INTERACTION OF THE SESQUITERPENE - LACTONES, AMBROSIN AND DAMSIN, AND GOSSYPOL WITH INSECT AND SNAIL ACETYLCHOLINESTERASE ACTIVITY.

by

Samia A.B.Abo-seda and Mahmoud M.Abo El-Saad Plant Protection Research Institut, Agric. Res. Centre. CAPL, Bacous. Alex. Egypt.

Pesticide Chemistry Dept.Faculty of Agriculture, Alexandria University.
Recived 16/2/1993 Accepted 15/7/1993.
ABSTRACT

The two sesquiterpene-lactones, ambrosin and damsin which are the major components in the ethanol exetract of Damssissa plant of (Ambrosia maritima) and gossypol (asesquiterpene) naturally exist in cotton plant were tested against of AChE activity. The enzyme was prepared from house flies Musca domestica as well as Theba pisana (Muler)a terrestrial snails. The effects of the three compounds on the enzyme from both sources were varied. So that, whereas gossypol stimulate the enzyme activity from both sources, the two sesquiterpenelactones extracted from damssissa , inhibited the enzyme activity from house flies. However, the susceptibility of the enzyme activity from snails towards the two sesquiterpenlactones were different.So, although ambrosin still inhibit the enzyme activity from this source as well as the house flies, damsin showed a stimulatory effect similar to that of gossypol. On the other hand, although ambrosin inhibited the activity of the enzyme from both sources, kinetic analysis of the inhibition showed different inhibition mechanisms of the both cases. The results were discussed in terms of the chemical structure of the three compounds tested and of the possible variation of the enzyme from the two sources used in the study.

INTRODUCTION

Ambrosia maritima (Damssissa) is an annual herbaceous plant widely distributed through out the Miditerranean region. The dried plant has a characteristically disagreeable odor and very bitter. It has been tested as molluscicide for the control of snails (Sherif et al 1962). Others have used Damssissa as a larvicide and pupicide against. Anopheles pharoensis mosquito (El-Sawy et al 1986). These investigators have showed the ability of this plant in terms of biological control of adult mosquitoes. Chemical investigation of this plant led to the identification of two major compoambrosin and damsin as sesquiterpenelactones (Abu-Shady and Sione 1953). In the present study we used these two compounds compared to another known sesquiterpene gossypol, (Stipanovic et al 1977) to test these plant components would have exert there physiological effect through the effect on the cholinergic system of the entire pests or whether they would have another physiological effect. Therefore ACHE preparations were obtained from house flies as an insect source and terrestrial snails(Radwan et al, 1991) results indicate that these compounds have a diverse effects on the enzyme from both source. Never the less, evaluation these effects in terms of the physiological action of this plant needs more investigation.

MATERIALS AND METHODS

1- Chemicals

Ambrosin and damsin(C₁₅H₁₆O₅,C₁₅H₂₀O₅)were a gift from prof.Nabil Abdel Salam,Pharmacognosy Department,Faculty of Pharmacy Alex. Univ. Egypt. Gossypol, technical grade was obtained from Sigma Company.All other chemical reagents were also purchased from Sigma Company.

Chimical structure of Damsin, Ambrosin and gossypol

2- Enzyme sources

A) Snails, Theba pisana (Muler)were collected from citrus trees in Faculty of Agriculture farm, Abees, Alexandria.

B) House flies (Musca domestica) were reared in toxicological laboratory, Pesticide Chemistry Alex. Univ.

3- Enzyme preparations

Adult house fly head capsules, mollusca heads and muscular fcots were callected as described (Redwan et al 1991) and homogenized for 30 sec in ice cold 100 mM phosphate buffer at pH 7.4,. Homogenates were centrifuged at 10,000 xg for 30 min at 4 C°. Debris were discarded and supernatants were saved as source for the enzyme assays.

4 -Assay of acetylcholinesterase (AChE) activity and inhibition:

AChE activity was assayed in the above described supernatants using Acetylthiocholine iodide (ASChI) as substrate. The reaction mixture contained 100mM phosphate buffer PH 7.4..5 mM ASChI and .5 mM DTNB [5.5%—dithio-bis-(2-nitrobenzoic acid)]. The reaction was started by adding AChE(100 ug) for 1 min incubation time

Abo-Seda & El-Saad.

Table (1) Effect of Sesquiterpene Lactone (Ambrosin and Damsin) on AChE isolated from house flies and snails.

Enzyme Activity as % of Control				
house flies		snails		
A*	D*	A *	D*	
100.0	100.0	100	100	
	71.1	70	101	
		64	108	
	-		138	
			138	
33.0	41.0	43 39	138 137	
	100.0 69.1 57.1 41.9 38.9 36.3	house flies A* D* 100.0 100.0 69.1 71.1 57.1 69.0 41.9 58.2 38.9 41.0 36.3 41.0	house flies sn. A* D* A* 100.0 100.0 100 69.1 71.1 70 57.1 69.0 64 41.9 58.2 60 38.9 41.0 49 36.3 41.0 43	

A*: Ambrosin
D: Damsin

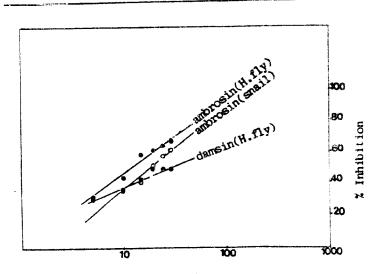
Table (2) Effect of gossypol on AChE isolated from house flies and snails

onc.	Enzyme Activity as % of Control		
μ Μ]	house flies	sanils	
.0	100	100.0	
_	115	148.0	
0	119	140.0	
5	122	136.0	
0 5	127	135.0	
_	124	121.0	
0	124	110.0	

Control activity was 7.16 O.D at $412 \, \text{nm/mg}$ protein/min and 6 O.D at $412 \, \text{nm/mg}$ protein/min for house fly and anail.

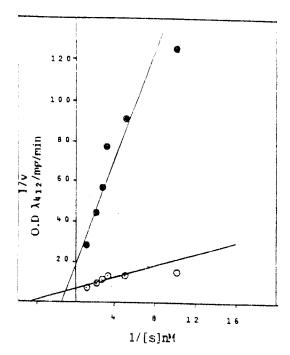
and will be produce thiocholine iodide which is determined colorimetrically at 412 nm (Ellman et al 1961). Assessment of the enzyme inhibition by the tested compounds ambrosine, damsin and gossypol were conducted by adding different concentrations of these compounds to the enzymatic reaction mixtures contained same concentration of the supernatant protein (AChE) and different concentrations of the substrate ranged from 50 - 500 uM with and without fixed concentration of ambrosin(10uM). The type of inhibition was determined using lineweaver-Burk method (1934).

RESULTS AND DISCUSSION


The data in table(1)shows that the two sesquiterpene - lactones, compounds ambrosin and damsin, can inhibit the AChE activity of the house fly preparations, However the effect of these two compounds on similar preparations from snails were varied. So, whereas, ambrosin still inhibit such activity, damsin failed to inhibit the enzyme activity in this case, and higher concentrations (10 - 30 uM) showed stimulation.

El-Sawy et al(1986) found that the dry damssissa plant preparations have lethal effects on belharzia snails as well as larvae and pupae of Anopheles pharcensis in the laboratory. Analysis of the ethanol extract of these preparations showed that the two compounds used in the present study, ambrosin and damsin are major components of the damssissa extract. Gossypol, another sesquiterpene which exist in cotton plants (Sherby, 1979) showed similar effects on the enzyme activity of both preparations to that of damsin on the preparation from snails. Concentrations of gossypol betwen (5 to 30 uM) showed stimulation of the enzyme activity. The same range of concentration from ambrosin was inhibitory to the enzyme activi-

ty from both source. Damsin effect was similar to ambrosin in the case of house flies and to


Table (3): Parameters of inhibitory type of ambrosin and IC50 of other chemicals on house fly and snail acetylcholinesterase(AChE).

	Value		
Parameter	house fly AChE	snail AChE	
max (O.Dλ412/mg/min)	0.167	0.33	
max app (O.D _{\lambda12} /mg/min)	0.05	0.22	
max dip (to Adi2 to Ad	0.277	0.059	
Tm app (uM ⁻¹)	0.714	0.04	
om app (ran.) Ci(µMs)	4.27	20	
C ₅₀ values			
embrosin	الم 12 سا	19 µM	
damsin	22 LM	-	
rossynol	-	-	

Concerntration [44]

Fig(1): Relation between log concentration of securiterpenes and % inhibition on house fly and smail AChE.

Fig(2): Double reciprocal plots of 1/v versus 1/[s] for house fly AChF in presence of (a) and absence of 10ul ambrosin (o).

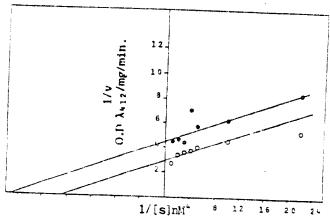


Fig (3): Double reciprocal plots of 1/v versus 1/[s] for snails AChE in presence of (•) and absence of 10 uM amprosin (o).

gossypol in the case of snail preparations. The difference in chemical structure between gossypol and the two sesquiterpene -lactones is apparent and can be thought of as bases for their differential effects on the enzyme activity However, the differences between the two sesquiterpene-lactones, are not that much. chemical studies of these two compounds by Abo-Shady and Soine 1953, summarized differences in the possissions of ambrosin structure of a conjugated carbonyl group, this difference in structure can be seen in their defferent effect on the enzyme from both sources, which may predict a role for such structure in the enzyme inhibition. Figure (1) showes Icso values of ambrosin and damsin on the two enzyme. Table (3) and figures (2, 3) indicate that the type of the enzyme inhibition from both sources by a fixed concentration of ambrosin, (10 uM) in the presence of varied concentrations of substrate noncompetitive in the case of house fly preparations and uncompatitive with smail enzyme. This difference in the type of inhibition may be due, either to endogenous factors in the preparations, or to an intrinsic differences in the enzyme itself from both sources. In essence the present data shed some light on the possible biochemical bases of biocidal effects of damssissa plant on insects and snails.

ACKNOWLEDGEMENT

We like to acknowledge Prof. Hassan M. Younis for critical comments and reviewing of the manuscript.

RERENCES

Abu-Shady, H. and T.O.Soine(1953).

The chemistry of <u>Ambrosia maritima</u> 1. The isolation and preliminary characterzation of Ambrosin and Damsin. J. Am. Pharm. Assoc. 42: 387 -397.

- Ellman, G.L., K.D. Courteny; V. Andres; and R.M Featherstone (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem-Pharmacol. 7: 88-95.
- El-Sawy.M.F;Z.M.SheibaT El-Hamd;S.A.El-Masry and N.F.Loutfy (1987).House fly control by Damssissa and chemical fertilizers. Bull. of the high Inst.Public. Health. Vol.XVII.No. 3.186-197.
- El-Sawy, M.F.Z.M. Sheibat El- Hamd; N.F. Loutfy; S.El-Masry, and M.Z. Abdel Gualil (1986). Amberosia maritima a larvicide and pupacide for Anopheles pharoensis ambrosin as an effective insecticide. J. Egyp. Soc. Of parasit, Vol. 16 No. I: 57-63.
- Hedin, A.P. and K.S. Waage (1986). In plant flavonoids in biology and medicine, Alan, R.Liss, Inc., N.Y.PP. 87-100.
- Lineweaver, H. and D. Burk (1934). The determination of enzyme dissociation constant.

 J. Amer. Chem. Soc. 56: 658-660.
- Redwan, M.A., F.A.Kassem and M.S.Shawir (1991b). Studies on acetylcholinesterase in the white garden snails, <u>Theba piana</u> (Muller).Alex.Sci.Exch.12 (2): 335-349.
- Sherby, S.M. (1979). Interaction of gossypol with pesticides. Ph. D. Thesis, Univ. Alexandria, Egypt.
- Sherif, A.F; A.H.Abdou; and M.F.El-Sawy(1962).

 Molluscicidal action of Egyptian herb.J.

 Laboratory experimentation Alex. Med.

 J. 8: 139-148.
- Stipanovic, R.A.Bell, and M.Lukefohr(1977).

 Natural insecticides from cotton: In

 Host plant resistance to pests, eds,

 Paol A. Hedin. 10: 197-207.

تد اخل الد امسین و الامبروسین من مرکبات السیسکوشیریین-لاکتون و البوسیبول مع اسزیم الاسیتیل المعزول من اللواقع و الذباب المعزلی

نظر الما للمركبات الطبيعية المستخلصة من النباشات دور هام في مطافحة الافات ألى هذه الاونة لتجنب المزيد من تلوث البيئة وبالتالى التاشير على مهد السيئة فان هذه الدراسة استهدفت استفدام تلك المستخلصات على بعض النظم التيوية لبعض الافات الغاية في النظورة سواء على النباشات أو الصحة العامة، فأشارت الدراسة بأن استخدام السيستوفيرين والتي منها الدامسين والامبروسين بمدى من الدامسين والامبروسين بمدى من التركيزات من ٥٥٠٥ ميكرومولر ادت الى انشفاض في النشاط الانزيمي الي٥٣٥ لكلا المصدرين ما عدا الدامسين الذي ادى الني زيادة نشاط الانزيم المعزول من السروعين المعزول من السروعين المدة نشاط الانزيم المعزول من الشواقع،

كان له تائير تنفيطي على كلا الانزيمين وهو من مجموعة السيستوفيرين، فيا بينت دراسة حرفية التفاعل الانزيمي ان التثبيط من النوع اللاتنافسي للانزيم من كلا المصدرين،