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ARTICLE INFO ABSTRACT

ieceivteccij 11}3//2//2%22% Objective: The objective of our study is to mitigate
ccepted : L .. .. . .
Accepted to Online publish: doxorubicin-induced toxicity by combining it with
18/9/2025 dichloroacetate nanoparticles (DCA-PNPs) in Ebhrlich

ascites carcinoma (EAC) mice model. Material &
Methods: Seventy female CD1 mice were split into ten
groups (n=7). (Gp1l) negative control. Groups 2 to 4 were

Keywords: _ administered intraperitoneal (i.p.) with DCA (50 mg/kg),
Dichloracetate nanopartiotes, DCA-PNPs (50 mg/kg), and Dox (0.2 mg/kg) for 2
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Inflammation, EAC model. weeks. From Gp5 to Gpl0, mice were injected i.p. with

EAC cells at a concentration of 0.5 x 10° cells/mouse.
GP6 to GP10 were treated with Dox, DCA, DCA-PNPs,
Dox/DCA, and Dox/DCA-PNPs. On day 14, biochemical
parameters were evaluated. Results: The results
demonstrated that the combination of Dox/DCA-PNPs
exhibited reduction in cardiotoxicity and restoration of
mammary gland inflammation compared to Dox alone
treated group. That evidenced by improved cardiac
functions tests as troponin I, T levels reduction (-91.81, -
9215 %) and decreased inflammation as CRP
concentration reduced by (-69.2 %). Furthermore,
decreased apoptosis of normal cardiac and mammary
gland cells into (3.5 and 0.5 %), respectively.
Conclusions: These findings suggest that combination of
Dox/DCA-PNPs is a promising strategy for improving the
therapeutic efficacy and mitigating the cardiotoxic and
inflammatory side effects of Dox in BC treatment.
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Introduction:

Breast cancer (BC) represents a major health
issue affecting individuals and healthcare
systems worldwide [1]. Ehrlich ascites
carcinoma (EAC) serves as a breast cancer
model sharing similarities with human
breast cancer [2]. Research advances have
improved treatments that enhance patient
outcomes [3]. Chemotherapy remains
crucial in BC  management, with
doxorubicin (Dox) widely used [4]. Dox
works by intercalating with DNA, inhibiting
topoisomerase Il, and producing free
radicals to kill cancer cells [5]. However, its
clinical use is limited by dose-dependent
cardiotoxicity, causing heart failure [6].
Additionally, Dox-induced inflammation
impact cancer progression and treatment [7].
BC research must devise strategies for
reducing cardiotoxicity while retaining
Dox’s anti-cancer effects [4]. One approach
combines Dox with agents that lessen
toxicity while maintaining efficacy [8].
Dichloroacetate (DCA) has emerged as a
promising compound targeting cancer cell
metabolism by  inhibiting  pyruvate
dehydrogenase kinase [9]. DCA acts as a
metabolic regulator, boosting treatment
effectiveness and reducing Dox
cardiotoxicity and inflammation [10].
Nanoparticle-based delivery systems
enhance drug solubility and retention in
tumor tissues, improving outcomes while
minimizing systemic toxicity [11]. These
nanoparticles increase drug concentration in
tumors while protecting healthy organs [12].
The hypothesis of the current study was to
explore anti-cancer impact of the Dox/DCA-
PNPs combinatorial treatment against EAC
cells, with minimizing tissue toxicity,
inflammation in heart and mammary gland
tissues.

Materials and Methods:

Chemicals and drugs

Sodium dichloroacetate (DCA) (>98%,; Cat.
no. 347795), and Doxorubicin hydrochloride
(Dox) (98.0-102.0% HPLC, Mw 579.98,
Cat. no. D1515) were purchased from
Sigma-Aldrich, (Germany). Troponin |, T,

and C-reactive protein ELISA Kits (cTnl,
cTnT, and CRP) (Cat. no. MBS2708301,
MBS726068, and MBS564066), were
purchased from MyBioSource, (San Diego,
CA, USA). L-malondialdehyde (MDA)
(Cat. no. MD 25 29), Nitric oxide (NO)
(Cat. no. 25 33), catalase (CAT) (Cat. no.
CA 25 17), and glutathione (GSH) (Cat. no.
R 2511) were purchased from Bio
Diagnostic company, (Egypt). All other
chemicals used were high grades.

In vivo studies

Experimental animals

Seventy female CD1 mice (21 + 0.5 g) were
purchased from Alexandria University's
animal facility, Egypt. The mice were
acclimated for a week at 23-25°C, 53 + 4%
humidity, and a 12-hour light/dark cycle,
with free access to water and standard feed.
The research was conducted by Tanta
University's Faculty of Science, following
protocol no. IACUC-SCI-TU-0210.
Implantation for tumor cells

EAC cells were given from the National
Institute of Cancer at Cairo University,
Egypt, and then suspended in sterile PBS
[13]. The viability of the cells was assessed
using the trypan blue exclusion method [14].
The cell concentration was 0.5x10°
cellssrmouse  for intraperitoneal  (i.p.)
injection [15].

Experimental design

Mice were (10 groups, 7 mice/each). (Gpl)
acted as normal control. (Gp2-Gp4) control
groups received i.p. DCA (50 mg/kg/day),
DCA-PNPs (50 mg/kg/day) [16], and Dox
(20 mg/kg) thrice weekly [17]. Groups 5-10
were inoculated with EAC  cells
(0.5x10%mouse). Groups 6-10 received i.p.
treatment of Dox, DCA, DCA-PNPs,
Dox/DCA, and Dox/DCA-PNPs. Treatment
lasted 14 days.

Sampling

Upon the experiment end, mice were
slaughtered per each group with sodium
barbiturate (300 mg/kg) according to [18],
and serum samples were collected for
biochemical analysis, then stored at —20 °C.
Heart and mammary gland tissue sections
were also frozen at —20 °C to evaluate
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antioxidant, oxidative stress parameters, and
apoptotic profile.

Homogenate preparation

Heart and mammary gland samples were
cut, weighed, and finely chopped. Using a
glass homogenizer, 10 percent homogenates
were prepared by mixing the tissue with
nine times its volume of chilled 0.05 mM
potassium phosphate buffer (pH 7.4). The
homogenates were then centrifuged at 6000
r.p.m. for 15 minutes at 4°C [19].
Biochemical analyses

Serum Troponin I/T levels were determined
using an ELISA kit (cTnl and cTnT), with
standards (0-1000 pg/mL) used to create a
standard curve, as shown by [20]. CRP was
quantified using a sandwich ELISA Kit
following manufacturer's instructions, as
shown by [21]. Cardiac and mammary gland
levels of MDA, NO, and GSH were
measured using methods described by Li
and [22], [23], and [24]. CAT activity was
evaluated according to [25].

Apoptotic profile

By propidium iodide (PI) and annexin V,
percentage of apoptosis were determined.
This involves fixing heart and mammary
glands cells with ice-cold ethanol, washing
with PBS, and staining with Pl in darkness.
Stained cells were examined with a flow
cytometer, utilising forward and side scatter
measurements to identify individual cells
[26].

Statistical analysis

The results were expressed as mean + SE.
All statistics were conducted using
GraphPad Prism version 6. Two-way
analyses of variance (ANOVA) were
utilized to determine statistical significance.
Group comparisons were made to highlight
significant  effects of the treatment
conditions, where p-value of < 0.05 was
deemed statistically significant.

Result :

DCA-PNPs restore heart oxidative stress
and increased antioxidants

Compared to normal control (Gpl), there
was no significant change in MDA and NO
levels in Ctrl/DCA (Gp2) and Ctrl/DCA-

PNPs (Gp3). However, Ctrl/Dox (Gp4)
showed a significant increase in MDA and
NO levels by +17.5, and +30 %,
respectively (p<0.0001). Untreated EAC
(Gp>5) showed a significant increase in MDA
and NO levels by +136%, and +148 %,
(p<0.0001). Compared to untreated EAC
(Gpb), there was significant reduction in
MDA and NO levels in EAC/Dox (Gp6) to
EAC/Dox/DCA-PNPs (Gp10), that
EAC/Dox/DCA-PNPs (Gp10) was the most
effected group, decreasing by -65 % for
MDA, and -66 % for NO (p<0.0001).
Compared to normal control (Gpl), there
was a significant reduction in Ctrl/DCA
(Gp2), Ctrl/DCA-PNPs (Gp3), and Ctrl/Dox
(Gp4) in GSH level by -12, -11, and -20 %,
(p<0.0001). There was a significant
reduction in Gp2, Gp3, and Gp4 in CAT
activity by -9, -9, and -41 %, (p<0.0001).
Untreated EAC (Gp5) showed a significant
drop-in CAT activity and GSH level by -66
and -65%, (p<0.0001). Compared to
untreated EAC (Gp5), there was a
significant increase in CAT activity and
GSH level in EAC/Dox (Gp6) to
EAC/Dox/DCA-PNPs (Gpl10) (p<0.0001),
where EAC/Dox/DCA-PNPs (Gpl10) was
the most remarkable group, increasing by
+185% for CAT and +179% for GSH (Table
1).

DCA-PNPs restore mammary gland
oxidative stress and increase antioxidants
Compared to normal control (Gpl), there
was no significant change in MDA and NO
levels in Ctrl/DCA (Gp2) and Ctrl/DCA-
PNPs (Gp3). However, Ctrl/Dox (Gp4)
showed a significant increase in MDA and
NO levels by +242, and +41 %, respectively
(p<0.0001). Untreated EAC (Gp5) showed a
significant increase in MDA and NO levels
by +314%, and +126 %, (p<0.0001).
Compared to untreated EAC (Gp5), there
was significant reduction in MDA and NO
levels in EAC/Dox (Gpb) to
EAC/Dox/DCA-PNPs (Gp10), that
EAC/Dox/DCA-PNPs (Gp10) was the most
effected group, decreasing by -76 % for
MDA, and -53 % for NO (p<0.0001).
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Compared to normal control (Gpl), there
was a significant reduction in Ctrl/DCA
(Gp2) and Ctrl/DCA-PNPs (Gp3) in GSH
level and CAT activity. However, Ctrl/Dox
(Gp4) showed a significant reduction in their
levels by -59 and -61 %, respectively for
GSH and CAT, (p<0.0001). Untreated EAC
(Gp5) showed a significant drop-in CAT
activity and GSH level by -65 and -63%,
(p<0.0001). Compared to untreated EAC
(Gpb), there was a significant increase in
CAT activity and GSH level in EAC/Dox
(Gp6) to EAC/Dox/DCA-PNPs (Gpl0)
(p<0.0001), where EAC/Dox/DCA-PNPs
(Gp10) showed more  significance,
increasing by +190% for CAT and +170%
for GSH (Table 2).

DCA-PNPs restore cardiac troponins
activities

Compared to normal control (Gpl), there
was no significant change in both troponin |
and T levels in Ctrl/DCA (Gp2) and
Ctrl/DCA-PNPs (Gp3). However, Ctrl/Dox
(Gp4) showed a significant increase in their
levels by 300 and 350 %, respectively for
troponin I and T (p<0.0001), which
indicated Dox induced cardiotoxicity.
Untreated EAC (Gp5) showed significant
increase in troponin 1 and T levels
represented as 110 + 0.154 and 102 + 0236
pg/mL (p<0.0001) in compared to normal
control (Gpl). Compared to untreated EAC
(Gpb), significant reductions in troponin |
level were observed in EAC/Dox (Gp6) to
EAC/Dox/DCA-PNPs (Gpl10) by -68.18, -
81.81, -86.36, -90.9, -91.81 %, (p<0.0001).
That the most effected group was
EAC/Dox/DCA-PNPs (Gp10), represented
as 9.2 £ 0.762 pg/mL. Furthermore, there
was significant reductions in troponin T
level were observed in EAC/Dox (Gp6) to
EAC/Dox/DCA-PNPs (Gp10) by -60.78, -
72.54, -82.35, -85.29, -92.15 %, respectively
(p<0.0001). That the most effected group
was EAC/Dox/DCA-PNPs (Gpl0),
represented as 8.42 + 0.485 pg/mL, which
indicated normal heart function (Fig. 1).
DCA-PNPs minimize CRP level

Compared to normal control (Gpl), there
was no significant change in CRP level in

Ctrl/DCA (Gp2) and Ctrl/DCA-PNPs (Gp3).
Ctrl/Dox (Gp4) showed a significant
increase in its level by 80 %, (p<0.0001),
which indicated Dox induced high
inflammation rate. Untreated EAC (Gp5)
showed significant increase in CRP level
represented as 150 + 0.154 pg/mL
(p<0.0001) in compared to normal control
(Gpl). Compared to untreated EAC (Gp5),
significant rise in CRP level was observed in
EAC/Dox (Gp6) by 16 %, (p<0.0001),
which indicate inflammation occurred.
While there was a significant reduction in
CRP level were observed in EAC/DCA
(Gp7) to EAC/Dox/DCA-PNPs (Gp10) by -
53.3, -57.3, -60, -62 %, (p<0.0001). That the
most effected group was EAC/Dox/DCA-
PNPs (Gpl0), represented as 57 = 0.762
pg/mL, which indicated restoration into
normal functions without inflammations
(Fig. 2).

DCA-PNPs restrict apoptotic profile in
cardiac and mammary gland tissues

As compared to Untreated EAC (Gp5), chart
revealed that EAC/Dox (Gp6) had
significantly decreased (p < 0.0001) in heart
viable cells as 25.9 % and significantly
increased (p < 0.0001) in number of cells
undergoing apoptosis by annexin V stain
and Pl as 73.6 %, which indicated Dox
cardiotoxicity. While from EAC/DCA (Gp7)
to EAC/Dox/DCA-PNPs (Gpl0) had
significantly increased (p < 0.0001) in the
percentage of viable cells as 66.2, 72.5,
85.6, 95.3 %, and significantly decreased in
apoptotic cells as 31.2, 20.3, 13.4, and 3.5
%, as compared to untreated EAC (Gp5).
According to that, EAC/Dox/DCA-PNPs
(Gp10) was the most effected group,
demonstrating a synergistic effect in reduced
cell death by DCA-PNPs combination (Fig.
3A; 4A).

As compared to untreated EAC (Gp5), the
chart revealed that EAC/Dox (Gp6) had
significantly decreased (p < 0.0001) in
mammary gland viable cells as 23.5 % and
significantly increased (p < 0.0001) in
number of cells undergoing apoptosis by
annexin V stain and Pl as 75.4 %, which
indicated high Dox toxicity for mammary
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gland tissue. While from EAC/DCA (Gp7)
to EAC/Dox/DCA-PNPs (Gpl0) had
significantly increased (p < 0.0001) in the
percentage of viable cells as 70.9, 97.4,
95.5, 99.2 %, and significantly decreased in
apoptotic cells as 27.5, 1.9, 2.6, and 0.5 %,
as compared to untreated EAC (Gpb).
According to that, EAC/Dox/DCA-PNPs
(Gp10) was the most improved group by
Dox/DCA-PNPs combination (Fig. 3B; 4B).

Discussion:

Breast cancer is a major global health issue,
with  research  advances  improving
treatments and their outcomes [1]. Dox
remains crucial in BC management but is
limited by dose-dependent cardiotoxicity
and inflammation [4]. Combining Dox with
agents like metabolic modulator may
enhance its effectiveness and reduce its
toxicity [8]. The current study investigated
the synergetic effect of DCA-PNPs with
Dox on oxidative stress and antioxidant
markers in heart and mammary tissues,
focusing on how DCA-PNPs mitigate Dox-
cardiotoxicity and inflammation risk.
Dox/DCA-PNPs treatment reduced
oxidative stress markers and increased
antioxidants in EAC-bearing mice compared
to conventional chemotherapy. The study
suggests DCA-PNPs may enhance Dox
efficiency in reducing tumor development
while targeting cancer cells, preserving
normal cells, enhancing absorption, and
improving outcomes. Which corresponds
with [27] and [28].

That in present study, Dox increased
oxidative stress in heart and mammary
tissues, showing high MDA and NO levels
and ROS  production. EAC-bearing
exhibited increased MDA and NO levels,
indicating oxidative stress from tumor-
induced dysregulation, that align with [29].
Dox administration reduced MDA and NO
levels, indicating tumor inhibition, while
producing ROS in controls. DCA and DCA-
PNPs reduce MDA/NO by modulating
cancer cell metabolism from glycolysis to
oxidative  phosphorylation, as DCA
increases mitochondrial ROS  causing

apoptosis. This aligned with previous studies
[30] and [31]. DCA-PNPs provide enhanced
bioavailability and targeting, increasing drug
concentrations while preserving normal
tissues [32]. The combined treatment
reduces oxidative stress as: Dox intercalates
genetic information [33], while DCA affects
cancer metabolism [30]. The nanoparticles
scavenge free radicals and enhance
antioxidant defense through improved
mitochondrial function [34].

Antioxidant parameters preserve redox
equilibrium and safeguard against oxidative
damage [35]. In this study the normal group
administered Dox resulted in substantial
decreases in antioxidant levels in both heart
and mammary gland, especially CAT and
GSH levels, indicating potential damage to
normal cells which aligns with [36]. DCA-
PNPs exhibited no alterations in antioxidant
levels within the control group of mammary
glands and a tiny decrease in heart tissue. In
EAC-bearing mice, levels of CAT and GSH
were markedly diminished, indicating that
cancer diminishes oxidative stress resistance
[37]. In our study the EAC groups
administered Dox, DCA, and DCA-PNPs
exhibited small, moderate, and significant
enhancements in both heart and mammary
gland antioxidant levels, respectively. These
correspond with research demonstrating
DCA's capacity to augment antioxidant
enzyme activity [38]. The elevated
antioxidant defences in the both tissues of
treated mice, particularly with
EAC/Dox/DCA-PNPs, suggest that the
combination therapy augmenting
endogenous antioxidant capacity.

Troponin | and T serve as highly specific
markers for myocardial damage [39]. EAC
cells have been shown to cause significant
cardiotoxicity, as noted by [40]. Dox is
known to induce cardiotoxicity, this adverse
effect can manifest as acute or chronic
cardiac dysfunction, potentially leading to
heart failure and also able to generate ROS
and interfere with mitochondrial function in
cardiomyocytes [36]. Study results indicated
a significant increase in troponins levels in
normal group with Dox, which ensure its
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cardiotoxicity in accordance with [41].
Moreover, a significant decrease in
troponins level in all treated groups by
comparing them to EAC-bearing mice
troponins levels, especially group treated
with Dox/DCA-PNPs combination. Which
suggests that DCA-PNPs had effectively
reduced Dox and EAC toxic effects that
cause cardiac damage, that consistent with
previous study [42].

CRP is an acute-phase protein produced by
tissues into blood in response to
inflammation or infection in the body [43].
Elevated CRP levels in the blood indicate
the presence of systemic inflammation,
which can be associated with various
conditions such as cardiovascular disease
[44]. Our results showed that control and
EAC-bearing mice groups administrated
Dox had significant increase in CRP level,
which indicates high Dox-inflammatory
response in normal, and cancer cells,
demonstrates its side effects which
supported by recent studies [7] and [45].
While DCA and DCA-PNPs in control
groups had normal CRP levels, indicates
how safer than Dox. In all treated EAC
groups showed restoration of CRP normal
levels, especially in Dox/DCA-PNPs groups
indicated that DCA-PNPs decreased
systemic inflammation.

Apoptosis, or programmed cell death, is
crucial for cellular function and homeostasis
[46]. Cancer treatments, particularly Dox,
induce apoptosis in cancerous and normal
cells [47]. Dox-induced cardiotoxicity
affects cardiomyocytes through ROS
production, impaired metabolism,
cytochrome c release, and p53-dependent
pathways, activating caspase-3 and causing
cell death [48]. In breast cancer treatment,
Dox-induced apoptosis targets cells as DNA
breaks activate ATM/ATR signalling,
upregulate pro-apoptotic genes (e.g., Bax,
PUMA), and activate caspases, leading to
apoptotic death [49]. In our study EAC-
bearing mice treated with DCA, DCA-PNPs,
Dox/DCA, and Dox/DCA-PNPs showed
increased live cells and decreased apoptotic
cells in cardiac and mammary tissues,

indicating effective cancer targeting. The
synergistic effect aligns with research
showing DCA's ability to sensitize cancer
cells to chemotherapy [8]. Treatment with
EAC/Dox/DCA-PNPs demonstrated potent
apoptosis induction while  minimizing
normal cell death compared to Dox alone,
which increased normal cell death in both
tissues. This suggests DCA-PNPs may
mitigate Dox-induced normal cell death and
target only cancerous cells.

Conclusion:

The combination of Dox with DCA-PNPs
shows potential amelioration of
cardiotoxicity and inflammation while
enhancing anti-cancer efficacy in breast
cancer treatment. This study provides a
foundation for optimizing combinatorial
therapies to improve patient outcomes,
moving toward more effective and safer
therapeutic strategies.

Limitations and future prospective:

The EAC model may not fully replicate
breast cancer complexity. DCA-PNPs and
Dox require long-term investigation and
dosage optimization for clinical use. Future
research may translate findings to trials,
evaluating Dox/DCA-PNPs' safety and
efficacy in breast cancer patients for
treatment protocols.
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Table 1: Cardiac oxidative stress and antioxidants parameters in different experimental groups.

Groups MDA NO CAT GSH
(nmol/g T) (UM) (U/mg P) (mol/g T)
Ctrl 6.85+0.05 7.25+0.15 33.1+0.2 23.840.3
Ctrl/DCA 7.10 +0.07 7.86 +0.05 31.7 +0.6* 20.8 £0.4*
% Change 3.6 % 8.4% -9 % -12%
Ctrl/DCA-PNPs 6.75+ 0.05 7.85 +0.05 31.7 +0.7* 21.1+0.7*
% Change -1.5% 8.3% -9 % -11%
Ctrl/Dox 8.1 +0.05* 9.4+0.4" 20.65 £0.3* 19.1+0.05*
% Change 175 % 30 % -41 % -20 %
EAC 16.2+0.1* 18+0.1* 11.2+0.65* 8.2+0.7*
% Change 136 148 -66 -65
EAC/Dox 6.3+0.1" 7.5+0.05" 24.3+0.55" 20.1+0.06"
% Change -61 -58 116 145
EAC/DCA 7.75+0.25" 8.5+0.1" 21.47+0.32" 19.4+0.6"
% Change -52 -53 90 136
EAC/DCA-NPs 5.9+0.005 * 7.3+0.117 28.1+0.6" 21.8+0.5"
% Change -63 -59 150 165
EAC/Dox/DCA 6.2+0.1" 6.8+ 0.18" 23.840.2" 20.2+0.1"
% Change -63 -62 112 146
EAC/Dox/DCA-PNPs 5.6+0.11" 6.21+0.11" 32.1+0.2" 22.9+0.1"
% Change -65 -66 185 179

Data were presented as mean + SE n=4, (*p<0.0001) value: versus normal control group,
("p<0.0001) value: versus EAC bearing group. P: protein, and T: tissue. MDA: monoaldehyde,
NO: nitric oxide, CAT: catalase, and GSH: glutathione reductase.
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Table 2: Mammary gland oxidative stress and antioxidants parameters in different experimental

groups.
MDA NO CAT GSH
Groups
(nmol/g T) (UM) (U/mg P) (mol/g T)
Ctrl 4.4+0.1 14+1 21.35+0.25 26.15 +0.35
Ctrl/DCA 4.65 +0.05 13.8+0.2 20.8+0.3 25.25 +0.25
% Change 6 % -1.4% 3% 3%
Ctrl/DCA-PNPs 5.25+ 0.05 14.4 +0.6 22.15+0.15 25.2 +0.1
% Change 19 % 3% 4% -4 %
Ctrl/Dox 15.05 +0.05" 19.7+0.3 8.3+0.3" 10.7+0.3"
% Change 242% 41 % 61 % -59 %
EAC 18.2+0.1" 31.65+1.65" | 7.45:0.05" 9-6_22%/15
% Change 314% 126 % -65 % ’
EAC/Dox 4.75+0.25" 175+25" 19.1+0.1" 17.65 + 0.15*
EAC/DCA 5.15 + 0.45" 15.3+0.1* 20.85+0.15" 223+0.7"
% Change -72% -52 % 180 % 131 %
.
EAC/DCA-NPs 6.7+0.9" 17.3+1.3" 178:08" | 192*0IS
9 -63% -45 % 139 % <0.0001
Y% Change 0 99 %%
EAC/Dox/DCA 51+0.2" 15.6 + 0.8" 20.25+0.15" 21.85+0.15"
EAC/Dox/DCA-PNPs | 445 +0.15" 15+1°* 21.6+0.3" 26.05+0.65"

Data were presented as mean + SE n=4, (*p<0.0001) value: versus normal control group,
(*p<0.0001) value: versus EAC bearing group. P: protein, and T: tissue. MDA: monoaldehyde,
NO: nitric oxide, CAT: catalase, and GSH: glutathione reductase.
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Figure 1: Serum troponin | level (A), and serum troponin T level (B) in all groups, data are
presented as mean + SE n=4, (*p<0.0001) value: vs. control group, (*p<0.0001) value: vs. EAC-
bearing group.
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Figure 2: Serum CRP concentration in all groups, data are presented as mean + SE n=4,
(*p<0.0001) value: vs. control group, (*p<0.0001) value: vs. EAC-bearing group.
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Figure 3: Cardiac annexin V of EAC-bearing cells and all treated groups (A), Mammary gland
annexin VV of EAC-bearing cells and all treated groups (B). Results were expressed as mean +
SE n=4. (p value <0.0001) is significantly expressed, where * significant in all treated groups vs.
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