POSSIBLE MECHANISMS OF ORGANSPHOSPHORUS RESISTANCE IN FIELD STRAINS OF COTTON LEAFWORM, Spodoptera littoralis (BOISD.) M.A. ABBASSY, M.A. ABDEL BAKI, M.M. EAASAWY AND F. SHARAF

Plant Protection Dept., Fac. of Agriculture, Tanta Univ., Kafr El-Sheikh Egypt

ABSTRACT

Comparative biochemical and toxicological studies of <u>Spodoptera littoralis</u> (Boisd.) to the organophosphorus (OP) insecticides were made to detect any changes that might be linked to the development of resistance. The resistant cotton leafworm which originated from the field colonies of Kafr El-Sheikh(KF) & Sharkia (SH) governorate had greatly elevated levels of lipids, non-specific esterases, acid-and alkaline phosphatases than the susceptible strain. On the other hand, acetylcholinesterase activity was significantly lower in resistant larvae and less sensitive to <u>in vitro</u> inhibition with OP insecticides than that of the susceptible strain.

INTRODUCTION

The cotton leafworm, <u>Spodoptera littoralis</u> Boisd,, is one of the most important lepidopterous insects that attack cotton in Egypt. Many reports indicate clearly that in Egypt, the cotton leafworm is now developing resistance to organophosphorus (OP) insecticides e.g. El-Sayed <u>et al.</u> 1975a & b; Dittrich <u>et al.</u>, 1979; El-Sayed <u>et al.</u> 1980-1981; Abbassy <u>et al.</u>, 1982; Ayad and El-Dakroury, 1984 and Issa <u>et al.</u>, and Abassy <u>et al.</u> (1988). A knowledge of the factors contributing to the of resistance mechanism in cotton leafworm could conceivably be useful in devising alternative methods of chemical control. The present paper reports the results. of comparative biochemical and toxicological studies of two field strains of cotton leafworm that were resistant to OP insecticides.

MATERIALS AND METHODS

Insects.-The laboratory susceptible strain of S. littoralis (Boisd.) was used as a standard against which resistance could be measured. The susceptible (s) strain, which was obtained from the laboratory of plant protection Institute. Ministry of Agriculture. Egypt, was reared in the laboratory without any exposure to insecticides. The resistant field strains KF and SH were obtained from Kafr El-Sheikh and Sharkia Governorates, respectively. In all experiments larvae were reared according to the method of El-Defrawi et al. (1964).

Insecticides.-The following organophosphorus compounds were used for measurement of resistance <u>Sulprofos</u>, Bolstar (E.C. 72%), O-ethyl-O-(4-methyl thiophenyl)-S-n-propylphosphorodithioate: <u>Chlorpyrifos</u>, Dursban (E.C. 40.8%), O,O-diethyl-O-(3,5,6-trichloro-2-pyridyl)phosphorothioate; <u>Profenofos</u>, Curacr-on(E.C.72%),O-ethyl-O-(2-chloro-4-bramophenyl)-S-propylphosphorothioate.

Resistance measurement.-A microliter of acetone solution of each insecticide was applied topically on the dorsum of the 4th instar larva ten larvae were treated with each concentrations and three replicate were used. Treated insects were kept on fresh leaves of castor bean and mortality was recorded 24 hr after application. The data were corrected according to Abbott's formula (1925) and analyzed according to the method of Litchfield and Wilcoxon (1949).

Measurements of AChE activity and Inhibition.-All AChE determinations were carried out using acetylthiocholine as a substrata and DTNB as a sulfhydryl reagent (Ellman et al. 1961).

Determinations of esterase Activity.- All determinations were done according to the method of Van' Asperen (1962) using - and Bnaphthyl acetate as substrates.

Determination of phosphatases. - Acid-and alkaline phosphatases were determined according to the method of Kind and King (1954) as modified by Belfield and Goldberg (1971) using phenyl phosphate as substrata.

Determination of total and unsaturated lipids. - Total lipids and unsaturated lipids were determined according to the methods of Bennet and Thomas (1963) and Knight et al (1972), respectively.

Protein determination. -Colorimetric method of Weichselbavm (1976) was used for the determination of total protein in the 4th in star larvae homogenate.

All of the determination were done by using the 4th instar larval homogenates.

A homogenate was made by grinding 4th instar larvae with 0.25 M sucrose (0.4 mg/ml). The cold homogenate was centrifuged and the supernatant was used as the source of enzymes.

RESULTS AND DISCUSSION

Toxicity studies:-

Resistance to OP insecticides was found to be widespread and severe in field collected populations of cotton leafworm, S. littoralis as shown in Table (1). Thus Kafr El-Sheikh (KF) and Sharkia (SH) field strains had remarkably higher LD50 values than that of susceptible strain. They were resistant to all OP insecticides tested with maximum resistance factor of X36.2 in KF strain and a minimum factor of X14.7 in SH strain.

Esterase activity. Comparison of the esterase activity of larval homogenates revealed that some physiological differences between the tested strains (Table 2). The homogenates of field larvae demonstrated higher specific activity for both - and B-naphthyl acetate. The higher activity was more pronounced in KF strain (395 μ M/mg protein/min. X10-3). Such mechanism has been suggested for certain OP resistant strains of Musca domestica L. (Mengle and Casida, 1960), Heliothis virescens (Whitten and Bull, 1970), green preach aphid, Myzus persicae / Sudderuddin, 1973 and S. littoralis (Abdel-Aal & Riskallah , 1978 and Abbassy et al, 1988).

Table 1: Resistance level of KF and SH strains of <u>S</u>. <u>littoralis</u>. compareing with susceptible stran.

	LD50) (Mg/larv	a	Resistano	e factor
Insecticide	S. strain	Field s	trains		
		KF	SH	KF/S	SH/S
Chlorpyrifos	1.7	35	25	20.6	14.7
Profenofos	1.45	52.5	32	36.2	22.4
Sulprofos	4.0	142.5		35.6	•

Table 2: Esterase activity of larval homogenates from resistant and susceptible cotton leafworm.

Substrate	Specific activity -naphthyl acetate	M/mg protein/minX10-3 B-naphthyl acetate
Susceptible KF strain	strain 200b 395a	292.5b 564.5a
SH strain	367a	519a

Means followed by the same letter are not significantly different.

Phosphatases:

Results in Table (3) showed that the specific activity of both acid and alkaline phosphatases was significantly higher in the field strains than that in susceptible strain. KF strain had the highest level of the alkaline phosphatase (3978 μ M/mg protein/min. x10-6). Thus, the differences in phosphatases activity between susceptible and field strains suggest the important rate of phosphatases in the OP. resistance. This relationship has been reported by many authors such as Welling et al (1971), Lewis and Sawicki (1971) Belal et al (1985) and Abbassy et al. (1989).

Table (3): Phosphatases activity of larval homogenates from susceptible and field resitant strains.

	Acid phosphatase		Alkaline phosphatase		
Strains	Specificativity µM /phenylphosphate /mg protein/min	% of susceptible strain	S.A. µM phenylphosphate /mg protein/min	%of susceptible strain	
S KF SH	603 1783 1982	100 c 289.69 bc 328.69 ab	1845 3978 2859	100 b 215.6a 154.96 a	

Means followed by the same letters are not significantly different.

Acetylcholinesterase. Results in Table (4) show that the specific activity of larval AChE was significantly higher in the susceptible strain (72. µM acetylthiocholine/mg protein/min) than that in the field strains.

Table 4: Specific activity and in vitro inhibition of larval AChE in susceptible and field strains.

Strains	S.A.	I ₅₀	Resistance factor
		(μg a.i. of profenofs)	I ₅₀ fields strain/I ₅₀ S
Susceptible	72 a	4 a	•
KF "	84 ab	13 bc	3.25
SH	25 b	8 ab	2

S.A.: µMole/Actylthiocholine/mg protein/min.

According to the I₅₀ values for profenofos (Table 4), It was found that the AChE of the field strains is less sensitive to the <u>in vitro</u> inhibition by profenofos than that of the susceptible strain. The I₅₀ value for propenofos to AChE in KF and SH strains are only 3.25 and 2.0 fold.

respectively, than those in susceptible strain. The insensitivity of AChE inhibiter is not the main factor of OP-resistance in these strains. A mutant AChE, insensitive to inhibition by OP insecticides, was reported for S. littoralis by Zaazou et al. (1973), Abbassy et al. (1978), Dittrich et al. (1979), Voss (1980), and El-Nawawy et al. (1981).

Based on these results it appears that the elevated activity of esterases, phosphatases and the lower activity and sensitivity of AChE contribute to the resistance of S. littoralis to the OP insecticides.

Total and unsaturated lipids. - Results in Table (5) revealed that the quantities of total and unsaturated lipids were significantly higher in the larvae of field strains than that in susceptible larave. The highest level of total lipids was found in the larvae of KF strain. The same positive correlation was observed by Bennet and Thomas (1963) on bollweevil, Khalid et al (1975) and Abbassy et al (1982) on S. littoralis larvae. These findings suggest that lipids may play a role in the mechanism of the OP resistance.

Table 5: Total and unsaturated lipids in S. littoralis 4th instar larvae of susceptible and field strains.

Strain	Total lipids mg/g. body weight	Unsaturated lipids mg/g. body weight
KF	31.08 ab	4.40 a
SH	10.29 bc	5.68 a
2	9.63 c	1.136

Means followed by the same letters are not significantly different.

REFERENCES

- Abbassy, M.A.; A. Ashry and H. Anbr. (1978). Resistance to organophosphorus insecticides in <u>Spodoptera littoralis</u> Boisd. based on reduced sensitivity of Acetylcholinesterase. J. Agric. Res. Tanta Univ. 4(2), 340.
- (1982). insecticide resistance and penetration in and lipid content of the cotton leafworm Spodoptera littoralis (Boisd.). med. Fac. Landbouww. Rijksuniv. gent, 47/2, 47/2.
- Abbassy, M.A.; A.H. Hoony; M.A. Ald El-Baki and F. Sharaf (1988). Studies on the mechanism of resistance to profenofus and

- methomyl in the field selected strains of <u>S. littoralis</u> (Boisd.). J. Agric. Res. Tanat Univ. 14(3): 13-27.
- Abbassy, M.A.; A.A. Zein; A.H. Masoud M.A. Salama and R.B. Abou Arab (1989). Mechanisms of resistance to organophosphorus insecticides in red flour beetles, Tribalism costanium (HERBST). The 7th Arab Pest. Conf. Tanta Univ., 197-206.
- Abbot, W.S. (1925). A method of computing the effectiveness of an insecticide J. Econ. Ent. 18: 265-267.
- Abdel-Aal, Y.A.I. and M.R.Riskallah. (1978). Leptophos resistance and esterases activity in <u>Spodoptera littoralis</u> (Boisd.). Proc. 4th Conference on Post Control, National Research Center, Cairo, 251.
- Ayad, F.A. and M.S.I. El-Dakhroury. (1984). Monitoring of resistance to chlorpyrifos and cypermothrin against field strains of the cotton leafworm, Spodoptera littorlais (boisd,) during 1982, 1983 and 1984 cotton seasons. Bull. Ent. Soc. Egypt. Ser., 14: 337.
- Belal, A.H.; F.A dam, M.A. Abassy and A.S. Salam: (1985). Biochemical aspects responsible for resistance Spodoptera littoralis to ripcord and curacron insecticides. J. Agric. Res. Tanta Univ. 11(1): 136-146.
- Bennett, S.E. and C.A. Thomas; J.R. (1963). the correlation between lipid content and percent mortality of the alfalfa weevils to hepatchlor and malathion. J. Econ. Ent., 57, 239.
- Belfield, A. and D.M. Goldberg. (1971). Revised assoy for serum phenylphosphatase activity using 4-aminoantipyrine. Enzyme, 12: 561.
- Dittrich, V.; N. Luetkemeier and G. Voss. (1979). Monocrotofos and profenofos two roganophosphates with different mechanism of action in resistant races of <u>Spodoptera littoralis</u>. J. Econ. Ent., 72, 380.
- El-Defrawi, M.E.; A. Toppozada; N. Mansour, and M.Zeid. (1964). Toxicological studies on the Egyptian cotton leafworm Prodenia litura L. susceptibility to different larval instar of Prodenia to insecticides. J. Econ. Ent., 57; 591.
- Ellman, g.L.; K.D. Courtney; V. Andres. and R.M. Featherstone. (1961).

 A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacol. 7, 77.

- El-Nawawy, A.S.; M.A. Abbassy; M. Ashry; H. Anbr and M.B. Abou-Donia. (1981). Insecticide resistnace in different strains of Spodoptera littoralis (Boisd.). Proc. 4th Arab Pesticide Conf. Tanta Univ., Vol. (IIIA), 261.
- El-Sayed, E.I.; M.M. Abdel-Sattar and A.H. Mohanna. (1980-1981). influence of three synergists on the action of some insecticides against parental and resistant strains of the Egyptian cotton leafworm, Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). Bull. Ent. Soc. Egypt, Econ. Ser. 12, 189.
- El-Sayed, G.N. and M.A. El-Guindy. (1975). Resistance spectrum and subgrouping of organophosphorus compounds in a field population of the Egyptian cotton leafworm, Spodoptera littorlais (Boisd.). Bull. Ent. Soc. Egypt, Econ. Ser. IX, 147.
- susceptibility to certain insecticides of three field populations of the Egyptian cotton leafworm Spodoptera littoralis (Boisd,). Bull. Ent. Soc. Egypt. Econ. Ser. IX, 165.
- distribution of resistance to insecticides in the Egyptian leaworm, <u>Spodoptera littorlais</u> (Boisd.) with emphasis on closely situated Governorates. Bull. End. Soc. Egypt. Econ. Ser. IX, 197.
- Issa, Y.H.; F.A. Ayad; M.M> Abdel-Sattar and M.A. El-Guindy. (1984-1985 a). Survey of resistance to organophosphorus insecticides in field strains of the cotton leafworm Spodoptera littoralis (Boisd.). Bull. Ent. Soc. Egypt., Econ. Ser., 14, 399.
- (1984-1985 b). Survey of resistance ot pyrethroids in field strains of cotton leafworm Spodoptera littoralis (Boisd.) late in the cotton seasons 1980-1984. Bull. Ent. Soc. Egypt., Econ. Ser. 14, 405.
- Khalid, R.H.: Z>H. Zida and G.N. Rezk. (1975). relationship between fat content in larvae of the cotton leafworm Spodoptera littoralis (boisd.) and their resistance to certain insecticides. Bull. Ent. Soc., Egypt., Econ. Ser., IX, I: p., 299.
- Kind, P.R.N. and E.G. King. (1954). Estimation of plosma phosphatase by determination of hydrolysed phenol with 4-aminoantipyrine. J. Cline. Pathol., 7, 332.

- Knight, J.A.; S. Anderson and J.M. Rawle. (1972). Chemical basis of the salfophosphovallinin reaction for estimating serum lipids. Chemical Chemistry 18, 199.
- Lewis, G.P. and R.M. Sawicki (1971) Characteriation of the resistance me ochomisms to diazinon, parathion and diazoxone in the rogsmophosphorus resistant S.K.A. strain of house flies (Musca domestica). Pesticide Biochemistry and physiology Pestic. Biochem. Physiol. 1: 275-285.
- Elichfield, J.T.R. and E. Wilcoxon. (1949). A simplified method of evaluating dese-effect experiments. J. Pharmacol and Exp. Therap., 96, 99.
- *Margle, D.C. and J.E.Casida (1960) Biochemical factors in the acquired resistance of houseflies to reganophosphate insecticides. J. Agric Fode Chem. 8: 431-437.
- Sadderuddin, K.I. (1973). An in vitro study of esterases, hydrolying non-specific substrates, of an organophosphate resistant strain of the green peach aphid, Myzus persica. Comp. Biochem. Physiol. 44: B(4), 1067.
- Van Asperen, K. (1962). A study of housefly esterases by means of sensitive colorimetric method. J. Insect Physiol. 8, 401.
- Voss, G.(1980). Cholinesterase autoanalysis: a rapid method for biochemical studies on susceptible and resistant insects. J. Econ. Ent., 73, 189.
- Weichselbavm, T.E. (1976). A biurel colorimetric method for determination of total protein. Amer. J. Clin. pathol. 16, 40.
- Welling, W.; P. Blaakmeer, G. J. Jink and S. Voerman. (1971). In vitro degradation of paraoxon in resistant and susceptible strains of the housefly. Pestic. Biochem. Physiol. 1, 61.
- Whitten, C.J. and C.L. Bull. (1970). resistance to organophosphorus isnecticides in tobacco budworm, Heliothes virescens. J. Econ. Ent., 63, 1492.
- Zaazou, M.H.; A.M. Ali; M.D. Abdallah and M.R. Rizkallah. (1973). In ivvo and In vitro inhibition of cholinesterase and aliesterase in susceptible and resistant strains of Spodoptera littoralis (Boisd.). Bull. Ent. Soc. Egypt. Econ. Ser., VII, 25.

الملخص العربى

يهدف هذا البحث الى دراسة صنفة المقاومة في السلالات الحقلية النودة ورق القطن المجموعة من محافظتي كفر الشيخ والشرقية وذلك لفعل المبيدات الفوسفورية العضوية ومحاولة دراسة أسباب حدوث هذه المقاومة عن طريق دراسة الاختلافات البيوكيماوية المختلفة في كل من هذه السلالات الحقلية والسلاله المعملية الحساسة. وأوضحت النتائج مايلي:-

- (١) أن يرقات السلالات الحقلية اكثر مقاومة لدرجة معنوية للفعل السام للمبيدات المختبرة وهي سالبروفوس ، وكلوروبيرفوس، بروفينوفوس بالمقارنة بالسلالة المعملية الحساسة.
- (٣) أن نشاط الاستيريزات الكلبة والقوسفائيز العامضي وكذلك الثلوي كان مرتفعاً معنوياً في
 السلالات الحقلية بالمقارنة بالسلالة الحساسة.
- (٢) كان نشاط انزيم الأستيل كولين استيريز في برقات السلالاة الحقابة منخفضاً معنوياً في متجانس برقات السلالة الحقابية وذلك بالمقارنة بالسلالة المعملية الحساسة.
- كما كان حساسية الأنزيم لتتبيط بهذه البيدات حارجياً منطقض عن السلالات المقلبة عن الزيم السلالة الحساسة.
- (3) وجد أن يرقات السلالات الحقاية تحتوى على نسبة أكبر من المحتوى المحتوى الدهنس الكلى وايضا الدهون غير المشبعة. عن التي توجد في السلالة المعملية وعلى ذلك فإن هذه العوامل مجتمعة تنعب بوراً هاماً في تفسير صفة المقاومة.