Original article Dentistry 117

Comparative assessment of antibacterial effect of two types of laser and their effect on morphology and mineral content of dentin

Soha Adel Abdou^a, Haythem S Moharrum^b, Elsayed Abdallah Eltayeb^b

^aDental Department, Research Institute of Ophthalmology (RIO), Giza, Egypt, ^bMedical Applications of Laser Department, National Institute of Laser Enhanced Sciences, Cairo University, Egypt

Correspondence to Soha Adel Abdou, MD, Researcher of Endodontics, Dental Department, Research Institute of Ophthalmology (RIO), Giza, Egypt. Mob: +01000535482; e-mail: soha.adel@rio.sci.eg

Received: 20 August 2023 Revised: 10 October 2023 Accepted: 12 October 2023 Published: 26 December 2023

Journal of The Arab Society for Medical

Research 2023, 18:117-127

Background/aim

Scientists have proven that the main cause of endodontic diseases and failures is the existence of micro-organisms in the root canals and inside the dentinal tubules. So the aim of the study was to compare the antibacterial effect of Erbium, chromium-doped yttrium, scandium, gallium, and garnet (Er,Cr:YSGG) laser and diode laser 980 nm alone and in combination with 5.25% sodium hypochlorite (NaOCI) irrigant against *Enterococcus faecalis* biofilm and also compare their effect on the morphology and mineral content of root canal dentin by scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDX) analysis.

Materials and methods

The specimens used in our study were fifty four extracted human single-rooted teeth. They were collected from the Dental Department of the Research Institute of Ophthalmology, Egypt. Mechanical preparation was done to all teeth after their crowns were removed. They were autoclaved, and after that, they were inoculated with *Enterococcus faecalis* for 30 days. Roots were divided into six groups (each=9) according to type of treatment. Group A: 5.25% NaOCI, group B: Er, Cr:YSGG laser, group C: 5.25% NaOCI and Er,Cr:YSGG laser, group D: diode laser 980 nm, group E: 5.25% NaOCI and diode laser 980 nm, in addition to control group: saline. Their antibacterial effect was assessed before and after treatment. Changes in the morphology and mineral content of root canal dentin were assessed by SEM and EDX. Statistical analysis was done.

Results

Group C had significantly the highest percentage of *Enterococcus faecalis* reduction (98.95%), followed by group E (98.04%), then group D (95.27%), then group A (94.65%), then group B (92.99%), while the control group had significantly the lowest percentage of *Enterococcus faecalis* reduction (0.22%). Regarding SEM results, group B and group D exhibited score 1 (88.9%), control group and group C score 3 (77.8%), group A score 4 (88.9%), and group E score 5 (88.9%). Regarding EDX results, group B was significantly the lowest in Ca/P ratio, while there was an insignificant difference between other groups.

Conclusions

Er,Cr:YSGG laser, and diode laser, when used without 5.25% NaOCI irrigant, produced less morphological changes to dentinal tubules, but when combined with 52.5% NaOCI irrigant, produced more antibacterial effect against *Enterococcus faecalis*. Lasers alone or combined with 5.25% NaOCI irrigant produced changes in the mineral content of root canal dentin.

Keywords:

biofilm, diode laser, energy dispersive X-Ray spectroscopy, *Enterococcus faecalis*, Er, Cr: YSGG laser, scanning electron microscope

J Arab Soc Med Res 18:117–127

© 2023 Journal of The Arab Society for Medical Research
1687-4293

Introduction

Scientists have proven that the main cause of endodontic diseases and failures is the existence of micro-organisms in the root canals and inside the dentinal tubules [1]. Hence, it is necessary to get rid of these micro-organisms and inhibit their reentry to the root canals in order to increase the success rate of endodontic treatment [2]. In order to achieve this, several procedures must be done together, including mechanical preparation and chemical disinfection by using endodontic irrigants and intra-canal

medicaments [3,4]. Many studies have stated that they are not adequate for the elimination of the micro-organisms from the root canals because of the anatomical complexities of the root canals and the existence of resistant micro-organisms like *Enterococcus faecalis* [5]. It is one of the most popular

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

micro-organisms isolated from cases of endodontic failures and secondary infections. It has the ability to form bacterial biofilm and enter deeply through the dentinal tubules of the root canals [6]. In addition, it is not affected by high PH, which is the reason for the antibacterial effect of calcium hydroxide (Ca(OH)₂) intra-canal medicament, and also not affected by the absence of nutrition or elevated salts concentration [7].

Sodium hypochlorite (NaOCl) is one of the most utilized irrigants, with many concentrations. It has several benefits that qualify it for that, which are low price, easy obtainable, antibacterial properties, capability to dissolve organic tissues, and removal of smear layer [8]. But it has many drawbacks, such as high cytotoxicity and the ability to produce chemical and morphological changes in root canal dentin [9,10].

Root canal irrigants and intra-canal medications cannot reach the narrow and curved areas of the root canals and also cannot penetrate deeply into dentinal tubules. Therefore, we tended to use the laser in addition to the irrigants in order to increase their efficiency and be able to reach the areas that the irrigants couldn't reach on their own [11].

Erbium, chromium-doped yttrium, scandium, gallium, and garnet (Er,Cr:YSGG) laser is a kind of infra-red laser that was used in the past in cases of surgery in dental field, as it excelled over the old traditional surgery by avoiding complications after surgery and causing a lack of feeling of pain [12]. It has many advantages when it is used in the endodontic branch, as it has the ability to activate the endodontic irrigants, which results in the removal of the smear layer, especially in the apical part of the root canal. Also, it has antibacterial properties [13].

Recently, diode laser has been used a lot in the dental field owing to its multiple advantages. It has a thin optical fiber, which is why it can get into tight, curved canals and inaccessible areas of the root canals. Furthermore, its price is low and it has multiple wavelengths as 810 nm, 830 nm, 940 nm, and 980 nm [14].

The main inorganic components of tooth hard tissue are calcium (Ca) and phosphorus (P). The solubility, microhardness, and permeability of root canal dentin can all be negatively impacted by changes in the calcium phosphorus (Ca/P) ratio, which can also change the amount of organic and inorganic components that were originally present [15,16]. It could also negatively impact the sealing properties and root canal sealer adherence [17,18].

The aim of the study was to compare the antibacterial effect of Er,Cr:YSGG laser and diode laser 980 nm alone and in combination with 5.25% NaOCl irrigant against *Enterococcus faecalis* biofilm and also compare their effect on the morphology and mineral content of root canal dentin by scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDX) analysis.

Materials and methods

Calculation of specimen size

Size of the specimen was determined using a prior study by Afkhami *et al.* [19] as a guide. If the control group's mean and standard deviation are $2.07 \times 10^5 \pm 1.25 \times 10^5$ and the estimated mean is 4.5×10^5 with an effect size of 1.75, when power is 80% and α error probability is 0.05, the study only required a minimum of 7 subjects in each group; however, the total specimen size was increased to 9 subjects per group to account for 20% dropout. Specimen size was calculated using an Independent t test with G. power 3.1.9.7.

Ethical approval

Our study was conducted in accordance with the Declaration of Helsinki and was approved by the Research Ethical Committee (REC) of National Institute of Laser Enhanced Sciences on 18/7/2023 and the approval reference was: NILES-EC-CU 23/7/13.

Study design

The specimens used in our study were fifty four single-rooted human teeth extracted due to periodontal diseases from the Dental Department of the Research Institute of Ophthalmology, Egypt. Their roots were inspected for the absence of fractures or cracks. They were randomly categorized into six main groups (each=9) according to treatment as follows:

Group A: 5.25% NaOCl irrigant **Group B:** Er,Cr:YSGG laser.

Group C: 5.25% NaOCl irrigant then Er,Cr:YSGG laser.

Group D: diode laser 980 nm.

Group E: 5.25% NaOCl irrigant then diode laser 980 nm.

Control group: saline irrigant.

Preparation of the teeth

Teeth were cleaned of any calculus or debris. They were kept in a saline solution until the test was done.

The crowns of all teeth were removed at the cementoenamel junction using a fissure bur at high-

speed motor, and the roots length were adjusted to be 15 mm±2 mm. Mechanical preparation was done to all roots by the ProTaper rotary system (Maillefer -Dentsply, Baillagues, Switzerland) to size F4. Two ml of 2% NaOCl irrigant was used between every file. At the end of preparation, the roots were irrigated with three ml 17% of ethylenediaminetetraacetic acid (EDTA) then three ml of 2% NaOCl. Finally, all roots were flushed with 6 ml of saline solution. Varnish was used to coat the external surfaces of the roots, and the flowable composite was used to close the apices of the roots. Each root was placed in an Eppendorf tube and sterilized at 121°C for thirty minutes.

All the next steps were done inside the laminar air flow.

Preparation of bacterial suspension and infection of the roots

The bacterial suspension of *Enterococcus faecalis* ATCC 29212 in brain heart infusion (BHI) broth was prepared and standardized to 1 McFarland. Each root was inoculated with 8 µl of infected broth and inserted in the incubator for 30 days at 37°C to form a bacterial biofilm. The broth changed every three days.

Treatment of the roots

The roots of group A were treated with five ml of 5.25% NaOCl irrigant for two minutes.

The roots of group B were treated with Er, Cr:YSGG laser (Waterlase iPlus, Biolase, USA) at a 2780 nm wavelength with a power of 1.5 W and a repetition rate of 20 Hz. After activation of the laser, the optical fiber was slowly introduced into the root canals. The laser was applied in three cycles; the duration of each is 20 seconds, as shown in Fig. 1. There is also a 10-second rest period between each cycle.

In group C, the roots were treated with five ml of 5.25% NaOCl irrigant for two minutes and then activated by Er, Cr: YSGG laser as described in group B.

While in group D, the roots were treated with a diode laser 980 nm wavelength and a power of 1.5 W, as described in group B.

The roots of group E were treated with five ml of 5.25% NaOCl irrigant for two minutes and then activated by a diode laser 980 nm wavelength as described in group B.

In the control group, the roots were irrigated with five ml of saline irrigant for two minutes.

Figure 1

Application of Er, Cr: YSGG laser.

During the application of the laser in groups Er, Cr: YSSG laser (Groups B and C), water and air cooling were applied.

After all the teeth were treated in the previous way, they were irrigated with 6 ml of sterile saline.

Microbial assessment

Two samples were taken from each root canal: one before treatment application and after 30 days of root canal infection, while the second sample was taken immediately after treatment application. Samples were taken using paper points size 40. Infected paper points were inserted separately in sterile Eppendorf tubes containing 2 ml of BHI broth and vortexed for 25 seconds. Serial dilution was done till 1/10000, and then fifteen microns of infected broth were cultured on bile esculin agar plates and incubated at 37 °C for two days. The numbers of colonies on agar plates were counted, and the colony forming units (CFUs) were calculated.

Morphological variations assessment by scanning electron microscope

All tested roots were sectioned longitudinally into two halves by making a longitudinal groove on the lingual and labial aspects of the roots with a diamond disc of 0.5 mm. The sectioning process was completed with a chisel and mallet. Sectioned roots were irrigated with 10 ml of distilled water. After that, they were desiccated in a hot oven. They were fixed on aluminum stubs and sprayed with gold in the vacuum evaporator. Photomicrograph sets were

taken by SEM (Quanta 250 FEG) at multiple magnifications: 1000X, 3000X, and 5000X. The morphological variations were assessed from the photomicrographs by two examiners in a doubleblind investigation. The following scores instituted to guide the examiners morphological analysis process [20]:

Score 1: Clean root canal wall, no smear layer, and open dentin tubules more than 95%.

Score 2: Slight quantity of smear layer and open dentin tubules more than 60%.

Score 3: Moderate quantity of smear layer and open dentin tubules less than 40%.

Score 4: Dense smear layer with complete effacement of dentin tubules.

Score 5: Slight or no smear layer, sealed dentin tubules, melting and fusion.

Mineral content assessment by energy-dispersive Xray spectroscopy

All samples were analyzed by EDX to determine the amount of carbon (C), oxygen (O), sodium (Na), magnesium (Mg), P, and Ca and also to assess the Ca/P ratio.

Statistical analysis

All qualitative data were provided as frequency and percentages, while all quantitative data were presented as mean and standard deviation. SPSS 16® (Statistical Package for Scientific Studies), GraphPad Prism, and Windows Excel were used to conduct the statistical analysis. Shapiro-Wilk and Kolmogorov-Smirnov tests were used to examine the quantitative data for normality and the results showed that the significant level (P value) was insignificant because P value >0.05, which meant that all of the data came from a normal distribution (parametric data). Accordingly, a Paired ttest was used to compare two different intervals, a One Way ANOVA test was used to compare all groups, followed by a Tukey's Post Hoc test, which was used for multiple comparisons. A Chi square test was used for comparison between different scores regarding SEM in all groups.

Results

Bacterial evaluation

Intra-group comparison (comparison between before and after treatment)

Comparison between mean values of Enterococcus faecalis count before and after treatment in all groups was performed using the Paired t test, which revealed a significant decrease in mean values of Enterococcus faecalis count after treatment in all groups as $P<0.05^*$

Inter-group comparison (comparison between different groups)

Comparison between different groups was performed by using the One Way ANOVA test, which revealed a significant difference between them in all as P < 0.05, followed by Tukey's Post Hoc test as shown in Table 1.

Before treatment: group D (598.33±9.01) was significantly the lowest mean value of Enterococcus faecalis count, but group E (612.67±9.54) was significantly the highest mean value of Enterococcus faecalis count, while there was an insignificant difference between other groups.

After treatment: there was a significant difference between all groups. Control group (600±1.73) was significantly the highest mean value of Enterococcus faecalis count, followed by group B (42±1.73), then group A (32.33±2.18), then group D (28.33±2.65), then group E (12 ± 1.73) , while group C (6.33 ± 1.32) was significantly the lowest mean value of Enterococcus faecalis count.

Difference between before and after treatment: group C (598.67±7.76) and group E (600.67±8.00) had significantly the highest mean values of difference in Enterococcus faecalis count between before and after treatment, followed by group A (572±5.68) and group D (570±7.79), then group B (557.33±10.9), while control group (1.33±1.32) had significantly the lowest mean value of difference in Enterococcus faecalis count between before and after treatment.

Table 1 Comparison between mean values of Enterococcus faecalis count before and after treatment in all groups

Bacterial count	Control group	Group A	Group B	Group C	Group D	Group E
Before	601.33±1.32 ^a	604.33±3.50 ab	599.33±11.69 ab	605±7.70 ab	598.33±9.01 ^a	612.67±9.54 b
After	600±1.73 ^a	32.33±2.18 b	42±1.73 °	6.33±1.32 d	28.33±2.65 ^e	12±1.73 ^f
P value	0.010*	0.0001*	0.0001*	0.0001*	0.0001*	0.0001*
Difference	1.33±1.32 ^a	572±5.68 b	557.33±10.90 °	598.67±7.76 d	570±7.79 b	600.67±8.00 d
% reduction	0.22±0.21 ^a	94.65±0.39 b	92.99±0.25 °	98.95±0.22 d	95.27±0.40 ^e	98.04±0.26 f

All data are expressed as mean±SD. *Significant difference between before and after groups at P<0.05, using Paired t-test. All data with different superscript letters (a, b, c, d, e, f) per raw were significantly different as P value <0.05, using ANOVA test.

Percentage of Enterococcus faecalis reduction: there was a significant difference between all groups. Group C (98.95±0.22) was significantly the highest mean value of Enterococcus faecalis reduction, followed by group E (98.04±0.26), then group D (95.27±0.40), then group A (94.65±0.39), then group B (92.99 ± 0.25), while control group (0.22 \pm 0.21) was significantly the lowest mean value of Enterococcus faecalis reduction.

Results of scanning electron microscope

Frequency and percentages of different scores regarding SEM in all groups were presented in Table 2 and Figs. 2 and 3.

A comparison between them was performed using the Chi square test, which revealed that:

- (1) Control group and group C: score 3 (77.8%) was significantly the highest.
- (2) Group A: score 4 (88.9%) was significantly the highest.
- (3) Group B and group D: score 1 (88.9%) was significantly the highest.
- (4) Group E: score 5 (88.9%) was significantly the highest.

Results of energy-dispersive X-ray spectroscopy

Mean and standard deviation of the percentage weights of C, O, Na, Mg, P, and Ca, and Ca/P ratio for all groups were presented in Table 3.

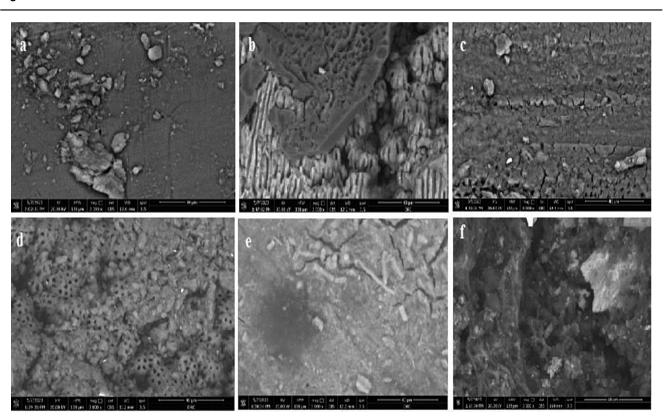

Comparison between different groups was performed by using the One Way ANOVA test, which revealed a

Table 2 Frequency and distribution of different scores in all groups using scanning electron microscope

Groups	Score 1 N (%)	Score 2 N (%)	Score 3 N (%)	Score 4 N (%)	Score 5 N (%)	P value
Control group	0 (0)	0 (0)	7 (77.8%)	2 (22.2%)	0 (0)	0.001*
Group A	0 (0)	0 (0)	0 (0)	8 (88.9%)	1 (11.1%)	0.0002*
Group B	8 (88.9%)	1 (11.1%)	0 (0)	0 (0)	0 (0)	0.0002*
Group C	0 (0)	0 (0)	7 (77.8%)	0 (0)	2 (22.2%)	0.001*
Group D	8 (88.9%)	1 (11.1%)	0 (0)	0 (0)	0 (0)	0.0002*
Group E	0 (0)	0 (0)	0 (0)	1 (11.1%)	8 (88.9%)	0.0002*
P value	0.0002*	0.31	0.001*	0.0002*	0.0002*	

All data are expressed as frequency (N) and percentage (%). *Significant difference at P<0.05, using Chi square test.

Figure 2

SEM photomicrograph of dentin at X 3000, where (a): group A, (b): group B, (c): group C, (d): group D, (e): group E, and (f): control group.

SEM photomicrograph of dentin at X 5000, where (a): group A, (b): group B, (c): group C, (d): group D, (e): group E, and (f): control group.

Table 3 Comparison between percentage weights of minerals of all groups

EDX Weight	Control group	Group A	Group B	Group C	Group D	Group E
С	18.10±0.77 ^a	5.37±0.74 ^b	4.17±0.84 ^c	5.17±1.18 ^{bc}	8.23±0.22 ^d	11.23±0.93 ^e
0	36.80±1.20 ^a	36.77±1.13 ^a	56.27±3.38 ^c	37.93±2.82 ^a	42.87±0.74 ^b	45.37±1.13 ^b
Na	0.80±0.09 ^a	1.00±0.09 ^b	0.43±0.13 ^c	1.13±0.18 ^b	1.10±0.09 ^b	1.47±0.13 ^d
Mg	0.67±0.13 ^a	0.80±0.09 ^a	5.90±1.50 ^b	1.07±0.13 ^a	1.03±0.13 ^a	1.30±0.15 ^a
Р	13.80±0.43 ^a	17.53±0.18 ^b	14.70±0.69 ^c	17.13±1.07 ^b	14.30±0.35 ^{ac}	13.33±0.13 ^a
Ca	29.87±0.28 ^a	38.40±0.48 ^b	19.87±2.28 ^c	37.27±3.29 ^b	32.63±0.70 ^d	27.27±0.79 ^e
Ca/P	2.17±0.08 ^a	2.19±0.03 ^a	1.36±0.19 ^b	2.17±0.06 ^a	2.28±0.09 ^a	2.05±0.08 ^a

All data are expressed as mean±SD. All data with different superscript letters (a, b, c, d) per raw were significantly different as *P value* <0.05.

significant difference between them in all groups as P<0.05, followed by Tukey's Post Hoc test, which revealed that:

Carbon weight, the control group (18.10±0.77) was significantly the highest, while group B (4.17±0.84) and group C (5.17±1.18) were significantly the lowest.

Regarding the weight of Oxygen, group B (56.27±3.38) was significantly the highest, while the control group (36.80±1.20), group A (36.77±1.13), and group C (37.93±2.82) were significantly the lowest.

Sodium weight, group E (1.47 ± 0.13) was significantly the highest, while group B (0.43 ± 0.13) was significantly the lowest.

Magnesium weight, group B (5.90±1.50) was significantly the highest, while there was an insignificant difference between all other groups.

Regarding the phosphorus weight, group A (17.53 ± 0.18) and group C (17.13 ± 1.07) were significantly the highest, while the control group (13.8 ± 0.43) and group E (13.33 ± 0.13) were significantly the lowest.

Calcium weight, group A (38.4±0.48) and group C (37.27±3.29) were significantly the highest, while group B (19.87±2.28) was significantly the lowest.

However, the Ca/P ratio in group B (1.36±0.19) was significantly the lowest, while there was an insignificant difference between other groups.

Discussion

Successful endodontic treatment demands total cleaning and getting rid of the harmful microorganisms from the root canal system [21]. So the aim of our study was to compare the antibacterial effect of Er, Cr: YSGG laser and diode laser 980 nm alone and in combination with 5.25% NaOCl irrigant against Enterococcus faecalis biofilm and also compare their effect on the morphology and mineral content of root canal dentin by SEM and EDX analysis.

Since Enterococcus faecalis is very resistant to many disinfectants and is also crucial in recurrent endodontic infections and unsuccessful root canal procedures, it has been employed in numerous studies to assess the disinfectant capability of antibacterial irrigants or different types of lasers [22]. Enterococcus faecalis, on the other hand, is very heat-resistant, and since the main antibacterial impact of the laser is mostly a result of the heating effect, it is advised to use it to examine the heat-independent antimicrobial effect of laser [23].

The results of our research showed that the highest percentage of Enterococcus faecalis reduction was found in the 5.25% NaOCl irrigant with Er,Cr:YSGG laser group, which was 98.95%, followed by the 5.25% NaOCl with diode laser group, which was 98.04%. This may be due to the combination of the antibacterial effect of 5.25% NaOCl irrigant and the antibacterial effect of laser [24,25]. Also, activation of the NaOCl irrigant by a laser beam increases the temperature of the NaOCl irrigant and hence increases its antibacterial efficacy [23]. Furthermore, the Er, Cr:YSGG laser has the affinity to absorb water, and water-based irrigants lead to the formation of vapor bubbles, which are called cavitation. This bubble enlarges during the activation process of the irrigant by the laser beam. Once the activation process ends, this bubble contracts until it rupture. Subsequently, many small cavitation bubbles are created and are known as secondary cavitation bubbles [26]. This process created pressure waves inside the irrigant called shock waves and acoustic waves. These waves produce shear stress in the root canals, facilitating the arrival of the irrigant in all inaccessible areas of the root canals and entering deeply into dentinal tubules [27]. As well, these movements of NaOCl irrigant in root canals increase the contact of chlorine particles to the root canal dentin, thereby increasing its antibacterial efficacy [28]. These results were in line with Betancourt et al. [27] and Seet et al. [29] results, which stated that the combination between NaOCl irrigant and Er, Cr: YSGG laser was more effective against Enterococcus faecalis biofilm than NaOCl irrigant alone with the same concentration. Also with the results of Castelo-Baz et al. [30] and Preethee et al. [31] which stated that the combination of NaOCl irrigant with diode laser has a higher antibacterial effect than NaOCl irrigant alone.

NaOCl is the most usually used irrigant during endodontic treatment. The antimicrobial effect of NaOCl is due to the presence of hypochlorous acid. It acts on sulphydryl groups in the enzymes of microorganisms through its oxidative effect [3]. Our results stated that the percentage of *Enterococcus faecalis* reduction in the group treated with 5.25% NaOC1 irrigant was 94.65%, while it was 95.27% in the group treated with diode laser alone and 92.99% in the group treated with Er, Cr: YSGG laser alone. These results were in agreement with the results of Yavari et al. [32] who stated that NaOC1 irrigant was more effective than Er, Cr:YSGG laser against Enterococcus faecalis. These results were in disagreement with the results of Sohrabi et al. [33] and the results of El-Tayeb and Nabeel [34], which stated that the percentage of Enterococcus faecalis reduction in the group treated with 5.25% NaOCl irrigant was higher than the group treated with diode laser. This may be related to using different parameter and wavelength of used laser.

The percentage of Enterococcus faecalis reduction in groups treated with laser alone, even diode or Er,Cr: YSGG, was lower than groups treated with a combination of 5.25% NaOCl irrigant and laser. This may be attributed to the laser's property of water absorption. So the absence of irrigant in the root canal makes the effect of the laser beam limited to the superficial area of dentinal tubules and less enter deeply into dentinal tubules, which results in a decrease in the antibacterial effect of the laser [25]. This result was in coincidence with the results of EL-Gendy et al. [35], who stated that the antibacterial effect of NaOC1 irrigant in combination with Er, Cr:YSGG laser was more effective than Er, Cr:YSGG laser alone against Enterococcus faecalis.

SEM was chosen in this study to assess the ultrastructural changes that occurred on the dentin surface after the application of the tested treatments due to its ability to evaluate the morphological aspects qualitatively and quantitatively [36].

Our results showed that, the application of laser alone, even Er:Cr,YSGG or diode, on root canal dentin removed the smear layer and kept all dentinal And also, when the Er:Cr,YSGG laser was combined with 5.25% NaOCl irrigant, more than 60% of dentinal tubules were sealed, and there was a moderate quantity of smear layer on the dentin surface. However, when diode laser was combined with 5.25% NaOCl irrigant, it caused the sealing of dentinal tubules and the melting of them. Additionally, there was a dense smear layer on the dentin surface with complete effacement of dentin tubules after treatment with 5.25% NaOCl irrigant alone. Marending et al. [40] stated that NaOCl irrigant produced breakdown of organic dentin components, which results in a significant alteration of the peripheral dentin matrix, a decrease in elastic modulus and flexural strength, and a change in intertubular dentin permeability. Also, Mohammadi [41] stated that NaOCl's weak physicochemical activity, which is restricted to organic particles, may be the cause of its ineffectiveness in removing the smear layer from the dentin surface. Our results were in accordance with the results of Rathakrishnan et al. [42], Kandil et al. [43], and Ulusoy and Görgül [44], which stated that there was a heavy smear layer on the dentin surface after irrigation with NaOCl irrigant. In contrast, Saraswathi et al. [45] stated that using irrigation of NaOCl and EDTA in addition to diode laser irradiation of root canal dentin improved smear layer elimination. This may be attributed to using diode laser with different wavelength.

EDX was chosen in our study to measure the mineral content of dentin. The primary benefit of this technology is its ability to analyze materials accurately and without causing any damage. The technique is based on irradiating the sample with a high-voltage electron beam, which produces emission at a specific wavelength for each mineral. The variations in the wavelengths of the light emitted from the sample reveal variations in the concentration of a particular mineral on the sample surface [13].

The primary inorganic components of dentin hydroxyapatite are Ca and P [46]. Our results showed that, compared to the control group, the mean percentage weight of Ca increased in the 5.25% NaOCl irrigant group, the diode laser group, and the 5.25% NaOCl irrigant with Er,Cr:YSGG laser group. And they were decreased in the Er,Cr:YSGG laser group and the 5.25% NaOCl irrigant with diode laser group.

Whereas the mean percentage weight of P increased in the 5.25% NaOCl irrigant group, the Er,Cr:YSGG laser group, and the 5.25% NaOCl irrigant with Er,Cr: YSGG laser group, while it did not change in the diode laser group or in the 5.25% NaOCl irrigant with diode laser group. The mean percentage weight of O increased in the Er,Cr:YSGG laser group, the diode laser group, and the 5.25% NaOCl irrigant with diode laser group. But it did not change in the other tested groups. The mean percentage weight of C decreased in all tested groups, while the mean percentage weight of Na increased in all tested groups, except in the Er,Cr: YSGG laser group, where it decreased.

When a 980 nm diode laser is used on the dentin surface, some of the energy is absorbed by the mineral elements of the dentin, disrupting the arrangement of the dentin crystals and causing the dentin to dissolve [47]. However, when an Er:Cr, YSGG laser is used on the dentin surface, the elements that are bound to the water in the dentin react, causing the crystalline dentin structure to enlarge. Peritubular dentin and dentin tubules are destroyed, resulting in a different pattern [48]. Our findings supported the findings of Sazak et al. [49], which showed that dentin surface imperfections and differences in the mineral composition were caused by laser application. Additionally, Secilmis et al. [50] findings, which demonstrated that the application of Er, Cr: YSGG laser had an impact on the amount of Ca, Na, and P levels in the dentin of permanent teeth. And also with the findings of Kazeminejad et al. [51] that demonstrated that laser use had a substantial impact on P removal from dentin. However, Guler et al. [52] findings contrasted with our findings. They stated that the dentin's mineral content, which was Ca, Na, and P was unaffected by the application of a laser to its surface. This discrepancy in results may be caused by the fact that primary teeth were employed in their study and that they used a different kind of laser. And with the findings of Malkoc et al. [53], which stated that the levels of Ca, P, and Na in dentin were not affected by the application of the Er, Cr:YSGG laser, this may be due to using different testing method. Furthermore,

Gurbuz et al. [54] stated that the percentage of Ca and P decreased in the group treated with 5.25% NaOCl irrigant.

Changing the inorganic and organic components of root canal dentin leads to an alteration in the Ca/P ratio [55]. All the tested groups in our study didn't affect the Ca/P ratio of dentin except the Er,Cr:YSGG laser group, which decreased the ratio. Ari and Erdemir [56] stated that the use of large concentrations of NaOCl as an irrigant may impact the inorganic material that limits further dentin breakdown, or it may disintegrate the organic components and produce a layer of mineralized tissue. Because of this mineralized layer, irrigation with 5.25% NaOCl does not affect the Ca/P ratio of root canal dentin. Owing to its low molecular weight, it is dispersed throughout the collagen matrix of dentin [18].

The results of Alhadi et al. [57] proved that the application of laser to root canal dentin increased the erosion degree caused by irrigants. This erosion resulted from the removal of Ca ions from the inner dentin wall. These results were similar to the results of Saghiri et al. [58] and De Moura-Netto et al. [38].

Saraswathi et al. [45] proved that NaOCl and EDTA irrigation alone or combined with diode laser did not have any effect on the Ca/P ratio of root dentin. In contrast, Doğan and Çalt [59] stated that NaOCl irrigant alone changed the Ca/P ratio of root canal dentin. This might be related to using different concentration of NaOCl.

mineralization process, especially development, has been thought to be influenced by a little amount of Mg that is always visible in the mineralized tissues in addition to Ca and P, and a lack of it can lower the number of odontoblasts and impede the production of dentin. Dentin is strengthened as a result [60]. In our study, all the tested groups didn't affect the mean percentage weight of Mg in dentin except the Er, Cr:YSGG laser group, which increased the percentage. This has been said to be related to the substitution of Mg for Ca [61].

The relative Ca or P content of dentin may rise as a result of the evaporation of organic substances during laser irradiation [62]. These results are consistent with those of an experiment conducted by Altundasar et al. [63], who showed that Er, Cr: YSGG laser irradiation increased Ca, P, and Mg levels.

The outcomes of the in vitro investigations conducted by Doğan and Çalt [59] showed that the Mg level significantly increased following the application of a chelating agent in combination with NaOCl irrigant, and Gurbuz et al. [54] showed that teeth treated with NaOCl irrigant had a high Mg level. In contrast, Ari and Erdemir [56] confirmed that Mg level in dentin were not affected after using NaOCl irrigant.

Conclusions

The combination of Er, Cr:YSGG laser or diode laser with 5.25% NaOCl irrigant had an antibacterial effect against Enterococcus faecalis more than the laser alone or 5.25% NaOCl irrigant alone. Er, Cr:YSGG laser and diode laser, when used without 5.25% NaOCl irrigant, produced less morphological changes to dentinal tubules and also removed the smear layer. Lasers alone or combined with 5.25% NaOCl irrigant produced changes in the mineral content of root canal dentin.

Financial support and sponsorship

Conflicts of interest

There was no conflict of interest.

References

- 1 Al-Nazhan S, Al-Sulaiman A, Al-Rasheed F, Alnajjar F, Al-Abdulwahab B, Al-Badah A. Microorganism penetration in dentinal tubules of instrumented and retreated root canal walls. In vitro SEM study. Restor Dent Endod 2014: 39:258-264. DOI: 10.5395/rde.2014.39.4.258
- 2 Jaiswal N, Sinha DJ, Singh UP, Singh K, Jandial UA, Goel S. Evaluation of antibacterial efficacy of chitosan, chlorhexidine, propolis and sodium hypochlorite on Enterococcus faecalis biofilm: An in vitro study. J Clin Exp Dent 2017; 9:1066-1074. DOI: 10.4317/jced.53777
- 3 Tonini R, Salvadori M, Audino E, Sauro S, Garo ML, Salgarello S. Irrigating solutions and activation methods used in clinical endodontics: a systematic review. Front Oral Health 2022; 3:838043. Erratum in: Front Oral Health 2022; 3:876265. DOI: 10.3389/froh.2022.876265
- 4 Mampilly J, Shetty V, Shetty K. Endodontic irrigating solutions, disinfection devices and techniques: a review. Int J Adv Res 2020; 8:986-997.
- 5 Tennert C. Feldmann K. Haamann F. Al-Ahmad A. Follo M. Wrbas K. et al. Effect of photodynamic therapy (PDT) on Enterococcus faecalis biofilm in experimental primary and secondary endodontic infections. BMC Oral Health 2014; 14:132. DOI: 10.1186/1472-6831-14-132
- 6 Mohammadi Z. Effects of root canal irrigants on the planktonic form of Enterococcus faecalis: A review. Niger J Med 2015; 24:261-267.
- 7 Khalifa L, Shlezinger M, Beyth S, Houri-Haddad Y, Coppenhagen-Glazer S, Beyth N, Hazan R. Phage therapy against Enterococcus faecalis in dental root canals. J. Oral Microbiol 2016; 8:1-11.
- 8 Bansal R, Jain A, Mittal S, Kumar T, Jindal N, Kaur D. A comparison of the antibacterial efficiency of MTAD (Mixture Of Tetracycline, Citric Acid And Detergent), 2.5% sodium hypochlorite and 2% chlorhexidine root canal irrigants against Enterococcus faecalis in root canals of single rooted mandibular premolars an in vitro study. IOSR J Den Med Sci 2013; 5:47–53.
- 9 Giardino L, Estrela C, Generali L, Mohammadi Z, Asgary S. The in vitro Effect of Irrigants with Low Surface Tension on Enterococcus faecalis. IEJ 2015; 10:174-178. DOI: 10.7508/iej.2015.03.006
- 10 Mohammadi Z, Asgary S. A comparative study of antifungal activity of endodontic irrigants. IEJ 2015; 10:144-147.

- 11 Korkut E, Torlak E, Gezgin O, Özer H, Şener Y. Antibacterial and smear layer removal efficacy of Er:YAG laser irradiation by photon-induced photoacoustic streaming in primary molar root canals: a preliminary study. Photomed Laser Surg 2018; 36:480-486.
- 12 Kumar G, Rehman F, Chaturvedy V. Soft tissue applications of Er, Cr: YSGG laser in pediatric dentistry. Int J Clin Pediatr Dent 2017; 10:188-192.
- 13 Bolhari B, Ehsani S, Etemadi A, Shafaq M, Nosrat A. Efficacy of Er, Cr: YSGG laser in removing smear layer and debris with two different output powers. Photomed Laser Surg 2014; 32:527-532.
- 14 Granevik L, Wolf E, Fransson H. The antibacterial effect of Nd:YAG laser treatment of teeth with apical periodontitis; a randomized controlled Trial, J Endod 2017; 43:857-863.
- 15 Bosaid F, Aksel H, Makowka S, Azim AA. Surface and structural changes in root dentine by various chelating solutions used in regenerative endodontics. Int Endod J 2020; 53:1438-1445.
- 16 Rodrigues PA, Franco Nassar RS, da Silva TS, Pedrinha VF, Alexandrino LD. Effects of different NaOCI concentrations followed by 17% EDTA on dentin permeability. J Contemp Dent Pract 2019; 20:838-841.
- 17 Mokhtari F, Anvar E, Mirshahpanah M, Hemati H, Danesh Kazemi A. The probable effect of irrigation solution and time on bond strength to coronal dentin: an in vitro evaluation. Iran Endod J 2017; 12:439-442
- 18 Zancan RF, Hadis M, Burgess D, Zhang ZJ, Di Maio A, Tomson P, et al. A matched irrigation and obturation strategy for root canal therapy. Sci Rep 2021; 11:4666. DOI: 10.1038/s41598-021-83849-y
- 19 Afkhami F, Karimi M, Bahador A, Ahmadi P, Pourhajibagher M, Chiniforush N. Evaluation of antimicrobial photodynamic therapy with toluidine blue against Enterococcus faecalis: Laser vs LED. Photodiagnosis Photodyn Ther 2020; 32:102036. DOI: 10.1016/j.pdpdt.2020.102036
- 20 Lopes FC, Roperto R, Akkus A, Sousa YTCS, Sousa-Neto MD. Evaluation of chemical and morphological changes in radicular dentin after different final surface treatments. Microsc Res Tech 2018; 81:973-979. Doi: 10.1002/iemt.23060
- Abdelsalam N, Abu-Seida AM, Fayyad D, Tawfik H. Radiographic and histopathologic outcomes of immature dog teeth with apical periodontitis after revascularization using propolis. An in vivo study. Saudi Endod J 2020;
- 22 Ashofteh K, Sohrabi K, Iranparvar K, Chiniforush N. In vitro comparison of the antibacterial effect of three intracanal irrigants and diode laser on root canals infected with Enterococcus faecalis. Iran J Microbiol 2014; 6:26-30.
- 23 Gutknecht N, Franzen R, Schippers M, Lampert F. Bactericidal effect of a 980-nm diode laser in the root canal wall dentin of bovine teeth. J Clin Laser Med Surg 2004; 22:9-13.
- 24 Cheng X, Xiang D, He W, Qiu J, Han B, Yu Q, Tian Y. Bactericidal effect of Er:YAG laser-activated sodium hypochlorite irrigation against biofilms of enterococcus faecalis isolate from canal of root-filled teeth with periapical lesions. Photomed Laser Surg 2017; 35:386-392.
- 25 Cheng X, Tian T, Tian Y, Xiang D, Qiu J, Liu X, Yu Q. Erbium: Yttrium Aluminum Garnet laser-activated sodium hypochlorite irrigation: a promising procedure for minimally invasive endodontics. Photomed Laser Surg 2017: 35:695-701.
- 26 De Groot S, Verhaagen B, Versluis M, Wu MK, Wesselink P, Van Der Sluis L. Laser-activated irrigation within root canals: cleaning efficacy and flow visualization. Int Endod J 2009; 42:1077-1083.
- 27 Betancourt P, Merlos A, Sierra JM, Arnabat-Dominguez J, Viñas M. Er, Cr: YSGG laser-activated irrigation and passive ultrasonic irrigation: comparison of two strategies for root canal disinfection. Photobiomodul Photomed Laser Surg 2020; 38:91-97. DOI: 10.1089/photob.2019.4645
- 28 Macedo RG, Wesselink PR, Zaccheo F, Fanali D, Van Der Sluis LWM. Reaction rate of NaOCI in contact with bovine dentine: Effect of activation, exposure time, concentration and pH. Int Endod J 2010; 43:1108-1115.
- 29 Seet AN, Zilm PS, Gully NJ, Cathro PR. Qualitative comparison of sonic or laser energisation of 4% sodium hypochlorite on an Enterococcus faecalis biofilm grown in vitro. Aust Endod J 2012; 38:100-106.
- 30 Castelo-Baz P. Martín-Biedma B. Ruíz-Piñón M. Rivas-Mundiña B. Bahillo J, Perez-Estévez A, et al. Combined Sodium Hypochlorite and 940nm diode laser treatment against Mature E. Faecalis biofilms in vitro. J Lasers Med Sci 2012; 3:116-121.
- 31 Preethee T, Kandaswamy D, Arathi G, Hannah R. Bactericidal effect of the 908nm diode laser on Enterococcus faecalis in infected root canals. J Conserv Dent 2012; 15:46-50.
- 32 Yavari HR, Rahimi S, Shahi S, Lotfi M, Barhaghi MH, Fatemi A, et al. Effect of Er, Cr: YSGG laser irradiation on Enterococcus faecalis in infected root canals. Photomed Laser Surg 2010; 28 (Suppl 1):S91-6. DOI: 10.1089/ pho.2009.2539

- 33 Sohrabi K, Sooratgar A, Zolfagharnasab K, Kharazifard MJ, Afkhami F. Antibacterial activity of diode laser and sodium hypochlorite in enterococcus faecalis-contaminated root canals. Iran Endod J 2016; 11:8-12
- 34 El-Tayeb MMN, Nabeel M. Effect of two laser systems on root canal disinfection: an in vitro study. Ain Shams Dent J 2021; 21:72-79. DOI: 10.21608/ASDJ. 2021. 98612.1076
- 35 EL-Gendy SES, Moussa SM, Zaazou AM, Meheissen MA, Antibacterial effect of Er,Cr:YSGG laser under various irradiation conditions in root canals contaminated with Enterococcus faecalis (In vitro study). Ain Shams Dent J 2017; 42:108-112.
- 36 Kolosowski KP, Sodhi RN, Kishen A, Basrani BR. qualitative time of-flight secondary ion mass spectrometry analysis of root Dentin irrigated with Sodium Hypochlorite, EDTA, or Chlorhexidine. J Endod 2015; 41:1672-1677.
- 37 Wang X, Sun Y, Kimura Y, Kinoshita J, Ishizaki NT, Matsumoto K. Effects of diode laser irradiation on smear layer removal from root canal walls and apical leakage after obturation. Photomed Laser Surg 2005; 23:575-581.
- 38 Moura-Netto C, Moura AAM, Davidowicz H, Aun CE, Antonio MPS. Morphologic changes and removal of debris on apical dentin surfaces after Nd:YAG laser and diode laser irradiation. Photomed Laser Surg 2008; 26:263-266. DOI: 10.1089/pho.2007.2180
- Camargo SE, Valera MC, Camargo CH, Fonseca MB, Menezes MM. Effects of Nd:YAG laser irradiation on root canal dentin wall: a scanning electron microscopic study. Photomed Laser Surg 2005; 4:399-404.
- 40 Marending M, Luder HU, Brunner TJ, Knecht S, Stark WJ, Zehnder M. Effect of sodium hypochlorite on human root dentine-mechanical, chemical and structural evaluation. Int Endod J 2007; 40:786-793.
- Mohammadi Z. Sodium hypochlorite in endodontics: an update review. Int Dent J 2008; 58:329-341. DOI: 10.1111/j.1875-595x.2008.
- 42 Rathakrishnan M. Sukumaran VG. Subbiva A. To evaluate the efficacy of an innovative irrigant on smear layer removal-SEM analysis. J Clin Diagn Res 2016; 10:104-106.
- 43 Kandil HE, Labib AH, Alhadainy HA. Effect of different irrigant solutions on microhardness and smear layer removal of root canal dentin. Tanta Dent J 2014; 1:1-11. DOI:10.1016/j.tdj.2014.03.001
- 44 Ulusov ÖİA, Görgül G. Effects of different irrigation solutions on root dentine microhardness, smear layer removal and erosion. Aust Endod J 2013; 39:66-72. DOI: 10.1111/j. 1747-4477. 2010.00291.>
- 45 Saraswathi MV, Ballal NV, Padinjaral I, Bhat S. Ultra morphological changes of root canal dentin induced by 940nm diode laser: An in-vitro study. Saudi Endod J 2012; 2:131-135.
- 46 Domínguez MCL, Pedrinha VF, Oliveira Athaide da Silva LC, Soares Ribeiro ME, Loretto SC, de Almeida Rodrigues P. Effects of different irrigation solutions on root fracture resistance: an in vitro study. Iran Endod J 2018; 13:367-372. DOI:10.22037/iej.v13i3.19247
- Umana M, Heysselaer D, Tielemans M, Compere P, Zeinoun T, Nammour S. Dentinal tubules sealing by means of diode lasers (810 and 980nm): a preliminary in vitro study. Photomed Laser Surg 2013; 31:307-314.
- 48 Rezazadeh F. Dehghanian P. Jafarpour D. Laser effects on the prevention and treatment of dentinal hypersensitivity: a systematic review. J Lasers Med Sci 2019; 10:1-11.
- 49 Sazak H, Türkmen C, Günday M. Effects of Nd:YAG laser, air abrasion and acid etching on human enamel and dentin. Oper Dent 2001; 26:476-481.
- 50 Secilmis A, Altintas S, Usumez A, Berk G. Evaluation of mineral content of dentin prepared by erbium, chromium: yttrium scandium gallium garnet laser. Lasers Med Sci 2008; 23:421-425.
- 51 Kazeminejad E, Niazi M, Geraili E, Rajabi A, Mohammadi M. Effect of endodontic irrigation on mineral content of root canal dentine: a systematic review and meta-analysis. Eur Endod J 2023; 8:114-24.
- 52 Guler C, Malkoc MA, Gorgen VA, Dilber E, Bulbul M. Effects of Er:YAG Laser on mineral content of sound dentin in primary teeth. Sci World J 2014: 2014:578342. DOI: 10.1155/2014/578342
- 53 Malkoc MA, Tasdemir ST, Ozturk AN, Ozturk B, Berk G, Effects of laser and acid etching and air abrasion on mineral content of dentin. Lasers Med Sci 2011; 26:21-27.
- 54 Gurbuz T, Ozdemir Y, Kara N, Zehir C, Kurudirek M. Evaluation of root canal dentin after Nd:YAG laser irradiation and treatment with five different irrigation solutions: a preliminary study. J Endod 2008; 34:318-321.
- 55 Saleh IM, Ruyter IE, Haapasalo M, Ørstavik D. The effects of dentine pretreatment on the adhesion of root-canal sealers. Int Endod J 2002; 35:859-866.

- 56 Ari H, Erdemir A. Effects of endodontic irrigation solutions on mineral content of root canal dentin using ICP-AES technique. J Endod 2005;
- 57 Alhadi D, Jaber FM, Agha MT, Saeed MH. The effect of diode laser irradiation on root canal Dentin. J Int Dent Medl Res 2019; 12:49-
- 58 Saghiri MA, Asgar K, Gutmann GL, Garcia-Godoy F, Ahmadi K, Karamifar K, Asatorian A. Effect of laser irradiation on root canal walls after final irrigation with 17% EDTA or BioPure MTAD: X-ray diffraction and SEM analysis. Quintessence It 2012; 43:127-134.
- 59 Doğan H, Çalt S. Effect of chelating agents and sodium hypochlorite on mineral content of root dentin. J Endod 2001; 27:578-80. DOI: 10.1097/ 00004770-200109000-00006
- 60 Cobankara FK, Erdogan H, Hamurcu M. Effects of chelating agents on the mineral content of root canal dentin. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011; 112:149-154.
- 61 Nogo-Živanović D, Kanjevac T, Bjelović L, Ristić V, Tanasković I . The effect of final irrigation with MTAD, QMix, and EDTA on smear layer removal and mineral content of root canal dentin. Microsc Res Tech 2019: 82:923-930.
- 62 Lin CP, Lee BS, Lin FH, Kok SH, Lan WH. Phase, compositional, and morphological changes of human dentin after Nd:YAG laser treatment. J Endod 2001; 27:389-393.
- 63 Altundasar E, Ozçelik B, Cehreli ZC, Matsumoto K. Ultramorphological and histochemical changes after ER,CR:YSGG laser irradiation and two different irrigation regimes. J Endod 2006; 32:465-468.