J. Pest Control & Environ. Sci. Vol 2 pp 91-102, 1990 Symposium of IPM & E.P. Nov.7-8, 1990 Alex. Egypt.

INHIBITION OF RABBIT BRAIN MONOAMINE OXIDASE
BY TRANS-DICHLOROTETRA (PYRIDINE DERIVATIVES)
OF COBALT (III) COMPLEXES.

Вy

Nadia Zaki Shaban and Gehan Moustafa El-Subruiti

Department of Biochemistry and Chemistry,

Faculty of Science, Alexandria University

Alexandria, Egypt.

Abstract :

Rabbit brain monoamine oxidase (MAO) is rapidly inactivated when incubated with trans- $\{Co(3-R-pyridine)_4Cl_2\}Cl$ since R is methyl (CMPC) or ethyl (CEPC) group. These complexes inhibit MAO enzyme with time dependent and concentration dependent response with I_{50} value equal to 8.3×10^{-11} & 3×10^{-11} M respectively. 8.3×10^{-10} M from CMPC & CEPC inhibited the MAO enzyme by a noncompetitively inhibition type. The values of K_m and V_{max} were determined from the lineweaver-Burk plot. The MAO enzyme is inhibited also by methyl pyridine which is a precussor of these complexes. This inhibition increased by increasing the concentration of methyl pyridine.

Introduction

Monoamine oxidase (MAC) [monoamine=0] oxidoreductase (deaminating: (flavine-containing) EC 1.4.3.4) is responsible for the metabolism of biogenic amines in the peripheral and

central nervous system and is therefore important in the etiology of affective disorders, (Balsa et al 1987). Multiple forms of MAO exist in mammalian liver and brain which have been characterized by their sensitivity to inhibitor drugs and their specificity for substrates. The MAO inhibitor drugs are indicated for the treatment of some forms of mental depression as well as for some forms of hypertension. There have been reports of the endogenous activators (Demish et al 1983) or inhibitors (Becker \underline{et} \underline{al} 1983) of MAO in the tissues which may be important in some psychiatric conditions. The uptake of MAO inhibitors may exerts their effect in the central nervous system (CNS) by increasing the concentration of neurotransmitters in the synaptic cleft, therefore increasing the duration of action of the neurotransmitter as well as the intensity of postsynaptic receptor stimulation various pharmacological effects are thought to depend on the inhibition of the uptake of specific monoamine neurotransmitters (Ritz et al 1987).

The present study was undertaken to investigate the effect of trans-[Co(3-R-pyridine)4Cl₂]Cl, "since R is methyl or ethyl" on the rabbit brain MAO activity. This compound is similar (in structure) to phenyl pyridine and phenyl piperidine which used in the treatment of depression, so this study may add some information on the enzyme mechanisms of action and on the use of the inhibitors or activators in the clinical field.

Materials and Methods

Preparation of the Complexes

Trans-[Co(3-methy pyridine)4Cl2]Cl "CMPC" and trans-[Co (3-ethyl pyyridine)₄Cl₂] Cl "CEPC" were prepared by method of Werner and Feenstra (1906) as modified by Elgy and Wells (1980) where, 23.79 gms of CoCl₂. 6H₂O were dissolved in 100 ml water, 37.25 gms of 3-methyl-or 3-ethylpyridine were dropped in the CoCl₂ solution with continuous eventually a pink paste was obtained. Chlorine gas was passed through this paste for several hours till the colour of the mixture turned to dark green, and then green crystals was formed during the passage of the chlorine gas through the solution. The solid was filtered and recrystalized from hot water and reprecipitated by adding a few drops of concentrated hydrochloric acid. The complex was filtered and washed with cold water and then dried in a vaccuum desiccator. Correct chemical identify for methyl and ethyl complex products purity by using UV spectra, IR spectra, NMR-spectra and FAB-spectra were carried out.

Preparation of Rabbit Brain MAO

Rabbits (weight about 1.5 kg, N=4) were decapitated and allowed to bleed, the brain were removed as quickly as possible, blotted on filter paper and calculate its weight. All subsequent procedures were performed at $0-4^{\circ}C$. The brains were homogenized

in four volumes (w/v) of 0.25 M sucrose, 0.1 M sodium phosphate buffer (pH 7.4) in a Teflon glass homogenizer. The homogenates were centrifuged at 600 g. for ten minutes. The supernatant fraction was devided into 3 ml portions in small screw cap vials and kept frozen at -30° C for latter assaying of MAO.

Enzyme Assay

Activity of the enzyme (toward benzylamine was determined according to the method of Tabor (1954) with a reaction mixture containing 10 uM of benzylamine-HCl,(3-x) ml of sodium phosphate buffer, pH 7.4, and x ml of enzyme. The reaction was started by adding the enzyme solution and the change in absorbance at 250 nm due to benzaldehyde formation was followed at 30°C with a Beckman model DB-G spectrophotometer.

One unit of activity is defined as the amount of enzyme catalyzing the formation of 1 uM of benzaldehyde/min under the assay conditions described. The amount of the product was calculated from the molar extinction coefficient (E250nm = $12,800~M^{-1}~(min^{-1})$.

Protein content of the enzyme was determined by the method of modified Lowry (Ohnishi and Parr, 1978).

Results

Effect of (CMPC) on rabbit brain MAO

This study demonstrates that CMPC complex inhibit MAO enzyme since the benzylamine was used as substrate. The inhibition of MAO was measured under conditions of varying preincubation time (zero to 30 minutes), since the concentration of CMPC compound was $2.5 \times 10^{-9} \mathrm{M}$. It was found that the inhibition increased with increasing the preincubation time (fig. 1) and also the degree of MAO inhibition attained after the preincubation period varied with the concentration of CMPC. ($2\times10^{-12} \mathrm{M}$ to $3.3\times10^{-8} \mathrm{M}$) with 150 value equal to $8.0\times 10^{-12} \mathrm{M}$ concentration (Fig. 2).

Fig (3) shows, the Lineweaver-Burk plot in the absence and presence of 8.3×10^{-10} M of CMPC. The $V_{\rm max}$ values for both cases are 222.2 nmole/mg protein/min and 71.4 nmole/mg protein min respectively, however the $K_{\rm m}$ values are the same value (17.6 uM). This mean that, CMPC inhibit the MAO by a noncompetitively inhibition type and 8.3×10^{-10} M cause 68% inhibition.

Effect of (CEPC) on rabbit brain MAO

MAC activities were determined under the effect of CEPC, since benzylamine was used as substrate. The concentration of CEPC complex ranging from $2 \times 10^{-12} \text{M}$ to 3.3×10^{-8} M were used. These studies illustrated that CEPC inhibit the production of

benzaldehyde and this inhibition increased with increasing the CEPC concentration (Fig. 2).

It was found also that the MAO inhibition was clearly time dependent through the entire time course of the experiment (fig.1).

Fig. (3) illustrates, the lineweaver-Burk plot without or with 8.3×10^{-10} M of CEPC complex. The values of V_{max} in both cases are equal to 222.2 nmole/mg prot/min and 57.1 nmole/mg protein/min respectively, however the K_{m} values are 17.6 uM. According to this result, we concluded that, the CEPC inhibit the MAO by a noncompetitively inhibition type, since $8.3 \times 10^{-10} \text{M}$ cause 74% inhibition.

Effect of methylpyridine on MAO activity

MAO activity was measured under the effect of Methylpyridine which is a precursor taking part in the constituents of the cobalt pyridine complex. The enzyme was inhibited by methylpyridine and this inhibition was found increase by increasing the concentration of methyl pyridine (fig. 4).

Discussion

This study illustrates that, the oxidative deamination of benzylamine by MAO was inhibited by the cobalt pyridine complex.

The inhibition of enzyme by this complex was increased by preincubation time and the concentration of the inhibitor.

We investigated the interaction of CMPC and CEPC with a rabbit MAO since benzylamine was used as substrate. The data indicate that these compounds were a noncompetitive inhibitors of MAO. 8.3x10⁻¹⁰ M of CMPC inhibited the benzylamine deamination 68%, wherease 8.3x10⁻¹⁰ M of CEPC inhibited 74% of deamination of benzylamine. In other words four time the concentration of the simple methyl pyridine was equavalent to one concentration of the CMPC complex were found to give almost equal 68% inhibition.

The active site of MAO has been suggested to be composed of two segments. One segment bears the FAD prosthetic group, and the other segment comprises the amino acid residues of the substrate bloding site. The amino acid sequence analysis of the FAD peptide (Kearney et al. 1971; Nagy and Salach, 1981; Walker et al. 1971; Yu. 1981), isolated after complete proteolytic digestion of purified beef liver MAO-B and human placenta-MAO-A, has revealed that the FAD is linked through the cysteine residue to the same penta peptide (Ser-Gly-Gly-Tyr) for both MAO-A and MAO-B.

The results indicate that the trans-[Co(3-methyl pyridine)4 Cl_2]Cl "CMPC" and trans-[Co(3-ethyl pyridine)4

Cl₂]Cl "CEPC" are not bound at the substrate binding site but at some other binding site on the enzyme which indicated from the structure activity relationship between the simple methyl pyridine and the cobalt pyridine complex, CMPC (and also between CMPC and CEPC) interact with enzyme substrate hydrolyse activities. It may bound at the FAD binding site.

References

- Balsa D. Gomez N., Unzeta M., (1987) Biochem. Pharmacol vol 36 No. 17 pp. 2723-2728.
- Becker R.E, Giambalvo CT. Fox RA and Macho M, (1983). Science 221: 478-478.
- Demisch L., Kaczmarczyk P. and Gebhort P, (1983) Mod Probl Fharmacopsychiat 19: 265-277.
- Elgy, C.N. and Well, C.F. (1980) J. Chem. Soc. Dalton Trans, 2405.
- Kearney E.B., Salach, J.I, Walker, W.H., Seng, R.L., Kenney W.C,
 Zeszotek E., and Singer T.P., (1971) Eur. J. Biochem.
 24, 321.
- Nagy, J. and Salach, J.I. (1981). Kearney, E.B., Salach, J.I., Walker W.H, Seng, R.L., Kenney, W.C., Zeszotek, E, and Singer, T.P. (1971). Eur. J. Biochem. 24 (321).
- Ohnishi, T.S. and Parr J.K (1978) J. Anal. Biochem. 86. 193-200.
- Ritz M.C, Lamb R.J, Goldberg SR and Kuhar MJ, (1987) Science 237: 1219-1223.

Tabor, C.W. Tabor, H., and Rosenthal, S.M. (1954) J. Biol. Chem., 208, 645.

Walker W.H., Kenney, E.B. Seng, R.L. and Singer, T.P., (1971), Eur. J. Biochem. 24, 328.

Werner, A. and Feenstra, R., (906) Ber, Dtsch Chem. Ges., 39, 1538.

Yu, P.H, (1981) Can. J. Biochem. 59, 30.

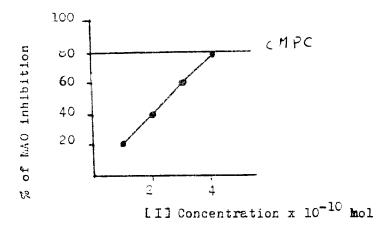
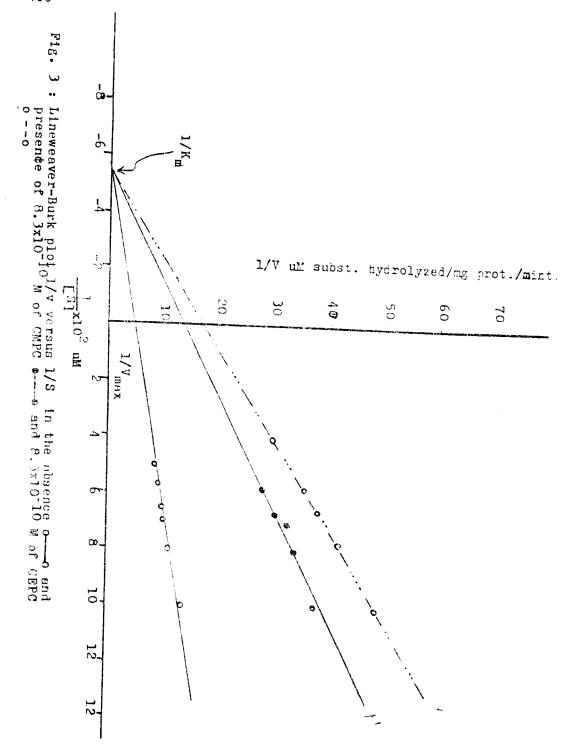



Fig. 4: Effect of different concentration of methyl pyridine and 8.3x10-10 of CMPC.on NAC activity.

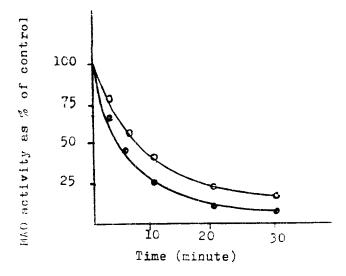


Fig. 1: Effect of preincubation time
upon inhibition of MAO activity by
o-o CMPC and CPEC --- c.3 uM of
benzylonine was used as
substrate.

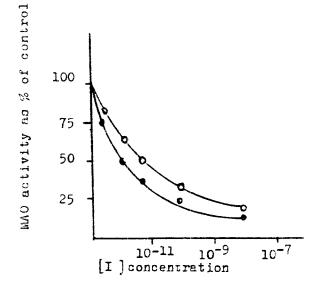


Fig. 2: Effect of different concentration of CMPC o—o and CEPC •—o compounds on the MAO activity 8.3 uM of benzylamine was used as substrate.

تثبيط احادى اعين الاكسيداذ بمغ الارانب وأسطة متراكبات تناثى كلور الكوبلت الثلاثى لمشتقات البريديسسن

جيهان مصطفى الصبرونسي

ناديه ركى شعبان

قسم الكيميـــا،

قسم الكيمياء الحيوية

كلية العلوم - حامعة الاحكنوية

.....

المخلص العربى

ترجع أهميه هذا البحث أن هذه المتراكبات شبيهة بمركبات فنيل ببريدين ، وفنيل ببريدين والتي سنحسسده في علاج الاكتتاب ولذلك قما بدراسه ناشر هذه المتراكبات

trans - Co (3- methylpyridine)₄Cl₂) Cl -1 trans - Co (3- ethylpyridine)₄Cl₂) Cl -1

على نشاط انريم احادي امين الاكسبداذ حبيث ان المنشطات او المعوقات للانهم مكن أن يستفاد بها في المجسسيان الاكلينيكي .

نع دراسة نشاط ا نويم ۱۳۸۰ تحت الطووف المناسبة له والناي اظهوت نشاط طبيعي مسيمنا على تركير البورتين الانويمي ليعظي اعلى نشاط بساوي ۱۳۶۴ نابو مول من عاده النقاعل متحلله ولكن المحم بروبين الربيي لكل بعلقت اظهر الموكب رقم (۱) توه تتبيطيه الملازيم مسيمنا على تركير الموكب رقم (۱) المستخدم مبطهر أن عده البوئيس المعتل التبيط مان مناط الابريم على من ۱۰ موالي المركب المحالي المناط ألابريم على من مناط الابريم على من مناط الابريم على من مناط الابريم على مناط المركب وقم (۱) او الانزيم بمقوده كانت الرام مكومول في تشبط عار تنافسي مع تركير ماده النتاعل و واعلى سناط للابريمسيم في وجود ۱۰ من تركيز المركب رقم (۱) كان كر ۱۷ نانو مول ماده نتاعل لكل ۱ محم بروتين انويمي لكسيل مدين

كما أوضحت النتائج أن المركب رقم (٦) بتسبط شاط الانزيم أيضا بطريقة متناسبة مع زيادة التركير بعد عطيسة التحميل للبرونين الانزيمي وتركير البركب رغم (٦) المستحدم ،

وقد بقيط شدا النتائج ان تركيز التركيب رقم ۱۳۱ البشط لـ ۵۰٪ من النشاط الاتريمي كانت ۱۰۶۳ مولسسر وقد بقيط شدا التركيب الاتربيم في تشبيط غير شامسي عن مامه النفاعل بثوابت تشبيط وتدارها الراد ميكرووول كالرياب ميخائيل واعلى نشاط تشبيطي شد تركيز ۱۰×۱۰ مول كانت ار ۵۷ بانومول ماده نفاعا، متحلله لكل ۱ مجم بروشين انويعي لكل دقيقه ه