10.21608/avmj.2025.369724.1640

Assiut University website: www.aun.edu.eg

ISOLATION AND STUDY OF THE MOLECULAR CHARACTERISTICS OF MOST GRAM-NEGATIVE BACTERIA FROM CASES OF GENITAL TRACT INFECTIONS IN COWS

FRAH NOOH ¹ AND BALSAM Y. RASHEED ²

¹ Department of Microbiology, College of Veterinary Medicine, University of Mosul, Mosul, Iraq ² Department of Microbiology, College of Veterinary Medicine, University of Mosul, Mosul, Iraq

Received: 7 April 2025; Accepted: 10 July 2025

ABSTRACT

Bacterial infections of the genital tract are among the most important problems facing livestock herds, leading to infertility, abortion, and poor meat production. Our research aimed to isolate and molecularly study the most crucial Gram-negative microorganisms responsible for genital tract infections in cows, investigating their susceptibility to the most significant antibiotics, and identifying the most important virulence factors. Escherichia coli had the highest isolation rate of 44%, followed by Proteus mirabilis at 7.4%, and the lowest percentage was for Klebsiella spp., Serratia marcescens, and Enterobacter spp., at 1.5%. Through the study, E. coli was the most isolated in cases of metritis, endometritis, and vaginitis. It was also isolated at a high rate in cases of retained placenta and dystocia, which are considered predisposing factors for reproductive system infections at 33.3% and 20%, respectively. E. coli has shown absolute resistance to the antibiotics Imipenem, Tetracycline, and Cefixime. At the same time, Proteus mirabilis showed absolute resistance to Azithromycin, Tetracycline, and Nitrofurantoin. The *UidA* gene was used to confirm the *E*. Coli isolates, and virulence factors were detected by PCR using specific primers for the stx1 and stx2 genes. All the isolates of Proteus mirabilis contained the virulence genes zapA and ureC.

Keywords: Genital tract infection, *E.coli*, *Proteus* spp, PCR.

INTRODUCTION

Reproductive efficiency in farm animals and cattle breeding fields plays a crucial role in determining the production rate from an economic perspective. Reproductive capacity and animal efficiency are affected by pathogenic infections resulting from the presence of

Corresponding author: BALSAM Y. RASHEED Email address: balsamyr20@uomosul.edu.iq

Present address: Department of Microbiology,
College of Veterinary Medicine, University of Mosul, Mosul, Iraq.

pathogens, some of which are non-specific (Patel et al., 2019). The reproductive efficiency of cows is significantly affected by problems that occur in the genital tract, which negatively affect it, such as repeated reproduction, retained fetal membranes, abortion, uterine secretions, vaginal and uterine prolapse, stillbirth, and dystocia (Hussain et al., 2024). The most common genital tract infections and diseases are salpingitis, oophoritis, uteritis, endometritis, cervicitis, and vaginitis. Among the diseases affecting modern dairy cows, metritis and endometritis are the most studied and economically important

(Channo et al., 2022). Damage to the uterus occurs as a result of stillbirth, retained placenta, cesarean section, twin births, or metabolic disorders such as milk fever and ketosis; damage that occurs as a result of gastric displacement; also, to an imbalance in the immune system due to weak white blood cell function, all of which led to damage to the genital tract and thus expose it to bacterial infections (Safdarian et al., 2023). The source of infection, the subsequent birth, the animal's diet, and postpartum problems are all linked to the presence and variety of bacteria in the uterus (Adnane & Chapwanya, 2022). Microbes present in the vagina and contamination through feces are a source of colonization of the uterine lining, causing infections of the genital tract. Escherichia coli, Proteus spp., Gardnerella vaginalis, Trueperella pyogenes, and Gram-negative bacteria are among the most important bacteria that cause uterine disorders and infections (Ong et al., 2021). Escherichia coli is naturally present in the microbiome, where it contributes to maintaining the balance of organisms., is also present in the large intestine of infants for hours after birth (Murphy et al., 2021). These bacteria live symbiotically, causing no harm, producing vitamins, maintaining immune balance, and creating a barrier against pathogenic bacteria that would otherwise seize the opportunity to cause infection (Aleksandrowicz et al., 2021). Many researchers have confirmed that it is the most important and widely studied on a global scale (Puvača & Frutos, 2021). There are various types of Escherichia coli, including one that is pathogenic within the intestine, another that causes infections outside the intestine (Akhardanesh et al., 2016), and a third type that is symbiotic and does not cause harm to the host (Osinska et al., 2023). Certain isolates of E. coli cause intestinal or extraintestinal diseases in both humans and such as hemolytic animals. syndrome, hemorrhagic colitis, diarrhea, and urinary tract infections (Karshenas et al., 2024). These bacteria

caused diarrhea in young cows, which later led to endometritis and inflammation of the uterus (Morris et al., 2023). It is thought to be one of the most significant bacteria that cause uterine infections and the most frequent of cow uterine cause contamination in the initial weeks following calving (De Cassia Picudo et al., 2019; Schouten et al., 2023). Several factors, including the presence of *E. coli*, influence the frequency and severity of uterine diseases in cows (Garzón et al., 2024). Recently, E. coli has been identified as a cause of endometritis in dairy cows carrying the cdt, astA, ibeA, hlyA, stx, hlyE, fyuA, and fimH genes, which are responsible for pathogenicity (Keyang et al., 2023). It is responsible for the most common diseases in animals and was isolated from the vagina of cows (Das et al., 2025). It causes serious infections in the genital tract, leading to decreased fertility. in addition to inflammation of the uterus and its lining after birth, which causes infertility due to the extended period between birth and pregnancy (Conzalez et al., 2020; Agrawal et al., 2021). Pathogenic E. coli produces Stx1 and Stx2. Shiga toxins, also known as type A-B toxins, cause hemolytic uremic syndrome and hemorrhagic colitis by preventing the production of proteins. The genes stx1 and stx2 encode them, due to their bloodborne transmission, these bacteria have been connected to uterine infections endometritis in numerous (Cagnoli et al., 2024). Compared to strains obtained from the uterus of clinically healthy animals, E. coli strains that cause a terminal inflammatory response were more invasive and adherent to endometrial tissue in vitro (Raheel et al., 2020). Several studies in the field of livestock breeding have reported that the uterus of pregnant cows contains zoonotic Proteus mirabilis (Liu et al., 2023). Proteus mirabilis possesses the *ureC* gene, which is crucial in the production of the urease enzyme, which helps raise the pH, thereby reducing the viability of other organisms. They also possess the zapA gene, which works to break down the IgA (Gaston et al., 2021). Most studies have confirmed that the presence of the ureC gene increases the pathogenicity of P. mirabilis, and a synergistic effect is observed with high expression of the ureC and zapA genes (Phan et al., 2008). Other bacteria found in uterine diseases include (Acinetobacter spp, Trueperella spp, Fusobacteria spp., and Peptostreptococci (Rosales spp. Ametaj, 2021). There are several methods used to diagnose infections of the uterus, endometrium, and vagina, including vaginal speculum examination (Ault et al., 2019), rectal examination of the uterus, uterine biopsy, and the most important of which is the cultivation of vaginal secretions and fluids on media specific to bacteria. which international most companies provide. In recent years, genetic diagnostic methods, such as the polymerase chain reaction test, have become the best diagnostic methods (Rasheed et al., 2024). In order to identify the most prominent solutions in the field of animal breeding, the stx1, stx2, zapA, and UreC genes were chosen and molecularly diagnosed due to their significance and impact on the genital system.

MATERIALS AND METHODS

Ethical approval

Under the guidance of a specialist committee, the work was approved by the University of Mosul's College of Veterinary Medicine Ethics Committee, which issued number UM.2024.039. All relevant procedures and instructions were adhered to. Remove

Study region

The study was conducted in several locations throughout the Nineveh Governorate, including the veterinary hospital in Bab Sinjar and the districts of Nimrud and Shamsiyat, from September 2024 to February 2025. These locations

were picked because they are easily accessible and have a comparatively high number of dairy cows.

Isolation and identification of gramnegative bacteria

The vulva was cleaned with an antiseptic. A sterile speculum was used to guide the swab into the vagina. Swabs were collected from infected cows that were experiencing excessive discharge between 5 and 30 days postpartum (Mekibib et al., 2024). The swabs were placed in Tryptone soya broth medium supplied from [HiMedia, India] until they were delivered to the Laboratory. Swabs were cultivated on blood and MacConkey agar supplied from [HiMedia, India] and incubated at 37°C for 24 h (Rasheed et al., 2024). After staining, the VITIK 2 compact system was used for confirmatory diagnosis, which involves dividing the bacteria into Gram-positive and Gram-negative categories. After the diagnosis was completed, only the Gramnegative bacteria with the highest percentage were taken for study purposes. Gram-negative bacteria were subcultured in heart infusion agar to obtain single colonies, and these were saved on a Slanta (Talaro and Chess, 2018).

Antibiotic susceptibility testing

Antibiotic sensitivity testing was used, using the disc diffusion method, measuring the area of inhibition, comparing it with the standard, and selecting the most resistant isolates of 23 *E. coli and 4 Proteus mirabilis* (Naji *et al.*, 2023).

DNA Extraction

DNA was extracted according to Geneaid Biotech Ltd, Taiwan, Catalogue No: GBB100, as instructed by the manufacturer, and the obtained DNA was kept at -20°C (Rasheed *et al.*, 2024).

Amplification of DNA

Primers and their information are illuminated in Table (1). A confirmatory test

for the diagnosis of *E. coli* was performed using primers specific to the *UidA* gene forward 5" CCA AAA GCC AGA CAG AGT "3 and reverse 5"GCA CAG CAC ATC AAA GAG"3 (Al-Aalim *et al.*, 2022). At the same time, the *Stx1* and *Stx2* genes were detected (Momtaz *et al.*, 2012). A confirmatory test for the diagnosis of

Proteus mirabilis was carried out with primers designed specifically for the 16S rRNA gene forward 5"AGAGTTTGATCC-TGGCTCA"3 and reverse 5"TACGGTT-ACCTTGTTACGACTT"3 (Abbas et al., 2015). At the same time, the ZapA and UreC genes were detected (Alchalaby et al., 2025).

Table 1: Sequences of the virulence factors primer and PCR product (stx1,stx2, UidA) for E.coli and (16S RNA, zapA & ureC) for Proteus mirabilis

No	Primer	Sequence	Size bp	Reference	
1	Stx1 -	5" CGA TCG TCA CTC ACT GGT TTC ATC A"3	- 366		
		5"TGC CAT TCT GGC AAC TCG CGA TGC A"3		Momtaz <i>et al.</i> ,2012	
	Stx2 -	5"CGA TCG TCA CTC ACT GGT TTC ATC A"3	202		
2		5 "GGA TAT TCT CCC CAC TCT GAC ACC"3	- 282		
	Uid A -	5"CCA AAA GCC AGA CAG AGT"3	622	Al-Aalim <i>et</i> al.,2022	
3		5"GCA CAG CAC ATC AAA GAG"3	- 623		
	16S	5"AGAGTTTGATCCTGGCTCAG"3	- 1500	Abbas <i>et al.</i> ,2015	
4	RNA	5"TACGGTTACCTTGTTACGACTT"3	- 1300		
	zapA	5"ACCGCAGGAAAACATATAGCCC"3	<i>5.</i> 40	Alchalaby <i>et</i>	
3		5"GCGACTATCTTCCGCATAATCA"3	- 540		
-	C	5"GTTATTCGTGATGGTATGGG"3	217	al.,2025	
6	ureC -	5" ATAAAGGTGGTTACGCCAGA"3	- 317		

RESULTS

The results of bacterial isolation from a total of 70 samples from cows that exhibited clinical signs revealed the isolation of 48 single isolates, 10 mixed isolates, and 12 cases that did not yield any bacterial growth. The highest percentage of isolation of Escherichia coli bacteria was 44%, followed by Proteus mirabilis with 7.4%. Also, Klebsiella spp., Serratia ficaria, and Enterobacter spp. had the same percentage of 1.5%. Then, Staphylococcus spp. was represented by 5 bacteria: Staphylococcus lentus (3%), Staphylococcus chromogenes (1.5%), and Staphylococcus xylosus (1.5%). As for the rest of the isolates, their percentages differed, as shown in Table (2); only the Gram-negative bacteria with the highest percentage were selected for study purposes.

Among 26 cases of metritis, 30 isolates were identified, with the largest share being

E. coli, accounting for 50%. In the case of endometritis, among 17 cases, 10 isolates were diagnosed with E. coli, at 66.6%. Regarding vaginitis, there were four cases, with one isolate diagnosed for each of E. coli, Proteus mirabilis, and Enterococcus faecium, at a rate of 20% for each (Table 3).

In the study of the risk factors for cows contracting genital tract infections, 6 cases of retained placenta were recorded and 6 isolates were diagnosed, the highest percentage was for *E. coli* at 33.3%, and 6 cases of dystocia, at 5 isolates for each of *E. coli*, *Enterobacter* spp, *Serratia ficaria*, *Staph—xylosus* and *Enterococcus faecalis*, at a concentration of 20%. Ten cases of abortion were recorded, and 6 isolates for each of *Gardnerella vaginalis* and *Kocuria rhizophila*, at 16.6%. One case of milk fever was recorded from which *E. coli* was isolated, at a rate of 100% (Table 4).

Table 2: Frequency of gram-positive, gram-negative, and mixed bacterial infections

	Bacteria	No.	%
	Escherichia coli	30	44
	Proteus mirabilis	5	7.4
Gram negative	Klebsiella spp	1	1.5
	Serratia ficaria	1	1.5
	Enterobacter spp	1	1.5
	Staphy. Lentus	2	3
	Staphy. chromogenes	1	1.5
	Staphy. Xylosus	1	1.5
Gram positive	Enterococcus faecium	3	4.4
	Enterococcus faecalis	1	1.5
	Gardnerella vaginalis	1	1.5
	Kocuria rhizophila	1	1.5
	Bacillus spp Staphyspp	2	3
	Bacillus spp +Kocuria varians	2	3
	Bacillus spp+Strept spp	2	3
Mix	Candida spp+Staphy. spp	2	3
	Proteus mirabilis+Staph. spp	2	3.
	Enterococcus faecium+E.coli	8	11.7
	Kocuria spp+E.coli	2	3
Total		68	100

Table 3: Number of isolates from vaginitis, metritis, and endometritis together with their kinds

Isolates	Metritis (n= 26)	Endometritis (n=17)	Vaginitis (n=4)	
Escherichia coli	15(50)	10(66.6)	1(20)	
Proteus mirabilis	2(7)	2((13.3)	1(20)	
Klebsiella spp	1(3.3)	0(0)	0(0)	
Staphylococcus lentus	1(3.3)	1(6.6)	0(0)	
Staphylococcus chromogenes	1(3.3)	0(0)	0(0)	
Enterococcus faecium	2(7)	0(0)	1(20)	
Bacillus spp Staphylococcus spp	2(7)	0(0)	0(0)	
Proteus mirabilis+Staphylococcus spp	2(7)	0(0)	0(0)	
Enterococcus faecium+E.coli	4(13.3)	2(13.3)	0(0)	
Candida spp+Staphylococcus spp	0	0	2(40)	
Total isolates	30	15	5	

^{*}Between brackets is a percentage.

Twenty-three *E. coli* samples showed complete resistance to imipenem, tetracycline, and cephalosporin antibiotics at a rate of 100%, followed by 83% resistance to neomycin. In contrast, the samples were susceptible to ofloxacin. The

resistance of the isolates to the remaining types of antibiotics used varied (Table 5). As for *P. mirabilis*, they showed complete resistance to azithromycin, nitrofurantoin, and tetracycline, and were completely sensitive to the other types of antibiotics used (Table 5).

Table 4: Association of risk factors with the number of bacterial isolates

Isolates	Retained placenta (n= 6)	Dystocia (n= 6)	Abortion (n=10)	Milk fever (n=1)
Escherichia coli	2(33.3)	1(20)	0	1(100)
Serratia ficaria	0	1(20)	0	0
Enterobacter spp	0	1(20)	0	0
Staphylococcus xylosus	0	1(20)	0(0)	0
Gardnerella vaginalis	0	0(0)	1(16.6)	0
Enterococcus faecalis	0	1(20)	0	0
Kocuria rhizophila	0	0	1(16.6)	0
Bacillus spp+Kocuria varians	0	0	2(33.3)	0
Bacillus spp+Streptococcus spp	2(33.3)	0	0	0
Enterococcus faecium+E.coli	2(33.3)	0	0	0
Kocuria spp+E.coli	0	0	2(33.3)	0
Total isolates	6	5	6	1

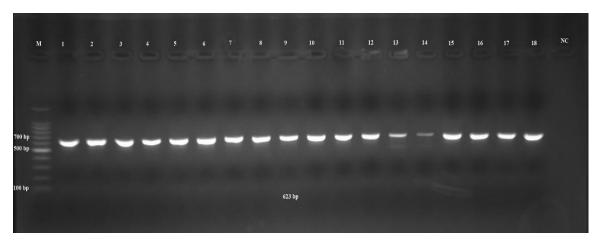
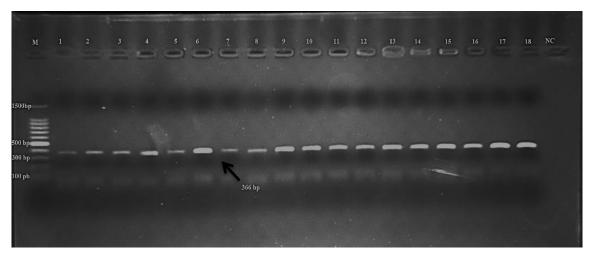
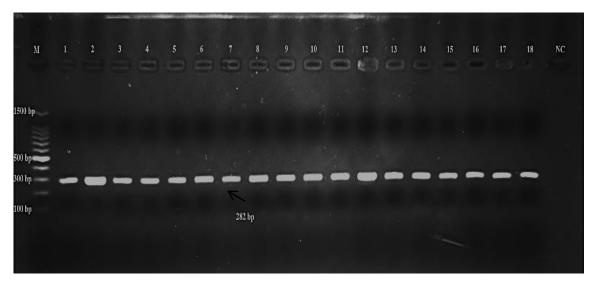
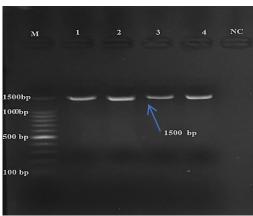

^{*} Between brackets is a percentage

Table 5: *Proteus mirabilis* and *E. coli* that were isolated from genital tract infections showed antibacterial resistance


Antimicrobials		Con/(μg)	Disc diffusion (mm)		No (%) of resistant	No (%) of resistant Pro.
			R	S	E. coli	mirabilis
β-lactams	Imipenem (IPM)	10	≤ 19	≥ 23	23(100)	0
Macrolides	Azithromycin (AZM)	30	≤ 22	≥ 28	8(34)	4(100)
Tetracyclines	Tetracycline (TE)	30	≤ 14	≥ 19	23(100)	4(100)
Aminoglycoside	Neomycin (N)	30	≤ 12	≥ 17	19(83)	
Sulfonamides	Trimethoprim/ Sulphamethoxazole (SXT)	25	≤ 13	≥ 17	1(4.3)	0
Miscellaneous	Chloramphenicol (C)	30	≤ 12	≥ 18	12(52)	0
0:1	Ciprofloxacin (CIP)	5	≤ 15	≥ 21	2(8.6)	0
Quinolone	Ofloxacin (OFX)	5	≤12	≥ 16	0(0)	0
Nitrofuran	Nitrofurantoin (F)	300	≤ 14	≥ 17	4(17)	0
Cephalosporin	Cefixime (CFM)	5	≤15	≤19	23(100)	4(100)

Only 23 isolates, which exhibited the highest level of antibiotic resistance, were chosen for the research. All 23 *E. coli* isolates used in the study were positive for the genus-specific gene Uid, according to


the results of antibiotic sensitivity tests (Figure 1). The *stx1* and *stx2* genes were detected in all isolates (Figures 2 and 3). The *zapA* and *ureC* genes are present in all *Pro—mirabilis* (Figures 5,6).


Figure 1: Detection of *the UidA* gene of E.coli M: Ladder, lanes (1-18 positive) *UidA* gene (623 bp), lanes NC are negative.

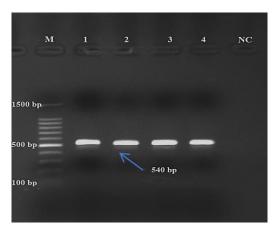

Figure 2: Detection of the *stx* 1gene of *E.coli*. M: Ladder, lanes (1-18 positive), *stx* 1 gene (366 bp), lanes NC are negative.

Figure 3: Detection of the *stx 2* gene of *E.coli*. M: Ladder, lanes (1-18 positive), *stx 2* gene (282 bp), lanes NC are negative.

Figure 4: Molecular confirmation of *Proteus mirabilis* isolates according to the sequence of *16S rRNA* (M: Ladder, (1-4 positive) for *Proteus mirabilis* at 1500 bp).

Figure 5: Detection of the *Zap A* gene of *Proteus mirabilis*. M: Ladder, lanes (1-4 positive), *ZapA* gene (540 bp), lanes NC are negative

Figure 6: Detection of *the ureC* gene of *Proteus mirabilis*. M: Ladder, lanes (1-4 positive), *ureC* gene (317 bp), lanes NC are negative

DISCUSSION

Endometritis and metritis can have a significant impact on the economy of countries through their effect on reduced milk production and reproductive capacity, leading to infertility and the resulting increase in treatment costs that force farmers who raise cows to slaughter them in line with the situation (Bromfield et al., 2015). Infectious bacteria in the uterus lead to inflammation and tissue lesions in the endometrium, which postpone uterine contraction. Additionally, it interferes with cows' ovulation or the development and operation of ovarian follicles following calving. Therefore, uterine disease is associated with longer intervals between calving and first birth or pregnancy, and poorer pregnancy rates (Sharma et al., 2017). Because bacteria alter metabolism, their presence has a significant role in the development of endometritis and metritis (Udhayavel et al., 2013). Although there are many causes of endometritis and metritis, many studies have focused on E. coli (Agrawal et al., 2021).

E. coli accounted for 44% of the bacteria recovered from metritis and endometritis cases in our investigation, while Proteus mirabilis came in second at 7.4%. During calving or as a result of contamination, these bacteria enter the uterus first al., 2007). (Williams et Numerous researchers in this field have confirmed this result, as *E. coli* was the most frequently isolated bacterium, at a rate of 45% (Mekibib et al., 2024). Because the anus is situated adjacent to the reproductive system, numerous studies have proposed that feces may be present in the area around the reproductive system. Additionally, contaminated water sources, unhygienic environments, poor cow hygiene, and the cleanliness of animal bedding and flooring all contribute to the infection of this species (Andriniani et al., 2021). As noted during parturition, the cervix, an anatomical and immunological barrier, opens, allowing bacteria to ascend from the vagina or pass through it from the environment or feces. New research on cows indicates that uterine pathogens may spread hematogenously from the gut to the uterus. The migration of white blood cells to the uterus as calving approaches and to the uterus after calving, carrying bacteria through phagocytosis, is responsible for delivering bacteria to the uterine cavity after calving (Jones et al., 2022). This was determined in our study through genetic diagnosis, as most E. coli isolates were positive for the presence of the stx gene, which is responsible for the production of Shiga toxin. This is, in fact, because these bacteria are transmitted from the intestines through the circulatory system to the uterus and are responsible for causing disease in cows. Additionally, generative vascular changes that occur immediately after birth may pathogens floating freely in the bloodstream to enter the uterus (Joen et al., 2017).

Klebsiella pneumoniae was isolated at a rate of 2.4% from cases of metritis. This rate was slightly different from what Udhayavel had obtained, which was the isolation of the aforementioned researcher from cases of endometritis at a rate of 30% after E. coli bacteria (Udhayavel et al., 2013). While some researchers have reported the presence of Bacillus spp in the early postpartum period, which has been closely linked to the development of puerperal metritis in dairy cows, the presence of Bacillus bacteria in small quantities may be the result of contamination that occurs during sample collection (Bicalho et al., 2012). Candida spp appeared in our results at a low rate, due to their presence in the environment, skin, and even feces and vagina. Research has also reported the presence of yeast and uterine colonization in cows suffering from specific conditions, such as infertile cows, cows with excessive reproduction, with chronic cows endometritis, prolonged intrauterine antibiotic treatment, and those with reduced immunity (Ribeiro et al., 2024).

Many bacterial species, such as Shigella dysenteriae serotype 1 and Stx-producing E. coli (STEC), produce Shiga toxins (Stxs), which are protein exotoxins that are conserved genetically, physically, functionally (Bova et al., 2023). This toxin works by damaging eukaryotic ribosomes, leading to the cessation of protein synthesis in target cells (Bova et al., 2023). Vero, Swan 71, and Hela cells were found to be fatally affected by the cytotoxic effects of stx2-positive upper cervical fluid from E. coli isolated from the cervix. Our findings offer new insights into the presence of STEC during pregnancy (Scalise et al., 2022). E. coli has a genome that has the aptitude to transmit or acquire important virulence factors. It is challenging to determine the impact of STEC infection on reproductive health during pregnancy because there are not many epidemiological studies on the topic (Yang et al., 2020).

The primary source of human infection and the main reservoir of STEC is ruminants. Ingestion of animal-derived foods, including raw meat, milk, and dairy products, as well as intimate contact with infected animals, are the primary ways humans become infected (Treacy *et al.*, 2019).

In our study, all P. mirabilis isolates were positive for the *ureC* gene, which encodes the urease enzyme. This enzyme exhibits vigorous activity, capable of decomposing urea into ammonia and carbon dioxide, thereby converting the environment to an alkaline state that suits the bacterium's conditions and growth (Lian et al., 2025). It also uses it as a metabolic activity to obtain some minerals and materials. The activation of urease is essentially the process of binding nickel ions to urease proteins (Stickle et al., 2010). Many studies have shown that the presence of this gene in most strains indicates the importance of the function it carries as a virulence factor (Schaffer et al., 2015). The zapA gene was also present in all isolates. The zapA gene regulates the expression of IgA protease during the differentiation of swarmer cells into swarmer cells. (El-Tarabili *et al.*, 2022). Most studies have confirmed that the presence of the *ureC* gene increases the pathogenicity of *P. mirabilis*, and a synergistic effect is observed with high expression of the *ureC* and *zapA* genes (Phan *et al.*, 2008).

The majority of investigations in this sector have demonstrated that the presence of differentiated swimming cells carrying zapA is what enables bacteria to infiltrate epithelial cells (Li & Mobley, 2002). The ZapA gene has been considered a key virulence factor for P. mirabilis. Its role extends not only to the degradation of IgA, which is considered the most important defense system of the host mucosal surfaces, but also to the destruction of biologically active molecules, such as defensins, which participate in defense against fungal infections, as well as host cell structural elements like matrix proteins. It is also responsible for degrading bradykinin, which is released during inflammatory processes as part of the defense mechanism (Anéa et al., 2011).

The studied isolates showed absolute resistance to the antibiotic tetracycline. This outcome may be attributed to the improper use of antibiotics without first determining the susceptibility of the isolates to them, as well as to some animal breeders who use antibiotics to promote growth and achieve high yields (Al-Marri, 2021). The existence of genes that code for the exclusion of antibiotics like tetracycline from the cell, which lowers the concentration protection of *E. coli* ribosomes, is one of the causes of antibiotic resistance. The results collected demonstrate the limited alternatives available for treating these bacterial species. Similar problems with multidrug resistance in the same bacteria from dairy cows' uteri have also been reported in several studies (Basbas et al., 2022). Regarding resistance in the study's

beta-lactam group, it results from *E. coli* producing beta-lactamase, which attempts to counteract the drug's activity and eliminate its effect (Thapa *et al.*, 2020).

CONCLUSION

E. coli and Proteus mirabilis are important causes of genital tract infections in cows, as they carry virulence genes (stx1,stx2, ureC, and ZapA) capable of causing damage to the endometrium and metritis, which has an impact on production and the occurrence of abortions.

REFERENCES

Abbas, KF.; Al Khafaji, JK. and Al-Shukri, MS. (2015): Molecular detection of some virulence genes in Proteus mirabilis isolated from Hilla province. Int J Res Stud Biosci. 3(10):85–89.

Adnane, M. & Chapwanya, A. (2022). A
Review of the Diversity of the Genital
Tract Microbiome and Implications
for Fertility of Cattle. Animals, 12,
460. https://
doi.org/10.3390/ani12040460

Agrawal, S.; Singh, A.P.; Singh, R.; Saikia, R.; Choudhury, S.; Shukla, A. and Agrawal. J. (2021): Molecular of characterization extendedβ-lactamase-producing spectrum coli isolated Escherichia postpartum uterine infection in dairy cattle in India. Veterinary world, 14(1), 200

Akhtardanesh, B.; Ghanbarpour, R.; Ganjalikhani, S. and Gazanfari, P. (2016): Determination of antibiotic resistance genes in relation phylogenetic background Escherichia coli isolates from fecal samples of healthy pet cats in Kerman city. In Veterinary Research Forum (Vol. 7, No. 4, p. 301). Faculty of Medicine, Veterinary Urmia University, Urmia, Iran.

- Al-Aalim, A.M.; Al-Iedani, A.A. and Hamad, M.A. (2022): Extraction and purification of lipopolysaccharide from Escherichia coli (local isolate) and study its pyrogenic activity, Iraqi Journal of Veterinary Sciences, 36(1): (45–51) (http://creativecommons.org/licenses/by/4.0/).
- Alchalaby, A.Y.; Rasheed, B.Y. and Al-Aalim, A.M. (2025): Molecular detection of some virulence genes in Proteus mirabilis isolated from chicken and human. Iraqi Journal of Veterinary Sciences, Vol. 39, No. 1, (53–58) DOI:10.33899/ijvs. 2024. 153078.3857 http://creativecommons.org/licenses/ by4.0
- Aleksandrowicz, A.; Khan. M.M.: Sidorczuk, K.; Noszka, M. and Kolenda, R. (2021): Whatever makes stick-Adhesins of avian pathogenic Escherichia coli. Veterinary microbiology, 257, 109095.
- Al-Marri, T.; Al-Marri, A.; Al-Zanbaqi, R.; Al Ajmi, A. and Fayez, M. (2021): Multidrug resistance, biofilm formation, and virulence genes of Escherichia coli from backyard poultry farms. Vet World,4:2869-2877. DOI: 10.14202/vetworld 2021.2869-2877
- Andriani, A.I.; Madyawati, S.P. and Sabdoningrum, E.K. (2021): Non-specific bacterial profiles in reproductive tract of dairy cattle during artificial insemination. World's Veterinary Journal, 11(1), 110–114.
- Anéas, M.A.F.; Portaro, F.C.V.; Lebrun, I.; Juliano, L.; Palma, M.S. and Fernandes, B.L. Zap A. (2011): A possible virulence factor from Proteus mirabilis exhibits broad protease substrate specificity. Brazilian Journal of Medical and Biological Research. 34: 1397-1403 ISSN 0100-879

- Ault, T.B.; Clemmons, B.A.; Reese, S.T.; Dantas, F.G.; Franco, G.A.; Smith, T.P.L.; Edwards, J.L.; Myer, P.R. and Pohler, K.G. (2019): Bacterial taxonomic composition of the postpartum cow uterus and vagina prior to artificial insemination. J. Anim. Sci, 97, 4305–4313.
- Basbas, C.; Garzon, A.; Byrne, BA.; Karle, B.; Aly, SS.; Champagne, JD.; Williams, DR.; Lima, FS.; Machado, VS. and Pereira, RV. (2022): Evaluation of antimicrobial resistance and risk factors for recovery of intrauterine Escherichia coli from cows with metritis on California commercial dairy farms. Sci Rep,12(1):1–14.
- Bicalho, M.L.; Machado, V.S.; Oikonomou, G.; Gilbert, R.O. and Bicalho, R.C. (2012): Association between virulence factors of Escherichia coli, Fusobacterium necrophorum, and Arcanobacterium pyogenes and uterine diseases of dairy cows. Vet. Microbiol. 157, 125–131. doi: 10.1016/j.vetmic.2011.11.034
- Bova, R.A.; Lamont, A.C.; Picou, T.J.; Ho, V. B.; Gilchrist, K.H. and Melton-Celsa, A.R. (2023): Shiga Toxin (Stx) Type 1a and Stx2a Translocate through a Three-Layer Intestinal Model. Toxins, 15, 207.
- Bromfield, J.J.; Santos, J.P.; Block, J.; Williams, R.S. and Sheldon, I.M. (2015): Physiology and endocrinology symposium: Uterine infection: linking infection and innate immunity with infertility in the high-producing dairy cow. Journal of animal science, 93(5), 2021-2033.
- Cagnoli, G.; Bertelloni, F. and Ebani, V.V. (2024): In Vitro Antibacterial Activity of Essential Oils from Origanum vulgare, Satureja montana, Thymus vulgaris, and Their Blend Against Necrotoxigenic (NTEC), Enteropathogenic (EPEC), and Shiga-Toxin Producing Escherichia coli

- (STEC) Isolates. Pathogens, 13(12), 1077.
- Channo, A.; Kaka, A.; Kalwar, Q.; Jamali, I.; Jelani, G.; Bakhsh, M. and Goil, J.P. (2022): An overview of bovine cystic ovarian disease. Pakistan Journal of Zoology, 54(5), 2437
- Das, P.; Ghorai, T.; Shaw, K. and Mazumder, S. (2025): Escherichia coli in West Bengal: active surveillance of uropathogenicity, ESBL, MDR and XDR. International Journal of Community Medicine and Public Health, 12(1), 193.
- De Cássia Bicudo, L.; Oba, E.; Bicudo, S.D.; da Silva Leite, D.; Siqueira, A.K.; de Souza Monobe, M.M. and Ribeiro, M.G. (2019): Virulence factors and phylogenetic group profile of uterine Escherichia coli in early postpartum of high-producing dairy cows. Animal Production Science, 59(10), 1898-1905
- El-Tarabili, R.M.; Ahmed, E.M.; Alharbi, N.K.; Alharbi, M.A.; AlRokban, A.H.; Naguib, D. and Mahmoud, A.E. (2022): Prevalence, antibiotic profile, virulence determinants, ESBLs, and non-β-lactam encoding genes of MDR Proteus spp. Isolated from infected dogs. Frontiers in Genetics, 13, 952689.
- Phan, V.; Belas, R.; Brendan F.; Gilmore, B.F. and Cer, H. (2008): ZapA, a Virulence Factor in a Rat Model of Proteus mirabilis-Induced Acute and Chronic Prostatitis infection and immunity,76(11): https://doi:10.1128/IAI.00122-08
- Gaston, J.R.; Johnson, A.O.; Bair, K.L.; White, A.N. and Armbruster, C.E. (2021): Polymicrobial interactions in the urinary tract: is the enemy of my enemy my friend?. Infection and Immunity, 89(4), 10–1128.
- Garzon, A.; Basbas, C.; Schlesener, C.; Silva-del-Rio, N.; Karle, B.M.; Lima, F.S. and Pereira, R.V. (2024): WGS of intrauterine E. coli from cows with early postpartum uterine infection

- reveals a non-uterine specific genotype and virulence factors. Mbio, 15(6), e01027-24.
- Gonzalez Moreno, C.; Torres Luque, A.; Oliszewski, R.; Rosa, R.J. and Otero, M.C. (2020): Characterization of native Escherichia coli populations from bovine vagina of healthy heifers and cows with postpartum uterine disease. PLoS One, 15(6), e0228294.
- Hussain, F.; Kalwar, O.; Rahimoon, MM.; *MS*.; Bhuptani, Zaman. Laghari, SA.; Muhammad, T.; Uddin, I.; Razzaque, A. and Ramzan, M. (2024): Optimizing reproductive health in dairy cattle: strategies for preventing and managing reproductive disorders. In: Abbas RZ, Akhtar T, Asrar R, Khan AMA, and Saeed Z (eds), Complementary and Medicine: Alternative Feed Additives. Unique Scientific Publishers, Faisalabad, Pakistan, pp 215–224.
 - https://doi.org/10.47278/book.CAM/001
- Jeon, S.J.; Cunha, F.; Vieira-Neto, A.; Bicalho, R.C.; Lima, S.; Bicalho, M.L. and Galvão, K.N. (2017): Blood as a route of transmission of uterine pathogens from the gut to the uterus in cows. Microbiome, 5, 1–13.
- Jones, K.; Cunha, F.; Jeon, S.J.; Pérez-Báez, J.; Casaro, S.; Fan, P. and Galvão, K.N. (2022): Tracing the and route of uterine source colonization by exploring the genetic relationship of Escherichia coli isolated from the reproductive and gastrointestinal tract of dairy cows. Veterinary Microbiology, 266, 109355.
- Karshenas, A.; Salehi, T.Z.; Asghari, B.; Yahyaraeyat, R. and Adabi, M. (2024): Phylogenetic group determination and genetic diversity of Escherichia coli isolated from domestic animals' stool specimens and human clinical samples. Medical Laboratory Journal, 18(2).

- Keyang, D.; Singh, R.; Singh, A.P.; Agrawal, S. and Choudhury, S. (2023): Molecular characterization of bovine intrauterine Escherichia coli isolates in rat model. VETERINARSKI ARHIV, 93(5), 581-590
- Li, X. & Mobley, H.L.T. (2002). Vaccines for Proteus mirabilis in urinary tract infection. Int. J. Antimicrob. Agents 19 (6), 461–465. doi:10.1016/S0924-8579(02) 00102-4
- Lian, S.; Liu, Y.; Hu, S.; Shen, C.; Ma, Y.; Yin, P. and He, Z. (2025): Genomic insights on cgMLST markers, drug resistance, and urease cluster of Proteus mirabilis strains. Microbiology Spectrum, 13(1), e00992-24.
- Liu, L.; Dong, Z.; Ai, S.; Chen, S.; Dong, M.; Li, Q. and Peng, G. (2023):

 Virulence-related factors and antimicrobial resistance in Proteus mirabilis isolated from domestic and stray dogs. Frontiers in Microbiology, 14, 1141418
- Mekibib, B.; Belachew, M.; Biruhtesfa Asrade, B.; Badada, G. and Abebe, R. (2024): Incidence of uterine infections. major bacteria and antimicrobial resistance in postpartum dairy cows in southern Ethiopia, BMC Microbiology 24:4 https://doi.org/10.1186/s12866-023-03160-w
- Momtaz, H.; Farzan, R.; Rahimi, E.; Safarpoor Dehkordi, F. and Souod, N. (2012): Molecular characterization of Shiga toxin-producing Escherichia coli isolated from ruminant and donkey raw milk samples and traditional dairy products in Iran. The Scientific World Journal, 2012.
- Morris, C.; Wickramasingha, D.; Abdelfattah, E.M.; Pereira, R.V.; Okello, E. and Maier, G. (2023): Prevalence of antimicrobial resistance in fecal Escherichia coli and Enterococcus spp. Isolates from beef cow-calf operations in northern

- California and associations with farm practices—Frontiers in Microbiology, 14, 1086203.
- Murphy, R.; Palm, M.; Mustonen, V.; Warringer, J.; Farewell, A.; Parts, L. and Moradigaravand, D. (2021): Genomic epidemiology and evolution of Escherichia coli in wild animals in Mexico. Msphere, 6(1), 10–1128.
- Naji, H.; Saleh, WM.; Saud, ZA.; Mhalhal, TR.; Alhasson, FA.; Reddy, G. Abebe, W. (2023): Prevalence of resistance and virulence genes in Escherichia coli isolates from diarrheic dogs. Iraqi J Vet Sci, 37(2): 355–361. DOI: 10.33899/ijvs.2022.133514.2243
- Ong, C.T.; Turni, C.; Blackall, P.J.; Boe-Hansen, G.; Hayes, B.J. and Tabor, A.E. (2021): Interrogating the bovine reproductive tract metagenomes using culture-independent approaches: A systematic review. Anim. Microbiome, 3, 41.
- Osińska, A.; Korzeniewska, E.; Korzeniowska-Kowal, A.; Wzorek, A.; Harnisz, M.; Jachimowicz, P. and Zieliński, W. (2023): The challenges in the identification of Escherichia coli from environmental samples and their genetic characterization. Environmental Science and Pollution Research, 30(5), 11572–11583.
- Patel, C.I.; Panchal, M.T.; Dhami, A.J.; Bhanderi, B.B. and Mathakiya, R.A. (2019): Isolation of bacteria from the vaginal aspirates of cyclic, acyclic, endometritic and pregnant crossbred cows. Int. J. Curr. Microbiol. App. Sci., 8(3), 536–542.
- Phan, V.; Belas, R.; Brendan, F.; Gilmore, B.F. and Cer, H. (2008): ZapA, a Virulence Factor in a Rat Model of Proteus mirabilis-Induced Acute and Chronic Prostatitis. infection and immunity,76(11): https://doi:10.1128/IAI.00122-08
- Puvača, N. and de Llanos Frutos, R. (2021). Antimicrobial resistance in Escherichia coli strains isolated from

- humans and pet animals. Antibiotics, 10(1), 69.
- Raheel, I.; Hassan, W.H., Salem, S. S. R., & Salam, H. S. H. (2020). Biofilm-forming potentiality of Escherichia coli isolated from bovine endometritis and their antibiotic resistance profiles—Journal of advanced veterinary and animal research, 7(3), 442.
- Raheed, B.Y.; Alchalaby, AYH.; Al-Aalim, AM. And Hamad, MA. (2024): Multiplex PCR for ompT and iss genes of Escherichia coli isolated from chronic respiratory disease (CRD) broiler farms. Malaysian Journal of Microbiology, Vol 20(4): pp. 472-477 DOI: http://dx.doi.org/10.21161/mjm.230401
- Rasheed, B.Y.; Hamad, M.A.; Isihak, F.A. (2024): Molecular study of resistance genes in Escherichia coli isolated from chronic respiratory disease cases in broilers. Iraqi Journal of Veterinary Sciences, Vol. 38, No. 1, (119–124) https://doi.org/10.33899/ijvs.2023.13 9069.2873
- Ribeiro, D.; Astiz, S.; Fernandez-Novo, A.; Margatho, G. and Simões, J. (2024):
 Retained Placenta as a Potential Source of Mastitis Pathogens in Dairy Cows. Applied Sciences, 14(12), 4986.
- Rosales, E.B. & Ametaj, B.N. (2021). Reproductive tract infections in dairy cows: can probiotics curb the incidence rate? Dairy, 2(1), 40–64.
- Safdarian, M.; Ghorbani, G.R. and Ghorbani, M.R. (2023): The effect of Vitex agnus-castus extract on hormonal and reproductive parameters in dairy cows with cystic ovarian disease. Journal of Dairy Science, 106(1), 811–817
- Scalise, M.L.; Garimano, N.; Sanz, M.; Padola, N.L.; Leonino, P.; Pereyra, A. and Ibarra, C. (2022): Detection of Shiga Toxin-Producing Escherichia coli (STEC) in the Endocervix of Asymptomatic Pregnant Women. Can

- STEC Be a Risk Factor for Adverse Pregnancy Outcomes?. Frontiers in Endocrinology, 13, 945736.
- Schaffer, JN. & Pearson, MM. (2015).

 Proteus mirabilis and urinary tract infections. Microbiol Spectr 3. https://doi.org/10.1128/microbiolspec. UTI-0017-2013
- Schouten, I.; Bernys-Karolys, A.; Schneider, P.; Dror, T.; Ofer, L.; Shimoni, C., et al. (2023): Mesenchymal stromal cells modulate infection and inflammation in the uterus and mammary gland. BMC Vet. Res. 19:64. doi: 10.1186/s12917-023-03616-1
- Sharma, A.; Singh, M.; Kumar, P.; Sharma, A.; Neelam, A.M.J. and Sharma, P. (2017): Postpartum uterine infections in cows and factors affecting them—a review. Int J Curr Microbiol App Sci, 6(9), 1020–1028.
- Stickler, DJ. and Feneley, RCL. (2010). The encrustation and blockage of long-term indwelling bladder catheters: a way forward in prevention and control. Spinal Cord 48:784 790. https://doi.org/10.1038/sc.2010.32
- Talaro, KP. and Chess, B. Foundations in microbiology. (2018):10th ed. New York: McGraw-Hill Education. 630-635
- Thapa, DB. and Chapagain, A. (2020).

 Antibiogram of Escherichia coli isolated from avian colibacillosis in Chitwan district of Nepal. Int J App Sci Biotechnol,8(1):52–60. DOI: 10.3126/ijasbt.v8i1.28254
- Treacy, J.; Jenkins, C.; Paranthaman, K.; Jorgensen, F.; Mueller-Doblies, D.; Anjum, M. and Kar-Purkayastha, I. (2019): Outbreak of Shiga toxin-producing Escherichia coli O157: H7 linked to raw drinking milk resolved by rapid application of advanced pathogen characterisation methods, England, August to October 2017. Name of the research: Eurosurveillance, 24(16), 1800191.

Udhayavel, S.; Malmarugan, S.; Palanisamy, K. and Rajeswar, J. (2013): Antibiogram pattern of bacteria causing endometritis in cows. Veterinary World, 6(2), 100.

Williams, E.J.; Fischer, D.P.; Noakes, D.E.; England, G.C.; Rycroft, A. and Dobson, H, et al. (2007): The relationship between uterine pathogen growth density and ovarian function in the postpartum dairy cow. Theriogenology,68:549 59.

Yang, Xi. Y.X..; Bai XiangNing, B.X..; Zhang Ji, Z.J.; Sun Hui, S.H.; Fu ShanShan, F.S.; Fan RuYue, F.R., and Xiong YanWen, X.Y. (2020): Escherichia coli strains producing a novel Shiga toxin 2 subtype circulate in China—International Journal of Medical Microbiology 310, 1513 https://doi.org/10.1016/j.ijmm.2019. 151377.

التوصيف الجزيئي ونمط مقاومة المضادات الحيوية لمعظم البكتيريا سالبة الجرام المعزولة من التهابات الجهاز التناسلي في الأبقار في محافظة نينوي، العراق

فرح نوح ، بلسم یحیی رشید

فرع الاحياء المجهرية، كلية الطب البيطري، جامعة الموصل، الموصل، العراق.

Email: balsamyr20@uomosul.edu.iq Assiut University website: www.aun.edu.eg

تعد اصابات الجهاز التناسلي البكتيرية من أهم المشاكل التي تواجه قطعان الماشية، مما يؤدي إلى خسائر اقتصادية، بالإضافة إلى العقم وانخفاض الإنتاج. أجري بحثنا بهدف عزل ودراسة جزيئية لأهم البكتيريا سالبة الجرام المسببة لالتهابات الجهاز التناسلي في الأبقار، ودراسة حساسية هذه البكتيريا لأهم المضادات الحيوية، وتحديد أهم عوامل الضراوة. اعطت جراثيم الايشيريكيا القولونيه أكثر نسبة عزل وبواقع ٤٤ % تلتها جراثيم المتقلبات الرائعة كانت بكتيريا الإشريكية القولونية الأكثر النسبة الاقل لجراثيم الكلبسيللا والسيريشيا والانتيروبكتر ٥٠١٪. ومن خلال الدراسة، كانت بكتيريا الإشريكية القولونية الأكثر عزلًا في حالات التهاب بطانة الرحم والتهاب المهبل. كما عُزلت بنسبة عالية في حالات احتباس المشيمة وعسر الولادة، والذي يُعد عاملًا مُهيئًا لالتهابات الجهاز التناسلي بنسبة ٣٠٣٣٪ و ٢٠٪ على التوالي. أظهرت الإشريكية القولونية مقاومةً مطلقةً ملطقةً للمضادات الحيوية إيميبينيم، وتتراسايكلين، وسيفيكسيم. بينما أظهرت بروتيوس ميرابيلس مقاومةً مطلقةً للأزيثر وميسين، وتتراسايكلين، والنيتروفورانتوين. وُجدت جينات عوامل الضراوة على و كلاك و كلك و كلاك و كلاك و كلينات الضراوة على عينات الضراوة و كلاك و كلاك و كلاك و كلاك و كلية القولونية. بينما احتوت جميع عزلات المتقلبات الرائعه على جينات الضراوة الضراوة و عمه و كلات المتقلبات الرائعه على جينات الضراوة و عمه و كلات المتقلبات الرائعه على جينات الضراوة و عمه و كلات المتقلبات الرائعه على جينات المتلات المتلات المتقلبات الرائعة على جينات الضراوة و علية و كلات المتقلبات المتلات المتورية و عنول المتقلبات المتوادات المتوادة المتورية المتو

الاستنتاجات: تعتبر جراثيم الايشيريكيا القولونيه والمتقلبات الرائعة مسببات مهمة لحدوث حالات العقم والاجهاض لامتلاكها عوامل ضراوة stx1,stx2,ureC و لتسبب في خسائر في الانتاج وقلة اللحوم لذا من المهم التعرف على هذه المسببات ودراسة اهم تأثيرات عوامل الضراوة التي تسببها في الجهاز التناسلي في الابقار.