J. Pest Control & Environ. Sci. Vol 2 pp 127-37, 1990 Symposium of PM & E.P. Nov.7-8, 1990 Alex. Egypt.

ACTION OF THE PHENYLPYRIDAZINONE HEREICIDES BASE 33650 AND BASE 44521 ON THE GREEN AND DRANGE CELLS OF Chlorella fusca.

O.H. Sayed and M.M. Tantawy

Department of Botany, Faculty of Science, and Department of Plant Protection, Faculty of Agriculture, University of Minia, Minia, Egypt.

## Abstract:

Autotrophically grown Chlorella fusca cells were treated with different concentrations αf the phenylpyridazinone herbicides DASE 33650 [1-phenyl-4-methoxy-5-bromo-pyridaminonel, and BASE 44501 [4-chloro-5-methoxy-2-( $\alpha$ ,  $\alpha$ ,  $\alpha$ ,-trifluoro-m-toly))-3(2H)-pyridazinone] for 96 hours. The treatments induced retardation of cell division, reduction of both total chlorophyll and carotemoid contents, reduction of the Chl a : Chl b ratio, and inhibition of oxygen evolution compared to untreated control. BASE 44521 was more effective as an inhibitor of cell division than BASE 33650. On the other hand. incorporation of these harbicides in the nitrate-rich medium during regreening of orange nitrogen-deficient slightly inhibited growth, pigment synthesis, and the development of an oxygen-evolving capability when compared to control. Despite this slight inhibition, cultures treated at all concentrations applied could, at least partially, regreen within 32 h.

## Introduction

Many phenylpyridationne herbicades are well documented bleaching agents in plants. The bleaching induced by these herbicides was reported to be accompanied many physiological and biochemical responses. These responses include inhibition of exygen evolution [20], fatty-acid polyunsaturation in the chloroplast galactolipid fraction [14], inhibition of carotenoid biosynthesis [1,11], degradation of 70S ribosomes [1,9], severe disruption of the plastid ultrastructure [2], and inhibition of phytol biosynthesis [15]. However, the primary mechanism of action of these herbicides is still debatable. Controversy exists on whether the mechanism of action involves inhibition of photosynthetic electron transport [20], inhibition of the biosynthesis of photoprotective constenside [11], interference with the regulated formartion of photosynthetic membranes[16]. These findings have mostly been obtained by using phenylpyridazinone herbicides containing. N-methylated and N-dimethylated amine group in the side chain. In this test two phenylpyridazinone herbicides with a methoxy group instead of the substituted amine in the side chain, with or without a trifluoromethyl substitution of the phenyl ring, namely BASE 44521 and BASE 33650, respectively, were used. Investigations involved testing the interference of these two herbicides with growth (cell number) pigment content, and obygen evolution of green autotrophically grown and orange nitrogen-deficient Chlorella fusca cells, a system that proved to be ideal for such investigations [5].

### Materials and Methods

Chlorella fusca 211-15 from the Collection of Algal Cultures, University of Gottingen (Germany), was grown in a nitrate-rich medium containing 8 mM KND, [63] for 24 h. Organge nitrogen-deficient cells were obtained by suspending 1 g fresh weight in 200 ml of a similar, but nitrate-sparse medium containing only 0.08 mM KND2, with KC1 (8 mM) added to maintain potassium ion and osmotic concentrations for six weeks. Both normal green and brange nitrogen-deficient  ${\it Chlore}$   ${\it Ila}$  cells were harvested, washed with sterilized distilled water, and resuspended (10° Cells ml-1) in a nitrate-rich medium containing the herbicides. The cultures (200 ml) of both normal green and orange introgen-deficient cells were continuously sparged with air at 25mD and were illuminated by a bank of fluorescent lights giving an irradience of 60  $\mbox{Wm}^{-2}.$  Illumination was provided in -12  $\mbox{ h}$ day/night cycles for green cells and continuously for the regreening of brange mitrogen-deficient cells.

The substituted phanylpyridarinone herbicides BASE 33650 and BASE 44521 were a bind gift of BASE AS (Germany), and were recristallized twice in hemane prior to use. The herbicides were dissolved in acetone and were added to the cultures to give concentrations of 0.1, 1.0, 10, and 100 ugml<sup>-1</sup> (acetone concentration was kept below 0.1%).

Cell numbers were determined by using a Bright-line haemocytomater (Richert-Jung, USA). Total chlorophyll and carotenoid contents were determined after Mataner et et.[10]. Photomynthotic abygin avolution was measured in an oxygen electrode (Rank Brothers, UK) in 4 ml of culture at IDAC and an irradisocal of 200 Mart.

## Results

Action on Normal Green Chlorelle Cells:

Treatment with PASF 32650 up to a tested concentration of 10 ugml<sup>-1</sup> resulted in 40% inhibition of growth (expressed as cell number) of normal green *Chlorella* cells after 96 hr compared to control (Fig. 1.a). Treatment with BASF 44521 for 96 hr, on the other hand, appeared to be much more effective, resulting in 45% and 60% inhibition of growth at tested concentrations of 1.0 and 10 ugml<sup>-1</sup>, respectively (Fig.1.f). Treatment with the higher concentration of 100 ugml<sup>-1</sup> of these herbicides severely inhibited growth.

Total chlorophyll content showed 50% reduction upon treatment with both herbicides up to a concentration of 10 ugol<sup>-1</sup>, whereas treatment at a higher level of 100 ugol<sup>-1</sup> resulted in a more marked reduction of total chlorophyll at the end of the experiment compared to control (Fig.1.b and g.). It is worthnoting that the observed reduction of total chlorophyll was accompanied by a concomitant reduction of the Chl a: Chl b ratio (Fig.1.c and h). In addition, the total carotenoid content of the cells was reduced and their oxygen evolving capability was inhibited upon treatment with these herbicides at all levels applied. (Fig.1.d and i).

Action on Orange Nitrogen-starved *Chlorella* Cells During Regreening:

Regreening of the 6-week-old control orange nitrogendeficient cells was complete within 32 hours after being transferred to a nitrate-rich medium. The end of regreening was manifested by the attainment of total chlorophyll

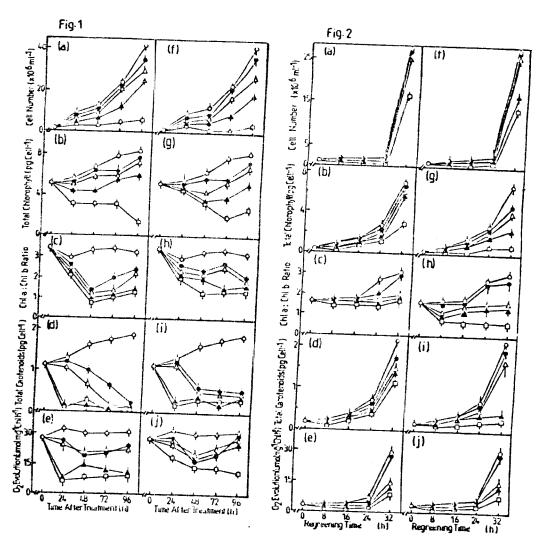



Fig. 1. Effects of BASE ITSEO (ame) and BASE 44521 (f-j) on growth (cell number), pigment content, and oxygen evolution of green cells of Chlorella fusca. (o) control, (a) 0.1, (b) 1.0, (b) 10, and (D) 100 agml=1, (+ se, n=3).

Fig.7. Effects of BADE 77550 (ame) and EMPE 44521 (f-j) on growth (cell number), pignent centent, and development of oxygen evolving capability during regreening of orange nitrogen-deficient tells of Chlorella fusca. (c) control, (e) 0.1, (A) 1.0, (A) 10, (D) and 100 ugml<sup>-1</sup>, (+se, n=3).

content, Ch1 a: Ch1 b ratio, total carotenoid content, and the rate of oxygen evolution of levels comparable to those of control normal green cells (Fig.1).

Cell division started 24 h after transferring orange cells to the nitrate-rich medium with cell number of control cultures increasing from  $0.2 \times 10^7$  to  $2.7 \times 10^7$  cells ml<sup>-1</sup>. Cell number increased from  $0.2 \times 10^7$  to  $1.6 \times 10^7$  cells ml<sup>-1</sup> upon treatment with 100 ugml<sup>-1</sup> BASF 33650 or 10 ugml<sup>-1</sup> BASF 44521 (Fig. 2.a and f, respectively) suggesting that BASF 44521 exerted a more pronounced effect on cell division

Total chlorophyll content (Fig. 2.b and g), Chl a: Chl b ratio (Fig. 2.c and h), and total cardenoid content (Fig. 2.d and i) of the regreening cells were relatively reduced, compared to control, upon treatment with both herbicides in a trend that appeared to be concentration-dependent. Furthermore, the development of an oxygen-evolving capability during regreening was inhibited in cells treated with both herbicides at concentrations higher than 0.1 ugml<sup>-1</sup> when compared to the untreated control (Fig. 2.e and j). However, non of the measured parameters was completely inhibited as a result of the treatments and partially recovered during regreening of orange cells.

### Discussion

Treatment of green *Chlorella* cells with the tested herbicides up to a concentration of 10 ugml<sup>-1</sup> resulted in retardation of cell division, whereas treatment at a higher level of 100 ugml<sup>-1</sup> appeared to result in complete cessation of this process (Fig.1.a and f). However, this observed retardation of cell division was less pronounced

during regreening of orange nitrogen-starved cells in the presence of the two tested herbicides (Fig.2.a and f). Towards the end of the regreening period, cell division of control cells commenced and resulted in a 27-fold increase in cell number (Fig.2.a and f). Treatment with BASE 23650 at a concentration of 100 ugml<sup>-1</sup> for 32 hr resulted in a 60% reduction in cell number compared to control (Fig.2.a) whereas treatment with BASE 44521 produced the same effect at a lower concentration of 10 ugml<sup>-1</sup> (Fig.2.f). This result indicates that BASE 44521 possesses a more potent effect on cell division. Inhibition of cell division by phanylpyridazinone herbicides has previously been reported in Chlorella (9,13).

Treatment of green Chlorella cells with BASE 32550 pr BASE 44521 resulted in reduction of the total chlorophyll content (Fig.1.b and g) the Chl a : Chl b ratio (Fig.1.c and h), total carotenoid content (Fig.1.d and i), and exygen evolution (Fig.1.e and j) of these cells compared to control. These effects partially occurred upon regreening of orange cells treated with these tested herbicides, with BASF 44501 being more effective than PASE 37650, particularly at high tested concentrations (Fig.2). The observed effects in agreement with previous reports that phenylpyridazinones inhibit  $\rho$ igment synthesis [9,13,14,15], and photosynthetic electron transport [3,7,20].

Orange nitrogen-starved cells are known to be chotosynthetically inactive and contain non-appressed lamellae and prolamellar body-like membrane aggregations and were reported to be able to degreen and develop an active photosynthetic apparatus within 14 h upon being transferred

to a nitrate-rich medium [6,12]. Dur results (Fig.2) show that despite the presence of the tested herbicides in the nitrate-rich medium and the partial inhibition of both pigment synthesis and the development of an oxygen-evolving capability during regreening, the prange cells could regreen again within 32 hr.

Although the primary mechanism of action, defined by Moreland [11], is questionable for the bleaching phonylpyridazinone herbicides, it has recently been reported that the bleaching process in Chlorella fusca cells is dependent on an active cell metabolism and results from the regulated metabolic destruction of the photosynthetic apparatus [16]. Thus, the bleached Chlorella cells recover to green, photosynthetically active and herbicideinsensitive phenotype [17-19]. In these reports it has been concluded that the bleaching process is a consequence and answer of the cell metabolism to pheny!pyridazinone-induced disregulation and enables Chlorella cells to survive. Our observations perhaps convey a similar message. Despite the degradation of the photosynthetic apparatus in orange cells they could surprisingly regreen, and develop a functional photosynthetic apparatus even in the presence of such bleachings herbicides (Fig.2). It is, therefore, suggested that these observed responses are probably reflections of structural and/or functional characteristics of Chlorella cells that enable them to survive in the presence of these tested herbicides.

### Poferences

- 1 Bartels P.G. and C.W. Watson (1978) Inhibition of carotenoid synthesis by fluridone and norflurazon. Weed Sci., 26: 198-203.
- 2 Blum D.E. and J.W. McClure (1980) Developmental effects of Sandos 6706 on activities of enzymes of phenolic and general metabolism in barley shoots grown in the dark or under low or high intensity light. Plant Physiol. 56: 238-242.
- 3 Rohme H., K.J. Kunert and F. Loger (1981) Sites of herbicidal action on photosynthesis: A Fluorescence assay study. Weed Sci. 29: 371-375.
- 4 Draber W. and C. Fedtke (1979) Herbicide interaction with plant biochemical systems, in H. Geissbuhler (Ed.), Advances In Pesticide Science, Pergamon Press, Oxford, p.475-496.
- 5 Grimme L.H. (1975) Ein biotest-system für das prescreening potentiell herbizider phytopharmaka and zur ermittleung allgemeiner toxizitantsdaten mit hydrogenase enthaltenden einzelligen grunalgen. Habil., Erlangen, Germany.
- 6 Grimme L.H. and R.J. Porra (1974) The regreening of nitrogen-deficient Chlorella fusca. I. The development of photosynthetic activity during the synchronous regreening of nitrogen-deficient Chlorella. Arch. Microbiol. 99: 173-179.
- 7 Herkzeg T., E. Lehoczki and L. Szalay (1979) The prompt effect of pyridazinone herbicides on the primary processes of photosynthesis. FEBS Lett. 108: 226-228.
- 8 kummel H.W. and L.H. Grimme (1974) The inhibition of carotenoid biosynthesis in green algae by Sandoz H 6706: Acuumulation of phtoene and phytofluene in Chlorella fusca. Z. Naturforsch., 30c: 333-336.
- 9 Lichtenthaler H.K. and H.K. Kleudgen (1977) Effect of the herbicide San 6706 on biosynthesis of photosynthetic pigments and prenylquinones in Paphnus and in Herdium seedling. Z. Naturforsch. 32c: 236-240.
- seedling. Z. Naturforsch. 32c: 236-240.

  10 Metzner H., H. Raw, and H. Senger (1965) Unstersuchungen zur synchronisierbarkeit einzelner pigmentmangel mutanten von Chlorella. Planta, 65: 186-196.
- 11 Moreland D.E. (1980) Mechanisms of action of herbicides. Annu. Rev. Plant Physiol., 31 (1980) 597-638.
- 12 Pyliotis N.A., D.J. Goodchild and L.H. Grimme (1975) The regreening of nitrogen-deficient *Chlorella* fusca. II. Structural changes during regreening. Arch. Microbiol. 103: 259-270.
- 13 Sandmann G., E.J. Kunert and F. Boger (1981) Bleaching activity and chemical constitution of phenylpyridazinones. Physics. Biochem. Physics. 15: 228-233.
- 14 St.John J.B. and J.L. Hilton (1976) Structure versus activity of substituted pyridazinones as related to mechanism of action. Weed Sci., 24: 579-582.
- 15 Tantawy M.M. and L.H. Grimma (1981) The content of phytol in the green alga Chlorella fusca and the effect of the pyridazinone herbicide SAN H 6706 on phytol biogynthesis, in S. Aloyunoglou (Ed.), Photosynthesis V. Chloroplait Development, Filden International Science Services, Philadelphia, p. 997-1005.

- 16 Tantawy M.M. and L.H. Grimme (1982) The bleaching induced by the phenylpyridazinone herbicide metflurazon in Chlorella is a metabolic and reversible process. Postic. Biochem. Physiol. 18: 304-314.
- 17 Tantawy M.M., Th. Braumann and L.H. Grimme (1984) Uptake and metabolism of the phenylpyridazinone herbicide metflurazon during the bleaching and regreening of process of the green alga, Chlorella fusca. Pestic. biochem. Physiol. 22: 224-231.
- 18 Tantawy M.M., Th. Braumann and L.H. Grimme (1984) A new metflurazon-resistant phenotype of the green alga Chlorella Fusca, in C. Sybesma (Ed.), Advances in Photosynthesis Research, Martinus Nijhoff/Dr. W. Jung Publishers, The Hage, p.77-80.
- 19 Tantawy M.M., Th. Braumann , B. Delkers, W. Telle, and L. H. Grimme (1986) Influence of herbicides on the phenylpyridazinone-resistant type of the green alga Chlorella fusca. Minia J. Agric. Res. & Dev. 8:
- 20 Trebst A. and E. Harth (1974) Herbicidal N-alkylated -ureas and ringclosed N-acylamides as inhibitors of photosystem II. Z. Naturforsch., 29c: 202-205.
- 21 Urbach D., M. Suchanka and W. Urbach (1976) Effect of substituted pyridazinone herbicides and of difunone (EMD-IT 5914) on carotnoid biosynthesis in green algae.

  Z. Naturforsch., 31c: 652-655.

# 

عولمت خلایا طحساب المکلوریللا الخضرا البنها دانیا بسیسدی الفینیل بیریدازینون پساسسف ۱۵۰۱ [افیسنیل به ۱۳۳۵ [افیسنیل ما ۱۳۰۰ میشوکنسی - میروبو-بیریدازینون] و باسسف ۱۲۰۱۱ [۵- کلورو- ۱۰ میشوکسی - ۲ - (الفاء فلفاء فلفا مثلاثی کلورو - میشوکسی - ۲ - (الفاء فلفاء فلفا مثلاثی کلورو - میشوکسی استان المیدرد) - ۳ (هیدرد) - بیرید از پستون المیدة ۱۳ مسلفه و

تسبيبت المعابلات في تتبهسط الانفسام الخسلوى هو تفسليل المحتوى السكلى من الكليروفيلات و الكاروتيفويدات هو تخفسيش نسبية تلوروفيل ا ، كلوروفيل ب ، و كذلك تتبهسط تصاعد الاكسبين من البقاء الفولى ، هذا وقد اظهرت النقائع ان ميسسه الحشسائق بالمسعد ١٤٥٢١ كان اكسر فاعلية كشبط للانقسام الخسلوى عن بماسة. ٢٣٦٥،

ثم أدباع هذه البيدات في الموسسط الغذائي القنى بالنتوات والمستندم في ادادة تضيفير خلايدا الكاويللا البرتقاليد المفتقرة الى النيتروجسين و نتج عن ذلك تنبيط تصيبي لحليات النسو وخليق الخصيب كيا النقدة قدرة الخلايا على استبادة نشاط تعاند الاكسبين بطارنتها بخلايا الكترول غير المعابلة و جدير بالذئر اندعلى الرغم من هذا النتيجاد النسبين فان خلايا الهزارع الطسلبية التى تبت معابلتها عند جيئ التركيزات المختبرة استطاعت ان تخسفو عرة اخسرى ولو جزئياس في خلال ٢٦ سساعة .