J. Pest Control & Environ. Sci. Vol 2 pp 21-27, 1990 Symposium of IPM & E.P. Nov. 7-8, 1990 Alex. Egypt.

Effect of Some Pesticides on the Antioxidant Enzymes and Lipid Peroxidation in Carp Tissues

By

K.\$.EL-Gendy, N.S.Ahmed, N.M.Aly, N.Saber and A.H.EL-Sebae

Plant Protection Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt.

* Institute of Oceanography and Fisheries, Alexandria.

ABSTRACT

A Pilot study was carried out to measure specific activity and distribution of antioxidant enzymes; catalase (C-ase) and superoxide dismutase (SOD) and lipid peroxidation (LP) in brain, liver, kidney, gill and muscle of common carp (Cyprinus carried L.). The highest level of catalase was found in liver (468.0 units/gm wet tissue) followed by kidney. The activity of SOD in liver was two-fold that in kidney. And the highest level of LP was observed in brain.

The in vivo effects of half IC_{50} and IC_{50} of pyrazophos, glyphosate, fenvalerate and copper surface after 95 hours on C-ase, SOD and LP of fish were studied. The greatest induction of liver C-ase was noticed by glyphosate, while the least was by C_4 Sc_4 . Different posticides have different effects on SOE activity, oscillating between activition and inhibition. Brain, kidney and liver were chosen to evaluate the effect of posticides on lipid perchidation as a food quality. Liver was the most culnerable to this harmful phenomenon that was nighly induced.

INTRODUCTION

Many pesticides are extremely toxic to fish in the environment (Pimental, 1971). Moreover, aquatic riota consumed as food stuff represent a source of human exposure to toxic xenominates. The bioconcentration of toxicants by aquatic organisms is considered to be the most important problem among the chronic effects of pesticides to non-target organisms.

Lipid peroxidation has been broadly defined by Tappel (1973) as the oxidative deterioration of polyumsaturated lipid. Lipid peroxidation has been shown to be an exceedingly damaging biological process. The most general defense of aerobic organisms against lipid peroxidation lies in; the structural characteristics

of cell membranes (Rouser et al., 1968) and in antioxidant enzymes include SOD (Mc Cord and Fridovich, 1969) and catalase (Beers and sizer, 1952).

The objective of this work was to study the specific activity of catalase and superoxide dismutase and lipid peroxidation in different tissues of common carp. Then to evaluate the effect of LC_{25} and LC_{50} of four common pesticides (Pyrazophos, glyphosate, fenvalerate and Cu SO_4) on these enzymes.

MATERIALS AND METHODS

1. Chemicals:

Four pesticides were used:- Pyrazophos, 30 % EC, Hoechst company, west Germany; Glyphosate, 48 % EC, Monsanto Company, USA; Fenvalerate, 20 % EC, Sumitomo chemical company, Japan. And Copper Sulfate (Chemical Pure).

2 . Tested animals:-

The common carp (<u>Cyprinus carpio L.</u>) was collected from saft Khalid farm in Etay AL-Barood. The fish was kept in large tanks with aerated tap water and acclimated to laboratory conditions for two weeks before the experiment began.

- 3. Biochemical Studies:-
- a. <u>Distribution of C-ase, SOD and LP in different tissues of fish:</u>

 A pilot study was carried out to measure the level of C-ase, SOD and LP in brain, liver, kidney, gill and muscle.
- b . In vivo effects of half LC_{50} and LC_{50} of tested pesticides on C-ase, SOD and LP of common carp:-

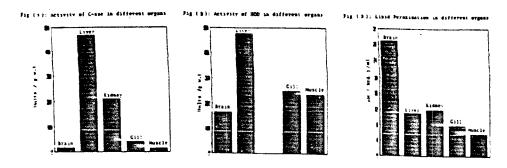
The experiment was conducted using nine groups (ten fishes each). Eight groups were treated with half $\rm LC_{50}$ or $\rm LC_{50}$ values of pyrazophos, glyphosate, fenvalerate and copper sulfate (EL-Gendy et al. 1990), and the ninth group was used as a control. Three fish each from control and treatment were killed after 96 hours. Then, brain, liver, kidney and muscle were removed and homogenized in 10 volumes (W/V) of physiological saline solution. The homogenates were then centrifuged at 6,000 x g for 30 minutes. The supernatant was used for each assay.

Catalase assay:- The enzyme activity was estimated by the method of Beers and sizer (1952). The enzyme activity is given in Bergmeyer units (BU) per gram wet tissue. A unit is the amount of enzyme which liberates half the peroxide oxygen from a hydrogen peroxide solution of any concentration in 100 seconds at $25~^{\circ}\text{C}$.

Simeroxide dismutase assay:- SOD activity was measured by the adrenochrome method of Misra and Fridovich (1972) and Hien, et al. (1974). The essence of the method is that adrenaline transforms spontaneously to adrenochrome in the presence of air at pH 10.2. This spontaneous oxidation of adrenaline is inhibited to an extent depending on the amount of SOD. Activity of SOD is calculated as units per gram wet tissue. A unit of SOD can be regarded as that amount of enzyme which causes a 50 % inhibition in the extinction change in one minute compared to the control.

Lipid peroxidation assay: Determination of lipid peroxidation is carried out according to the method of placer, et al. (1966) and Nair and Turner (1984), using thiobarbituric acid. Lipid peroxidation is expressed as n moles of malondialdhyde (MDA) per ml.

All the data were expressed as mean \pm SD and were statistically analyzed by student's T-test with P<0.05 as the level of significance.


RESULTS AND DISCUSSION

Catalase

Catalase is the first line of defence against $\rm H_2$ $\rm O_2$, levels of catalase activity in different organs of common carp were repersented graphically in fig.1. The highest level of enceme activity was found in liver (463.6 units/g $_{\rm c}$ t) followed by kidney, while the least was in brain and muscle. Our results have such Matkovics, at al. (1977) who found that the liver, spheer, RBC who because the highest catalase activity in some important experimental as the liver while the oracl contained the least society. Therefore, the live, and discuss whose for curther studies to a condition in vive of extra activity was for the live and discuss and $\rm Co$ $\rm SC_2$ on latalase at liver and $\rm Co$ $\rm SC_2$ on latalase at liver and $\rm Co$ $\rm SC_2$ or presented fish were with higher makes in Table 11. This induction was finally as a higher significant on results inducated that the liver and of glyphosete and the least was by $\rm Co$ $\rm SC_2$. Also it was notized that the effect in catalase attivity was dose dependent.

Surventicade dismutase -

Inclinary experiments showed that liver contained almost twice as much as the SCI activity of brain, gill and muscle, while kidney showed no demonstrable activity (fig. 2 ... This data was parallel to that by Hien, et al. 1975) and Matkovics, et al. (1977).

Liver was selected to estimate the effect of tested pesticides on fish SOD activity. It is clear, as shown in table 1 , that the different pesticides have different effects on SOD activity, oscillating between activition and inhibition. Inhibition was noticed at LC $_{50}$ of glyphosate (54.54 %) and half LC $_{50}$ of Cu SO $_4$ (45.1 %). No change in the activity of liver SOD was produced by LC $_{50}$ of Cu SO $_4$. Activition was caused by all other treatments.The greatest activition was noticed by half LC $_{50}$ and LC $_{50}$ of pyrazophos and the least activition was by LC $_{50}$ of fenvalerate.

Lipid peroxidation:-

Lipid peroxidation has been broadly defined as the oxidative deterioration of polyumsaturated lipid. Lipid peroxidation, as an undesirable food quality, was demonstrated at its peak in brain followed by liver and kidney and at its least level in gill and muscle (fig. 3). It should be mentioned that fish tissues contain a considerable quantity of lipid, mainly phospholipids which are readily decomposable. It is well known that the amount of polyumsaturated fatty acids is high in brain, kidney and liver. This is parallel to the level of lipid peroxidation.

Brain, kidney and liver were chosen for further studies to compare the effect of pesticides on lipid peroxidation. Liver was shown to be the most vulnerable to this harmful activition, less activition was noticed in the kidney, and the least activition was demonstrated in brain (table 1).

we can conclude that pyrazophos, glyphosate, fenvalerate and Cu SO_4 induced significantly the activity of superoxide metabolism enzymes (C-ase and SOD) and lipid peroxidation . The role of enzymes systems that can metabolize lipid peroxides or inhibit their formation is very important. SOD is an enzyme that acts as a primary biological protector, which defends cells from the damaging effect of superoxide radicals ($\bar{\mathrm{O}}_2^*$) by dismutation to hydrogen peroxide and oxygen (Mc Cord and Fidovich, 1969). Catalase, eliminates hydrogen peroxide (Wdzieczak, et al. 1981, 1982 and Gabryelak, et al. 1983). An increase of the activity of these enzymes can represent an undesirable food quality in fish. Sublethal levels of pesticides seem to be harmful from this point of view.

Table (1): In vivo effects of LC₂₅ and LC₀₀ of tested pesticides on catalase, superoxide dismutase and lipid peroxidation in different organs of common carp (Cyprinus Carpio L.) after 96 hr.

		- The state of the			S.A (mc	S.A (mean ± 5.D)				
			Pyrazophos	ophos	Gly	Glyphosate	Fenvalerațe	erațe	Cu 504	, ,
Parameters Organs Control	Organs	Control	ł LC _{S0} LC _{S0}	LC _{S0}	1 LC ₅₀	1 LC 50 LC 50	1 LC ₅₀ LC ₅₀	$^{\mathrm{LC}_{\mathrm{S0}}}$) 1.C.50 LC.50	05.71
C-ase	liver	liver 468,6 ± 33.2 764 ±	764 ± 15	2002 ± 123	1734 ± 0.0	2185 ± 112	15* 2002 ± 123 1734 ± 0.0 2185 ± 112 834.2 ± 118.8 956.2 ± 106.3 781 ± 65.2 842.8 ± 168.2	956.2 ± 106.3	781 ± 65.2	842.8 ± 168.2
	Ridney	Ridney 212.5 ± 0.0 224.3	224.3 ± 11.8	247.9 ± 35.5	250 ± 10	397.3 ± 27.7	229.7 ± 0.9	276.5 ± 26.3	187.4 ± 17.4	230.3 ± 12.5
806	liver	500	1562.5	1543.4	806.5	227.3	1000	628.1	274.7	500
linid	brain	28.9 ± 2.0	32.6 ± 6.1	70 ± 4.4	85 ± 8	65 ± 3	livid brain 28.9 ± 2.0 32.6 ± 6.1 70 ± 4.4 85 ± 8 65 ± 3 29.5 ± 0.3 31.4 ± 3.6 38.3 ± 2.2 70.5 ± 5.5	31.4 ± 3.6	38.3 ± 2.2	70.5 ± 5.5
Peroxidation	Ridney	11.9 ± 1.1	55.9 ± 1.7	26 ± 1.1	33.7 ± 2:2	31.3 ± 1.2	18.4 ± 1.1	20.6 ± 1.1	16.9 ± 0.6	22.3 + 4.9
	liver	11.1 ± 0.8	59.7 ± 2.7	22.3 ± 2.2	16.8 ± 2.2	40.7 ± 1.7	35.3 ± 2.7	43.4 ± 0.0	67.4 \$ 2.5	69.3 \$ 9.6

G-ase activity is expressed as (thits / gm wet tissue) SOD activity is expressed as (thits / ml) lipid peroxidation is expressed as (n moles maloudialdehyde / ml) Significantly different from control (P < 0.05) Highly significant different from control (P < 0.05)

. :

REFERENCES

- Beers, R.F., Jr. and I.W. Sizer. (1952). Spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem., 195: 133 140.
- El-Gendy, K.S., N.M. Aly, N.S. Ahmed and A.H. El-Sebae. (1990).
 Comparative toxicity of some pesticides to common carp
 and their effects on biochemical targets in living tissues.
 In press.
- Gabryelak, T.; M. Piatkowska; W. Leyko and G. Peres. (1983). Seasonal variations in the activities of peroxide metabolism enzymes in erythocytes of freshwater fish species. Comp. Biochem. Physiol., 75C: 383 385.
- Hien, P.V.; M. Kovacs and B. Matchovices. (1974). Properties of enzymes. I. Study of superoxide dismutase activity change in human placenta of different ages. Enzyme, 18: 341 347.
- Hien, P.V.; M. Kovecs and B. Matchovices. (1975). Properties of enzymes. II. Comparative study of superoxide dismutase activity in rat tissues. Enzyme, 19: 1-4.
- Matkovics, B.; R. Novak; H.D. Hanh; L. Szabo; I. Varga and G. Zalesna. (1977).
 A comparative study of some more important experimental animal's peroxide membabolism. Comp. Biochem. Physiol., 56B: 31 34.
- McCord, J.M. and I. Fridovich. (1969). Superoxide dismutase, an enzyme function for erythrocuprein (hemocuprein). J. Biol. Chem. 244(22): 6049-6055.
- Misra, H.P. and I. Fridovich. (1972). The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem., $\underline{247}$ (10): 3170 3175 .
- Nair, V. and G.E. Tuner. (1984). The thiobarbituric acid test for lipid peroxidation: Structure of the adduct with malondial dehyde. Lipids, 19: 84-95.
- Pimental, D. (1971). Ecological affect of pesticides on non-target species Washington, D.C. Office of the pres. Office of SCi. and Tech.
- Placer, Z.A.; L.L. Cushman and B.C. Johson. (1966). Estimation of product of lipid peroxidation (malondialdehyde) in biochemical systems. Anal. Biochem., 16: 359 364.
- Rouser, G.G.; : J. Nelson; S. Fleisher and G. simon. (1968). Lipid composition of animal cell membranes, organelles and organs. In: Biological Membranes. D. Chapman, Ed. Academic Press: New York, P 5.
- Tappel, A.L. (1973). Lipid peroxidation damage to cell components. Fed. Proc., 32: 1870 .
- Wdzieczak, J.; G. Zalesna; A. Bartkowiak; H. Witas and W. Leyko. (1981). comparative studies on superoxide dismutase, catalase and peroxidase levels in erythrocytes of different fish species. Comp. Biochem. Physiol., 68B: 357 - 358.
- Wdzieczak, J.; G. Zalesna; E. Wugec and G. Peres. (1982). Comparative studies on superoxide dismutase, catalase and peoxidase levels in erythroctyes and liver of different freshwater and marine fish species. Comp. Biochem. Physiol., 73B: 361 - 365.

الطخيس العربيسين

تم تقدير مستوى انزيس الكتاليز والسوير أوكسيد ديسيوتيز وأيضا عبلية أكسدة الدهن في الأضاء المختلفة لسبك السروك (الكهد الكلية الخياشيم النخ المخلات) وقد وجد أن الكسيد أكثر الأضاء نشاط لهذين الأنزيين وبينط المخ كان اكثر الأضاء التي يتم فيها علية اكسدة الدهن نتيجه لارتفاع نسبة الدهن فيسسمه و

كل درستأثير تعرض الاسطاك للتركيز السبب لموت نصف الافراد ونصف هذا التركيز لمدة ١٦ ساعه من جيدات البيرا زوفوس الجليفوسات الفنظ ليرات وكبرينات النحاسطى انزيس الكتاليز والسوسسر أوكسيد ديسيونيز وعلية أكسدة الدهن وقد وجد أن الجيدات المختبره كان لها دور كبير في زيسادة نشاط انزيسي الكتاليز والسوسر اوكسيد ديسيونيز بالاضافه لزيادة علية اكسدة الدهسن م