent neural network (RNN) 

that has the ability to store and recall information 

over long time periods. This feature has made 

LSTM a powerful tool for analyzing time series 

such as temperature, humidity, wind speed, 

radiation, and other climatic parameters. The 

internal structure of LSTM consists of a memory 

cell, an input gate, an output gate, and a forget gate, 

which allow the model to model complex temporal 

dependencies well. In this study, daily climatic data 

including maximum and minimum temperature, 

solar radiation were used as inputs and the daily 

ET0 value was considered as the model output. The 

models were trained based on historical data. Then, 

using simulated climate data, ET0 for future periods 

was predicted. The LSTM model was implemented 

in the Python environment. The data were divided 

70% for training and 30% for testing, and error 

criteria were used to evaluate the prediction 

accuracy. Additionally, the Forex Loss Function-

LSTM (FLF-LSTM) is an advanced version of the 

LSTM neural network that is designed to improve 

the accuracy in predicting continuous time series. 

The main feature of this model is the use of the 

custom Forex Loss function. This loss function 

assigns different weights to underestimation and 

overestimation errors, instead of uniform error 

evaluation. 

 

In climate applications such as ET0 forecasting, 

underestimation errors can have greater negative 

impacts on agricultural decision-making. The Forex 

Loss Function accounts for this asymmetry and, by 

adjusting a weighting parameter (α), allows the 

model to be more sensitive to a particular type of 

error during training. The implementation of this 

model was utilized by Python environment and 

deep learning libraries like TensorFlow and Keras. 

Climate data, including temperature, solar radiation, 

relative humidity, and wind speed, were defined as 

model inputs. The model trained with the Forex 

Loss Function demonstrated better performance in 

accurately reconstructing evapotranspiration 

patterns and reducing forecast error compared to 

the standard LSTM model (Zhang et al. 2022). The 

α parameter is the weighting factor for the 

underestimation error, which is determined using 

the Grid Search method. To tune the α parameter in 

the Forex Loss function, the Grid Search method 

with cross-validation was employed. Different α 

values in the range of 0.3 to 0.7 were tested, and the 

model was trained for each value. After statistical 

analysis of the results, the value of α=0.6 was 

selected as the optimal value with the lowest RMSE 

and MAE. 

 

Crop coefficient (Kc) and root development 

depth 

In this study, the Growing Degree Day (GDD) was 

used to determine the plant's phenological stages 

and calculate the crop coefficient (Kc). The GDD 

index specifies the cumulative heat required for the 

plant’s growth and development from the 

germination stage to full maturity. GDD was 

calculated using the following equation 

                             (1) 

where,  is daily maximum temperature (
°
C), 

 is daily minimum temperature (
°
C) and  

denotes base or threshold temperature below which 

plant growth is negligible or zero. The  is one 

of the key parameters in calculating the GDD 

index. This parameter represents the temperature 

threshold below which plant growth is stopped or 

occurs very slowly. Accurate selection of the  

value for each crop is of high importance, as it 

directly affects the accuracy of growth modeling 

and phenological requirements. Regarding wheat, 

McMaster and Wilhelm (1997) considered the base 

temperature for winter wheat equivalent to zero 

degrees Celsius. This value has also been 

empirically confirmed by Bauer et al. (1984) in the 

Great Plains region of the United States. So, in this 

study, the  was also considered to be zero. 

The GDD for wheat may vary depending on the 

climatic and geographical conditions of the region. 

In some areas, like Tabriz with a semi-arid climate 

and specific temperature and precipitation 

conditions, the GDD for wheat may be higher than 

the usual values mentioned for other regions. In 

regions with with hotter summers and a longer 

growing season, the plant will require higher 

temperatures to reach the maturity stage. Therefore, 

in these areas, a higher GDD value for wheat can be 

reported. According to climate reports, in the 

Tabriz, the GDD for wheat during the growth 

period may reach 2,200 or even more, especially if 

the growing season is longer and the temperature 

conditions are more favorable for the plant. This 

higher value indicates a longer growing season in 

Tabriz, where wheat requires higher temperatures 

to reach the maturity stage. For each stage, the 

appropriate Kc was extracted from reliable sources 

(such as FAO56) and used in the calculation of the 
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crop evapotranspiration (ETc). Furthermore, with 

the increase in GDD throughout the season, the root 

depth development was also increased. The root 

depth development started at 0.4 meters at the 

beginning of growth and gradually expanded to 

approximately 1.04 meters at the final maturity 

stage, which was effective in calculating the 

available soil moisture storage. 

 

This GDD-based approach allowed for a more 

precise timing of Kc allocation and root depth in the 

WRSI model, especially under climate change 

conditions where the growing season length and air 

temperature undergo significant changes. 

Moreover, the Kc was determined in a stage-wise 

manner using the GDD. The phenological growth 

stages of the plant (germination, vegetative growth, 

flowering, and maturity) were differentiated using 

GDD thresholds, and appropriate Kc values were 

assigned for each stage (Allen et al., 1998). 

Additionally, the root depth development was 

calculated linearly using the GDD values, which 

plays a key role in determining the available water 

storage capacity for the plant. 

For the calculation of Total Available Water 

(TAW) in wheat, the root depth is one of the critical 

parameters. A root depth of 1 meter was considered 

for wheat, but this value may vary depending on the 

environmental conditions and irrigation. A linear 

model was used to calculate the daily root growth. 

 

Water Requirement Satisfaction Index (WRSI) 

The Food and Agriculture Organization of the 

United Nations (FAO) has developed the Water 

Requirement Satisfaction Index (WRSI) as a usable 

model to estimate agricultural production using 

rainfall in areas of the world facing water scarcity 

(Frere and Popov, 1986). In rainfed agriculture, the 

source of the required soil moisture is rainfall plus 

available soil water. If rainfall exceeds the plant's 

water requirement, it is used to replenish the 

available soil moisture, and if it exceeds the 

capacity to refill the soil water content, it is lost as 

runoff and deep percolation. However, if the plant's 

water requirement exceeds the rainfall, the 

available soil water will be used to compensate for 

the rainfall deficit, and if insufficient, a moisture 

deficit will be recorded. In this study, the basis for 

the moisture balance calculations was considered as 

10-day time steps. At the end of the growing 

season, the WRSI is expressed as a percentage of 

the total water requirement satisfied by rainfall and 

available soil moisture. Therefore, WRSI is an 

indicator of water availability performance for the 

crop in 10-day time steps during the growing 

season, which is a function of rainfall, 

evapotranspiration, soil type, and crop type. The 

value of this index varies from 0, where the crop's 

water requirement is never satisfied, to 100%, 

where the water requirement is fully satisfied 

(Sultan et al., 2010). Quantitative values such as 

40% or 50% indicate crop failure (Verdin and 

Klaver, 2002). Silva et al. (2010) classified WRSI 

into three categories: values above 50% have low 

climatic risk, between 40-50% have moderate 

climatic risk, and less than 40% have high climatic 

risk. The WRSI is used to analyze the extent to 

which the plant's water requirement is met during 

the growing season and is calculated from the 

following formula (Verdin and Klaver, 2002). 

                                    (2) 

where  is the moisture deficit (negative sign) or 

moisture surplus (positive sign) in the i-th decade in 

millimeters,  is the rainfall in the i-th decade in 

millimeters,  is the available moisture at the 

beginning of the i-th decade in millimeters, and 

 is the evapotranspiration of the crop under 

standard conditions in the i-th decade in 

millimeters. To calculate the standard 

evapotranspiration values, the FAO Penman-

Monteith method and crop coefficients throughout 

the growing season were used, and the standard 

evapotranspiration was calculated using the 

following equation (Allen et al., 1998): 

                                              (3) 

where  and  are the reference and standard 

evapotranspiration of the crop in the i-th decade in 

millimeters, respectively, and  is the crop 

coefficient. It should be noted that the daily crop 

coefficients during the growing season were 

calculated by combining the information from FAO 

publication 56 and regional data. If there is an 

agricultural water deficit, the cumulative 

agricultural water satisfaction will be calculated 

using equation 4, and otherwise using equation 5. 

                       (4) 

                                    (5) 
 

The excess water also escapes the plant's reach 

through runoff and/or deep percolation, and 

ultimately the soil moisture available was corrected 

using equation 6: 

                                       (6) 

It should be noted that the range of variations in 

available soil moisture will vary between the 

minimum value of zero and the maximum value of 

the soil water holding capacity (considering the root 

depth). The agricultural water satisfaction index 

for the desired n-th decade was obtained from 

equation 7. 

                                              (7) 
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Finally, the average WRSI during the growing 

season was obtained using equation 8. 

                               (8) 

 

The WRSI values were classified and analyzed into 

four main categorie. 1) WRSI > 80, full water 

supply, suitable growth conditions. 2) 60 < WRSI ≤ 

80, mild stress, possible minor yield reduction. 3) 

40 < WRSI ≤ 60, moderate stress, significant yield 

reduction. 4)  WRSI ≤ 40, severe stress, possible 

serious crop damage. 

 

Supplementary irrigation 

Supplementary irrigation refers to additional 

irrigation that is applied when rainfall is not 

sufficient to meet the water needs of the crop. This 

type of irrigation can be used at different stages of 

plant growth (Fouad, 2018). But for rainfed wheat, 

supplementary irrigation is usually more important 

at specific stages of growth. In semi-arid climatic 

conditions like the Tabriz region, rainfed 

agriculture faces serious challenges due to limited 

rainfall, poor temporal distribution of precipitation, 

and consecutive droughts. In such conditions, the 

use of supplementary irrigation as a management 

approach plays a key role in maintaining and 

sustaining production (Pala et al., 2007; Farre & 

Faci, 2006). 

 

Autumn irrigation, especially at the time of sowing 

or immediately after, is carried out to provide 

moisture in the seed establishment zone. This type 

of irrigation increases the germination percentage, 

uniform plant establishment, and reduces early-

season stresses. The study by Soltani et al. (2012) 

showed that applying one irrigation in the fall led to 

an increase in the density of germination and 

ultimately an increase in the final yield of rainfed 

wheat. Moreover, the report by Zhang et al. (2006) 

indicates that initial irrigation, especially under 

uncertain autumn rainfall conditions, can play a key 

role in compensating for the risk of delayed 

germination. Moreover, Spring irrigation is 

typically applied during the critical grain filling 

stage or early flowering stage. This growth stage is 

one of the most sensitive periods of the plant to 

drought stress, which directly affects thousand-

grain weight, number of grains per spike, and final 

yield (Farre & Faci, 2006). Additionally, Pala et al. 

(2007) reported that applying a single irrigation 

during the grain filling stage in rainfed wheat 

increased yield by up to 30%. Furthermore, 

analytical data based on the WRSI shows that in 

most growing seasons, this index value falls below 

50% in the spring, confirming the need for 

supplementary irrigation. 

 

 

 

Evaluation metrics 

To evaluate model performance, multiple widely 

recognized statistical metrics were employed. These 

include Root Mean Square Error (RMSE), Mean 

Absolute Error (MAE), Coefficient of 

Determination (R
2
), Mean Bias Error (MBE), Nash-

Sutcliffe Efficiency (NSE), and Willmott’s Index of 

Agreement (WI). The statistical quantities are 

computed as follows: 

                                       (9) 

                                            (10) 

                     (11) 

                                   (12) 

                                  (13) 

                   (14) 

where  denotes observed values,  their 

mean,  the corresponding predicted values, 

and  the number of observations. 

 

Results and discussion 

The current research evaluates supplementary 

irrigation schedules under the SSP2-4.5 scenario 

utilizing two climate models: CNRM-CM6-1 and 

MPI-ESM1-2LR. The methodology incorporates 

advanced computational modeling techniques to 

simulate the effects of forecasted climate changes 

on the water requirements of rainfed wheat. WRSI 

is employed as the primary metric to assess decadal 

variations in water demand. Initially, GDD are 

calculated to estimate crop phenology, using 

temperature data to capture the cumulative heat 

required for wheat development. The computation 

of WRSI involves integrating climatic inputs, 

including precipitation and potential 

evapotranspiration, to model the water balance over 

the growing season. The models generate decadal 

forecasts of WRSI, factoring in climatic variability 

and its impact on water needs. These forecasts are 

organized into designated decadal periods (2021-

2100), providing a framework for comprehensive 

comparisons as climatic conditions evolve. To 

determine the supplementary irrigation required, 

simulations identify the shortfall in water 

availability by comparing forecasted WRSI with 

target values necessary for optimal crop yield. The 

added supplementary irrigation is calculated by 

estimating the depth of water needed to bridge this 

gap. Following the application of supplementary 

irrigation, the modified WRSI reflects adjustments 

in water demand satisfaction, confirming the 

effectiveness of irrigation interventions. Data 

analysis is facilitated through Python, employing 
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libraries such as pandas for data manipulation and 

numpy for numerical computations. An iterative 

cycle of model testing and refinement ensures that 

simulations account for climate-induced variability 

in water demand. To predict the water requirements 

of rainfed crops under climate change conditions, 

the LSTM and FLF-LSTM models were used. 

These models were able to make accurate 

predictions of evapotranspiration (ET) and crop 

water requirements in future years. The results 

showed that the FLF-LSTM model provided higher 

accuracy in the relevant predictions compared to 

LSTM. The LSTM model, which is designed for 

time series predictions, performed well in 

simulating changes in evapotranspiration and water 

requirements of rainfed crops. Composite loss 

functions in time series prediction models, 

especially in the field of climate, have seen 

significant growth. In this regard, Wang et al. 

(2021) improved the performance of LSTM models 

in predicting complex time series by designing a 

composite loss function including MSE along with 

derivative components. They showed that adding 

components such as gradient-based terms to the 

loss function can reduce structural error and 

improve the generalization of the model. In the 

present study, the Forex Loss Function was used as 

a custom loss function, which includes not only 

numerical error but also differences in data 

gradients and model oscillation stability. This loss 

function was able to increase the model accuracy 

compared to the basic LSTM version, especially in 

predicting ET0 under climate change conditions. In 

Table 1, the comparison between the performance 

of the base LSTM model and the modified FLF-

LSTM in estimating daily ET0 values over the 

baseline time period of 1990-2020 showed that the 

hybrid FLF-LSTM model illustrated better 

performance. This result is in line with the findings 

of the study by Wang et al. (2021) and emphasizes 

that adding structural dimensions to the loss 

function will be very effective in modeling 

phenomena that are inherently trending and 

oscillating, such as evapotranspiration. In another 

study, Chen et al. (2023) used a composite loss 

function and LSTM models to forecast 

evapotranspiration in arid regions of China and 

showed that adding structural components to the 

loss function improves the prediction accuracy by 

more than 15%. The findings of this study also 

confirm that the performance of the hybrid FLF-

LSTM, which has better ability to reconstruct the 

patterns of daily changes and the temporal 

continuity of the data. Therefore, it can be 

concluded that the use of composite FLF not only 

reduces the numerical error of the model, but also 

helps to reconstruct a more realistic climate 

behavior.
 

Table 1. Error meters of implemented LSTM and FLF-LSTM models.

Table 1. Error meters of 

implemented LSTM and FLF-

LSTM modelsLSTM 

FLF-LSTM  

Train Metrics Test Metrics Train Metrics Test Metrics  

0.72 0.72 0.71 0.71 RMSE 

0.55 0.55 0.53 0.54 MAE 

0.93 0.93 0.93 0.93 R
2

 

0.002 0.02 0.04 0.06 MBE 

0.93 0.93 0.93 0.93 NSE 

0.98 0.98 0.98 0.98 WI 

 

In evaluating the impact of climate change on 

rainfed agriculture in semi-arid regions like Tabriz, 

the correct selection of the climate model (GCM) 

and greenhouse gas emission scenario plays a key 

role in increasing the accuracy of predictions. In 

this study, two selected models from CMIP6 were 

examined in three different scenarios of SSP1-2.6, 

SSP2-4.5, and SSP5-8.5. Also, the CNRM and MIP 

models, due to their dynamic structure, have been 

able to better represent regional phenomena in the 

mountainous areas of Iran and has reconstructed the 

temperature and rainfall variations of Tabriz with 

higher consistency. In the examination of emission 

scenarios, the SSP2-4.5 is recommended as a 

moderate and more realistic option compared to 

other scenarios by most global sources and 

domestic studies. While SSP1-2.6 is highly 

optimistic and dependent on severe international 

actions to reduce greenhouse gases, and SSP5-8.5 

depicts the most severe uncontrolled emission path, 

the SSP2-4.5 offers the most likely path for 

medium and long-term predictions based on current 

trends and limited mitigation actions. Therefore, for 

the continuation of climate analysis in the Tabriz 

region, including the simulation of sensitive indices 

such as WRSI, it is recommended to use the 

CNRM-CM6-1 model along with the SSP2-4.5 

scenario as the basis for prediction and risk 

analysis. 

The WRSI is a performance indicator per available 

water during the growing season and a suitable 

criterion for evaluating the performance under 

water scarcity conditions. Figure 2 shows the 

changes in the WRSI for wheat over an 80-year 
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statistical period of 2020-2100. According to the 

results, the average WRSI for wheat in each of the 

ten studied agricultural years was 65 percent. It 

should be noted that the calculated values of the 

WRSI for wheat were calculated solely using 

rainwater and soil moisture in the root development 

zone, and any supplementary irrigation pattern 

would increase the WRSI index.  

In the current study, considering the data generated 

under climate change, decreasing rainfall trends, 

increasing temperature, increasing ET0, and 

decreasing soil moisture resulted in a decrease in 

the WRSI value in future periods. These changes 

were analyzed at the regional level, and water stress 

trends for rainfed crops were investigated in 

different time periods. In all scenarios, the increase 

in temperature and the decrease in precipitation 

caused a decrease in WRSI for rainfed crops. In the 

pessimistic scenarios, the WRSI during different 

growth periods decreased, indicating an increase in 

water stress and a negative impact on crop yield. 

These findings suggest that future climate change, 

especially in semi-arid regions like Tabriz, can pose 

a serious threat to rainfed agriculture. By 

comparing the ten-year changes in 

evapotranspiration, temperature, precipitation, and 

the WRSI in Figure 2, it can be concluded that the 

MPI model is less affected by climatic fluctuations 

compared to CNRM, and the changes in both 

models are more influenced by precipitation 

fluctuations, producing a similar trend. Therefore, 

implementing supplementary irrigation to 

compensate for the lack of precipitation, especially 

in times of stress, will greatly help improve the 

WRSI and, consequently, improve yield, as shown 

in Tables 2 and 3 for both models and three 

scenarios, before and after irrigation, in the form of 

a ten-year average. 

It can be comprehended from Figure 2 that the 

WRSI values in the absence of supplementary 

irrigation show a decrease over time in all climate 

scenarios including SSP1-2.6, SSP2-4.5, and SSP5-

8.5. In the pessimistic scenario SSP5-8.5, the WRSI 

decrease is more severe and approaches critical 

values in the final decades (2090-2100). This trend 

is due to rising temperatures, decreasing 

precipitation, increasing ET0, and decreasing soil 

moisture. In the early decades such as 2021-2030, 

the WRSI value is within the acceptable range 

(above 60%) in most models, but a decreasing trend 

is evident in the middle and final decades So, the 

supplementary irrigation, especially during the 

grain filling stage, is recommended for rainfed 

wheat. When WRSI is severely reduced, 

supplementary irrigation can play a crucial role in 

maintaining crop yield and reducing water stress-

related damages. The percentage increase in WRSI 

due to supplementary irrigation was reported to be 

over 25% in some cases, indicating the plant's 

positive response to moisture supply during critical 

growth stages. With the application of 

supplementary irrigation, the WRSI values 

increased in all scenarios and models. An increase 

of 10 to 20% or more was observed in many 

decades, highlighting the vital role of 

supplementary irrigation in reducing water stress 

effects. Specifically, in the MPI-ESM1-2-LR model 

and the SSP5-8.5 scenario, the WRSI value without 

irrigation was around 0.55, which increased to 

about 0.69 with irrigation. Figures 3 and 4 show the 

trend of changes in the WRSI values before and 

after supplementary irrigation. 

 

In Figure 3, the baseline scenario is observed where 

the WRSI reflects natural precipitation patterns and 

inherent variations. Differences across growing 

seasons reveal how rainfed wheat is impacted by 

varying levels of precipitation, with some periods 

showing deficits that might stress crop 

development. In contrast, Figure 4 demonstrates the 

effects of implementing supplementary irrigation, 

highlighting how these interventions help stabilize 

the WRSI index. This strategy softens natural 

rainfall fluctuations and secures adequate moisture 

levels essential for optimal crop growth. 

Furthermore, examination of these figures reveals 

the critical role of supplementary irrigation in 

leveling the variability seen in Figure 3. The 

supplementary irrigation appears to buffer against 

the peaks and troughs of the index, indicating a 

more consistent and reliable crop water supply. 

Particularly during drought-prone periods or in the 

late stages of the growing season, supplementary 

irrigation seems to prevent drops in water demand 

satisfaction, suggesting enhanced resilience and 

potential yield stability. Additionally, Figure 5 

presens 10-year changes in WRSI before and after 

supplementary irrigation for all examined climate 

change scenarios. 
 

At Figure 5, the WRSI exhibits significant 

fluctuations when crops rely solely on natural 

rainfall, indicating periods of potential water stress 

that can affect plant growth and yield stability. 

After the implementation of supplementary 

irrigation, the WRSI trend reflects marked stability. 

The index values are notably closer to optimal 

levels, highlighting how irrigation can mitigate the 

challenges presented by natural rainfall variability. 

Furthermore, Tables 2 and 3 present the 

supplementary irrigation schedules based on the 

WRSI values as calculated by the CNRM-CM6-1 

and the MPI-ESM1-2LR models, respectively, 

under the SSP2-4.5 scenario. These tables detail the 

WRSI values before and after irrigation 

applications, the supplementary irrigation amounts 

in millimeters, and specify the autumn irrigation 

requirements for each decade across the century. 



  EVALUATING THE IMPACT OF SUPPLEMENTARY IRRIGATION ON THE WRSI INDEX OF RAINFED SCENARIOS … 1031 

___________________________ 

Egypt. J. Agron. 47, No. 4 (2025) 

 

 

 

 

 

 

 
Fig. 2. Ten-year changes  in evapotranspiration, temperature, precipitation, and water demand satisfaction index.
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Fig. 3. Trend of changes in the water demand satisfaction index before supplementary irrigation. 

 

 

Fig. 4. Trend of changes in the water demand satisfaction index after supplementary irrigation. 

 

 
 

Fig. 5. 10-year changes in WRSI before and after supplementary irrigation. 

 

The comparison between the two tables indicates a 

clear difference in irrigation needs as dictated by 

the different climate models. In both tables, the 

CNRM-CM6-1 and MPI-ESM1-2LR models 

predict varying WRSI values over the decadal 

years, reflecting each model’s distinct climate 

forecasts. The variations in supplementary 

irrigation values indicate efficiency in water 

management strategies tailored to each model’s 

predictions, reflecting on the capability to maintain 

acceptable WRSI levels. 
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Table 2. the supplementary irrigation schedule based on WRSI values with the CNRM-CM6-1 model and 

considering the SSP2-4.5 scenario. 

Improv

ed 

WRSI 

WRS

I 

Supplementa

ry 

irrigation(m

m) 

Autumn 

Irrigati

on 

(mm) 

Deca

de 

(year) 

Improv

ed 

WRSI 

WRS

I 

Supplementa

ry 

irrigation(m

m) 

Autumn 

Irrigati

on 

(mm) 

Deca

de 

(year) 

0.81 0.78 50 - 2061 

– 

2062 

0.82 0.78 60 - 2021 - 

2022 0.73 0.69 60 - 2062 

– 

2063 

0.77 0.72 60 - 2022 - 

2023 0.80 0.78 50 - 2063 

– 

2064 

0.84 0.81 50 - 2023 - 

2024 0.72 0.71 40 - 2064 

– 

2065 

0.77 0.76 50 - 2024 - 

2025 0.57 0.31 45 15 2065 

– 

2066 

0.60 0.32 50 20 2025 - 

2026 0.82 0.79 50 - 2066 

– 

2067 

0.83 0.79 60 - 2026 - 

2027 0.83 0.81 40 - 2067 

– 

2068 

0.83 0.80 50 - 2027 - 

2028 0.78 0.71 70 - 2068 

– 

2069 

0.79 0.71 70 - 2028 - 

2029 0.59 0.47 80 - 2069 - 

2070 

0.64 0.51 80 - 2029 - 

2030 0.84 0.82 40 - 2070 - 

2071 

0.85 0.83 50 - 2030 - 

2031 0.69 0.48 50 20 2071 - 

2072 

0.70 0.50 55 15 2031 - 

2032 0.87 0.85 40 - 2072 - 

2073 

0.86 0.83 50 - 2032 - 

2033 0.83 0.82 40 - 2073 - 

2074 

0.84 0.81 50 - 2033 - 

2034 0.61 0.56 50 - 2074 - 

2075 

0.63 0.59 60 - 2034 - 

2035 0.60 0.36 50 20 2075 - 

2076 

0.67 0.37 55 15 2035 - 

2036 0.87 0.85 50 - 2076 - 

2077 

0.86 0.83 50 - 2036 - 

2037 0.63 0.58 60 - 2077 - 

2078 

0.71 0.66 60 - 2037 - 

2038 0.64 0.59 60 - 2078 - 

2079 

0.72 0.66 70 - 2038 - 

2039 0.68 0.44 50 20 2079 - 

2080 

0.70 0.46 55 25 2039 - 

2040 0.69 0.53 40 10 2080 - 

2081 

0.73 0.59 50 20 2040 

– 

2041 

0.78 0.76 40 - 2081 - 

2082 

0.79 0.75 60 - 2041 

– 

2042 

0.65 0.59 60 - 2082 - 

2083 

0.68 0.61 60 - 2042 

– 

2043 

0.79 0.75 50 - 2083 - 

2084 

0.79 0.75 60 - 2043 

– 

2044 

0.64 0.61 40 - 2084 - 

2085 

0.67 0.64 50 - 2044 

– 

2045 

0.59 0.29 45 15 2085 - 

2086 

0.59 0.30 50 20 2045 

– 

2046 

0.78 0.75 50 - 2086 - 

2087 

0.80 0.75 60 - 2046 

– 

2047 

0.81 0.78 40 - 2087 - 

2088 

0.81 0.78 50 - 2047 

– 

2048 

0.73 0.65 60 - 2088 - 

2089 

0.75 0.66 70 - 2048 

– 

2049 

0.58 0.44 70 - 2089 - 

2090 

0.59 0.44 80 - 2049 

– 

2050 

0.77 0.76 40 - 2090 - 

2091 

0.78 0.75 50 - 2050 

– 

2051 

0.66 0.42 45 15 2091 - 

2092 

0.68 0.44 55 15 2051 

– 

2052 

0.87 0.85 40 - 2092 - 

2093 

0.85 0.81 60 - 2052 

– 

2053 

0.81 0.79 40 - 2093 - 

2094 

0.81 0.78 50 - 2053 

– 

2054 

0.59 0.53 50 - 2094 - 

2095 

0.59 0.53 60 - 2054 

– 

2055 

0.56 0.34 50 20 2095 - 

2096 

0.59 0.35 65 15 2055 

– 

2056 

0.85 0.82 50 - 2096 - 

2097 

0.85 0.82 60 - 2056 

– 

2057 

0.59 0.53 50 - 2097 - 

2098 

0.60 0.53 70 - 2057 

– 

2058 

0.70 0.54 45 15 2098 - 

2099 

0.73 0.54 55 15 2058 

– 

2059 

0.66 0.38 50 20 2099 - 

2100 

0.67 0.40 60 20 2059 

– 

2060 

     0.69 0.52 55 15 2060 

– 

2061 
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Table 3. the supplementary irrigation schedule based on WRSI values with the MPI-ESM1-2LR  model 

andconsidering the SSP2-4.5 scenario. 

Improved 

WRSI 
WRSI 

Supplementary 

irrigation(mm) 

Autumn 

Irrigation 

(mm) 

Decade 

(year) 

Improved 

WRSI 
WRSI 

Supplementary 

irrigation(mm) 

Autumn 

Irrigation 

(mm) 

Decade 

(year) 

0.81 0.78 60 - 
2061 - 

2062 
0.82 0.78 60 - 

2021 - 

2022 

0.77 0.71 70 - 
2062 - 

2063 
0.79 0.73 70 - 

2022 - 

2023 

0.84 0.81 60 - 
2063 - 

2064 
0.84 0.81 60 - 

2023 - 

2024 

0.79 0.76 50 - 
2064 - 

2065 
0.80 0.77 60 - 

2024 - 

2025 

0.61 0.31 50 20 
2065 - 

2066 
0.58 0.34 65 15 

2025 - 

2026 

0.83 0.78 60 - 
2066 - 

2067 
0.83 0.77 70 - 

2026 - 

2027 

0.83 0.79 60 - 
2067 - 

2068 
0.84 0.80 60 - 

2027 - 

2028 

0.79 0.71 70 - 
2068 - 

2069 
0.80 0.71 80 - 

2028 - 

2029 

0.63 0.50 80 - 
2069 - 

2070 
0.66 0.54 80 - 

2029 - 

2030 

0.85 0.83 50 - 
2070 - 

2071 
0.85 0.81 60 - 

2030 - 

2031 

0.71 0.49 55 25 
2071 - 

2072 
0.73 0.51 60 20 

2031 - 

2032 

0.87 0.84 60 - 
2072 - 

2073 
0.85 0.81 60 - 

2032 - 

2033 

0.83 0.79 60 - 
2073 - 

2074 
0.84 0.80 60 - 

2033 - 

2034 

0.64 0.58 70 - 
2074 - 

2075 
0.68 0.61 70 - 

2034 - 

2035 

0.65 0.36 80 - 
2075 - 

2076 
0.70 0.37 60 20 

2035 - 

2036 

0.86 0.82 60 - 
2076 - 

2077 
0.85 0.81 60 - 

2036 - 

2037 

0.71 0.64 70 - 
2077 - 

2078 
0.76 0.70 70 - 

2037 - 

2038 

0.71 0.64 70 - 
2078 - 

2079 
0.74 0.69 55 15 

2038 - 

2039 

0.70 0.46 60 20 
2079 - 

2080 
0.71 0.48 80 - 

2039 - 

2040 

0.69 0.56 50 20 
2080 - 

2081 
0.65 0.59 70 - 

2040 – 

2041 

0.79 0.74 60 - 
2081 - 

2082 
0.81 0.77 60 - 

2041 – 

2042 

0.73 0.65 70 - 
2082 - 

2083 
0.76 0.69 70 - 

2042 – 

2043 

0.82 0.78 60 - 
2083 - 

2084 
0.84 0.80 60 - 

2043 – 

2044 

0.73 0.71 50 - 
2084 - 

2085 
0.77 0.74 60 - 

2044 – 

2045 

0.60 0.30 55 15 
2085 - 

2086 
0.59 0.31 60 20 

2045 – 

2046 

0.81 0.75 70 - 
2086 - 

2087 
0.82 0.76 70 - 

2046 – 

2047 

0.81 0.77 60 - 
2087 - 

2088 
0.82 0.78 60 - 

2047 – 

2048 

0.79 0.70 80 - 
2088 - 

2089 
0.79 0.70 80 - 

2048 – 

2049 

0.60 0.46 80 - 
2089 - 

2090 
0.63 0.49 80 - 

2049 – 

2050 

0.83 0.80 60 - 
2090 - 

2091 
0.84 0.80 60 - 

2050 – 

2051 

0.70 0.47 60 20 
2091 - 

2092 
0.71 0.48 60 20 

2051 – 

2052 

0.86 0.82 60 - 
2092 - 

2093 
0.85 0.81 60 - 

2052 – 

2053 

0.82 0.78 60 - 
2093 - 

2094 
0.82 0.78 60 - 

2053 – 

2054 

0.61 0.53 70 - 
2094 - 

2095 
0.63 0.57 70 - 

2054 – 

2055 

0.65 0.35 65 15 
2095 - 

2096 
0.65 0.35 60 20 

2055 – 

2056 

0.85 0.81 60 - 
2096 - 

2097 
0.85 0.81 60 - 

2056 – 

2057 

0.66 0.58 70 - 
2097 - 

2098 
0.74 0.68 70 - 

2057 – 

2058 

0.65 0.57 70 - 
2098 - 

2099 
0.67 0.60 70 - 

2058 – 

2059 

0.68 0.42 60 20 
2099 - 

2100 
0.69 0.44 60 20 

2059 – 

2060 

     0.69 0.56 55 15 
2060 – 

2061 
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For rain-fed wheat around Tabriz, baseline 

productivity falls within 900–1200 kg/ha. That is 

average productivity under today's climatic 

conditions with favorable precipitation and thermal 

regime in the grow season supportive of wheat 

development. Yet, where global change is  

amplified, future decreases in the WRSI suggest 

severe threats are being presented to future 

development of wheat within the area. Averaged 

across under the medium and high emission paths 

of greenhouse gases under the scenarios of RCP 4.5 

and RCP 8.5, respectively, wheat yield decreases of 

15–30% are projected through the year 2100. 

Decreases in WRSI under warmer temperature and 

reduced precipitation enhance water stress during 

the critical development phase of wheat, more 

notably during flowering and grain development. 

This decline in yield shows the susceptibility of 

rainfed wheat systems to climate change and the 

imperative for adaptation measures. The findings in 

this research highlights the need for proper water 

management, particularly in areas such as Tabriz, 

where water is already in short supply and highly 

unreliable. Supplemental irrigation during key 

growth periods, for instance, at the grain-filling 

stage, would be critical in sustaining or enhancing 

yield potential. Research has proved that 

supplementary irrigation in small quantities even 

during years of drought can successfully mitigate 

water stress, enhance crop performance and 

stability, and enhance yield.  

Moreover, the findings of the current study showed 

that the WRSI is directly affected by climate 

change, particularly the reduction in rainfall and the 

increase in evapotranspiration and temperature in 

the future. Analysis of the 80-year time series of 

2021–2100 illustrated that in all examined climate 

scenarios including SSP1-2.6, SSP2-4.5, and SSP5-

8.5, the WRSI value has decreased in the final 

decades. This decrease was more severe in the 

SSP5-8.5 scenario, which represents the highest 

level of greenhouse gas emissions, and in some 

cases reached below 50%, which, according to the 

FAO classification, indicates moderate to severe 

water stress conditions for the crop (Sultan et al., 

2010). Tarnavsky et al. (2018) also reported 

similar results, showing that with the decrease in 

rainfall and the increase in temperature, the WRSI 

value decreased, and the performance of rainfed 

crops was under stress. So, supplementary irrigation 

during critical growth stages such as flowering and 

grain filling was also suggested as an effective 

solution to reduce water stress, which is fully 

consistent with the results of the present 

research.Accordingly, in the current research, the 

application  

of supplementary irrigation, especially during the 

critical growth stages of rainfed wheat led to a 

significant improvement in WRSI in all decades. In 

many years, the WRSI index increased by 10 to 30 

percent due to one or two irrigation events, and in 

some specific cases, even an increase above 90% 

was recorded. These findings indicate that ensuring 

moisture availability during the critical growth 

periods of the plant can play a decisive role in the 

sustainability of crop yields. Additionally, Farre 

and Faci (2006) and Pala et al. (2007) stated that a 

supplementary irrigation at the grain filling stage in 

rainfed conditions can increase wheat yield by up to 

30%, and this effect is even greater in drier years. 

In the present study, the percentage improvement in 

the WRSI index after irrigation in some dry decades 

also reached over 30%, indicating the importance of 

the targeted irrigation strategy in critical growth 

periods of rainfed plants. Also, comparative 

analysis between climate models showed that the 

WRSI index in the MPI-ESM1-2-LR model had a 

more uniform but decreasing trend in severe 

scenarios, while the CNRM-CM6-1 model 

simulated higher WRSI values in the SSP2-4.5 

scenario, which is consistent with the results of 

Zareian et al. (2024) and Hosseini-Moghari et al. 

(2021) regarding the higher accuracy of the CNRM 

model in semi-arid climates of Iran. Overall, the 

results of this study emphasize that in the coming 

decades, without management interventions such as 

supplementary irrigation, the rainfed agricultural 

sector in dry and semi-arid regions, especially in 

northwestern Iran, will face serious challenges. The 

use of targeted supplementary irrigation based on 

WRSI analysis can be used as an effective strategy 

to reduce climate risk and maintain sustainable 

performance of rainfed crops. 

Conclusion 

The obtained results of the current research 

highlight the crucial role of supplementary 

irrigation in sustaining rainfed agriculture, 

particularly in regions like Tabriz, where climate 

change impacts are noticeable. This study analyzes 

climate scenarios from 2021 to 2100, utilizing 

Representative Concentration Pathways scenarios 

including SSP2-4.5 and SSP5-8.5. Also, LSTM and 

its advanced variant, the FLF-LSTM, provided 

robust tools to predict the WRSI with improved 

accuracy. This model integration enabled a 

comprehensive understanding of water demand 

shifts under varying climate scenarios. The 

obtained results emphasizes the greater importance 

of supplementary irrigation during the grain filling 

stage for rainfed wheat. At this stage, the plants 

demand maximum water to develop high-yielding 

grains. The research identifies critical 

supplementary irrigation values necessary to 

counteract water deficits anticipated for these 

crucial growth phases. Furthermore, the results 

reveal that the future impacts of climate change, 
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especially under the pessimistic SSP5-8.5 scenario, 

could severely threaten rainfed agriculture in 

Tabriz. Reduced rainfall and increased temperatures 

will likely lead to decreased WRSI and crop yields. 

Yet, by employing supplementary irrigation 

strategies, these negative effects can be mitigated. 

Improved WRSI metrics, achieved through targeted 

water applications, demonstrate the potential to 

stabilize and even enhance yields under drought 

conditions. Conclusively, the research highlights 

the imperative of adopting supplementary irrigation 

as an integral component of future agricultural 

strategies in climate-sensitive regions. 
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