Pathological, morphological and chemical differences among sclerotia of Sclerotinia sclerotiorum affecting some vegetable plants

Ву

M.M. Satour, Ebtisam M. El-Sherif and Nadia A. Fouad Agricultural Research Centre, Plant Pathology Institute, Giza, Egypt Recived 13/5/1993 Accepted 29/6/1993. ABSTRACT

The pathogenecity test, fungal linear growth morphological characters and composition of the sclerotia, from different isolates Sclerotinia sclerotiorumi expressed variable Eggplant and behaviour. Pepper of similar, Squash isolates were (Solanaceae); Cucumber (Cucurbitaceae) were, also, similar characterized had its own (Fabaceae) behaviour. Generaly, the larger the sclerotia the more pathogenic the isolate. Pepper and Eggplant isolates produced the largest sclerotia followed by and, then. isolates and Cucumber Squash detected in the isolate, Five fatty acids were palmitic. isolates namely; sclerotia of tested palmitoleic, stearic, oleic and linoleic acids, but at different rates. Higher virulency was associated with lower Tu/Ts ratio, e.g.; higher palmitic oleic and lower linoleic acids.

INTRODUCTION

Sclerotinia sclerotiorum (Lib.) De Bary is an important soilborne pathogen in temperate and subtropical areas of the world that causes diseases on а wide variety of crops vegetables (Walker, 1952 and Chupp and Sherf, 1960). The fungus produces sclerotia, which have a major role in the biology of the organism. Sclerotia are principle survival structure under conditions. Inocula sources for most caused by S. sclerotiorum originate from sclerotia that germinate myceliogenically or carpogenically (Nelson et al. 1988). The disease occurs on root, stem and fruits of infected host plant (Echandi and Walker, 1957). Sclerotinia stem rot is characterized by the development of white, fluffy mycelial growth of the pathogen. Lesion may girdle the stem and kill plant. Large black sclerotia develop in the mycelial felt (Morgan and Ledieu, 1979)-

Several investigators reported the occurrence of Sclerotinia disease on different vegetable plants grown in Egypt (El-Zarka, 1967; Assawah et al., 1969 and El-Tobshy and Zayed, 1978).

Many reports have emphasized the importance of moisture in the development of *S. sclerotrorum* (Moore, 1955; Adams, 1975 and Adams and Tate, 1976). Tyrrell (1967) recorded that quantitative differences in fatty acid composition occurred among different isolates of the same fungus. Summer and Colotelo

(1970) compared the fatty acid composition of sclerotia of various fungi including S. borealis and S. sclerotiorum produced under specific culture conditions with those of sclerotia isolated from natural environments. Khalil and Ragab (1988) found that sclerotia of S. sclerotiorum contained higher percentage of oleic fatty acid than their "parent" mycelium. Sclerotia contained higher proportion of unsaturated fatty acids Tu than the mycelium. Fatty acids in one month old sclerotia were unsaturated than in those of two years Sclerotia accumulated high amount of Tu, particular oleic and linoleic to be used for new fungal growth. Sclerotial survival and differences young and old sclerotia, germination rate, linear growth, mycelial dry weight, might be affected by the fatty acid composition of the fungal lipid-

This work was carried out to study the morphological differences among sclerotia of Sclerotinia sclerotiorum affecting some vegetable piants. The relationship between fatty acid composition of sclerotia produced on tested hosts, and their pathogenecity was studied.

MATERIALS AND METHODS

Isolation of the pathogen

Stem samples of five vegetable plants showing symptoms of Scierotinia rot were collected from

网络 副歌 医细胞海绵基氏管丛

different localities in Ismaillia Governorate during 1992 season. Tested hosts were: Pisum sativum L. (Pea), Cucurbita pepo L. (Squash), Cucumis sativus L. (Cucumber), Capsicum frutescens L. (Pepper) and Solanum melongena L. (Eggplant). Infected portions of stem were washed using tap water before being cut into small pieces and surface sterilized with 2% sodium hypochlorite solution for 10 min- Pieces were then rinsed several times in sterile water and dried between two sterile filter papers. Pieces were plated on water agar medium and incubated at 25°C for 1 month. The growing fungus was identified on bases of its morphological and cultural the characters according to identification keys of; Domsch et al. (1980) and Hanlin (1990).

Pathogenecity test

Pathogenecity of fungal isolates was checked under greenhouse conditions. Inocula were prepared by growing the fungus on water agar medium under sterile conditions in Petri dishes for 1 month. Sterile potted soil, pots 25 cm in diameter, were infested with the tested fungal isolates by mixing 50 sclerotia which were randomly chosen from each isolate/kg soil, 4 days before planting. Seeds of tested hosts were, also, sterilized in 2% sodium hypochlorite for 5 min. Seeds were then washed in several changes of sterilized water. The treatment for each host comprised of 5 pots. Each pot was sown with 10 seeds. In addition, 5 pots of uninoculated soil served as a check treatment.

Diseased plants were counted two months after plants of the plants were counted two months after plants of the pla

Morphological and chemical studies

One month old scierotia; from hyphal tips, of tested fungal isolates grown on water agar media were used for morphological and chemical studies.

Measurement of the fungus linear growth

A sclerotium 1 month old was collected from each of various tested hosts, 5 replicates, and transferred to PDA medium in Petri dishes 9 cm in diameter. All Petri dishes were incubated at 25°C until the fungal growth of one of the isolates completely covered the whole dish. This occurred after 7 days with Pepper isolate.

Morphological characters of sclerotia

Shape, colour and growth nature of the sclerotia were recorded. A representative sample of 50 sclerotia was collected in duplicate from each tested host to determine the specific weight of sclerotia and their size (by difference in water size placed in a 10 ml- measurement cylinder resulted when adding the sclerotia).

Extraction of crude oil

Representative samples, 2g each, of sclerotia

Satour et al.

obtained from various investigated vegetable plants were soaked in a mixture of chloroform: methanol (2:1 , v/v) for 24 hrs. The miscella of various samples were collected and filterated. The solvent was evaporated under vacuum at 40–50°C. (Sahl, 1967).

* Preparation of free fatty acid methyl esters

The methyl esters of free fatty acids were prepared using benzene: methanol: conc. sulphuric acid (10:86:4). Methylation was carried out for 1 hr at $80-90^{\circ}\text{C}$ (Stahl, 1967).

Identification of free fatty acid methyl esters by Gas liquid chromatographic technique (GLC):

Packard gas liquid chromatograph Hewlett (Model 5890) equipped with a flame ionization detector and 6 ft coiled stainless steel column packed with 10% DEGS (Di-ethylene glycol succeinate) was used. One ut of fatty acid methyl esters was injected into the column Hamilton using a microsyringe. The gas chromatographic conditions used for isothermal analysis were as follows. Temperatures were; detector 300°C, injector 250°C and oven 170°C. Flow rates were ; hydrogen 30 ml/min-, nitrogen 30 ml/min- and air 330 ml/min- Peak areas were measured using Hewlett Packard 3392 A integrator.

RESULTS AND DISCUSSION

Pathogenecity test

Symptoms on artificially inoculated plants, started at the basal portion of the stem as brown and water-soaked spot. Development of white fluffy mycelial growth of the pathogen occurred on the lesions. A histogrammatic representation of the disease incidence of tested hosts is shown in Fig. 1. Data indicate that tested hosts could be classified into two categories on the basis of the percentage of infection: a-Highly sensitive; Pepper (88%) and Eggplant (84%); b- Moderately sensitive; Cucumber (80%), Pea (78%) and Squash (74%).

Measurement of the fungus linear growth

The fungul linear growth was measured for the five studied isolates. Results are shown in Fig. 2. Data indicated that rate of linear growth coincided with those of the disease incidence, i.e.; the higher the growth rate the more virulent the isolate.



Fig. 1: Disease incidence (infection %) on five vegetable plants infected with Scienotinia scienotiorum.

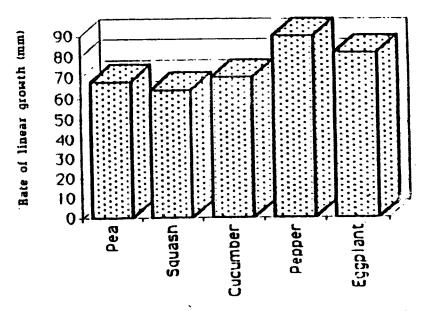


Fig. 2 : Linear growth (mm) of different

Sclerotinia sclerotiorum isolates

from five vegetable plants .

Morphological characters of sclerotia

Sclerotial bodies gradually formed superficially on vegetative mycelium grown on the water agar Petri dishes. Pattern of evelopment varied according to the tested isolates. Generaly sclerotial bodies gradually formed, first as grey-coloured compact masses which darken gradually until they became black and hard. Pea, isolate developed their sclerotia at the priphery of the plate and continued inward to the centre. In contrast, Pepper and Eggplant isolates developed their sclerotia at the centre of the plate and continued out wards. Squash and Cucumber isolates, however did not follow a definite pattern and were scattered allover the medium.

Table (1) represents morphological characters of the sclerotia of different fungal isolates, Weight and size of sclerotia varied according to tested isolate. The behaviour pattern of both weight and size of sclerotia was, almost, similar forementioned for the infection percentage and fungal linear growth. Solanaceae (Pepper and Eggplant) were on top. Fabaceae (Pea) recorded least values. Cucurbitaceae (Squash Cucumber) were intermediate compared to others.

Sclerotia of Pepper and Eggplant were elongated in shape and developed in groups. Those of other tested isolates developed solitary being flattened globe in case of Pea and elongated for Squash and Cucumber. Sclerotia of various isolates were more or less black in colour.

Previous investigators reported that sclertia varied in their morphological characters according to certain factors, such as the species of pathogen involved, used media, temperature and their chemical composition (Walker, 1952; Bedi, 1956 and 1962; Ragab 1980 and Khalil and Ragab 1988).

Table 1. Morphological characters of sclerotia of Sclerotinia sclerotiorum affecting five vegetable plants (Average of 50 sclerotia)

Host	Weight,	Size,	Shape	Colour	
	g·	cc.			
Pea	0.5	0.7	Flattened	Faint black	
			globe		
Squash	1.2	1-5	Elongated	Black	
Cucumber	1.2	1-5	Elongated	Black	
Pepper	2.0	3.5	Elongated	Black grey	
			(in groups)		
Eggplant	1.3	1-8	Elongated	Black	
			(in groups)		

Chemical characters of sclerotia

Fatty acid composition of sclerotia of the tested isolates are represented in Table 2 and illustrated in Figs 3 and 4-Five fatty acids were detected in the sclerotia of tested isolates but at

various levels. The percentage of fatty acids recorded in various sclerotia followed the pathological and morphological pattern of behaviour previously mentioned; i.e, Eggplant and pepper were similar, Squash and Cucumber were, also, similar and Pea showed a distinct pattern.

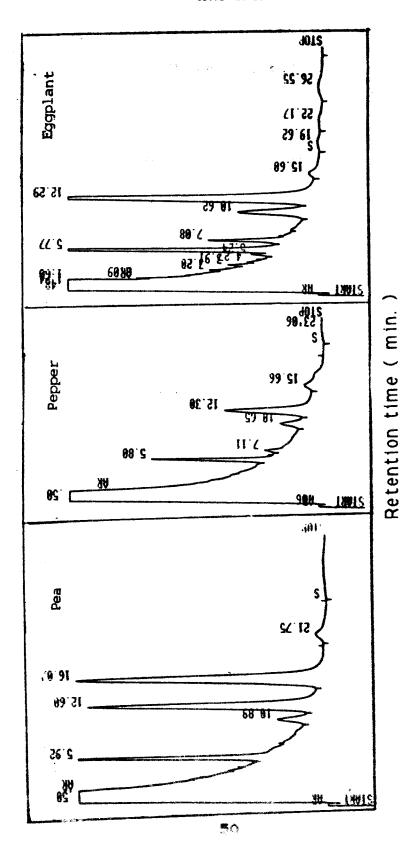
Sclerotia of Pepper and Eggplant which recorded a high disease incidence recorded the least ratio of TU/TS being 1.410 and 1.373; respectively, compared with 3.288 (Squash), 2.791 (Cucumber) and 4.035 (Pea).

The major fatty acids were palmitic, oleic and linoleic. However, stearic was detected at relatively low level (3 to 10%). On the other hand, palmitoleic was only detected (6.073%) in Sclerotia of Eggplant and was completely absent in the others.

From quantitative standpoint, sclerotia of various isolates contained different proportions of fatty acids. Sclerotia of Pea, Squash and Cucumber showed high proportion of oleic and linoleic. Pepper and Eggplant sclerotia, however, had high proportion of palmitic and oleic.

It might be concluded that, the high percentage of infection, recorded for Pepper and Eggplant isolates was accompanied by lower ratio of TU/TS, higher proportion of palmitic and lower proportion of linoleic. However, sclerotia of all isolates were characterized by having high level of

oleic acid specially in case of Pepper (48-068%) and Eggplant (47-257%) which recorded the disease incidence. These findings indicate that oleic unsaturated fatty acid) being lipids constituent in of sclerotia, played important role in disease incidene followed palmitic (saturated fatty acid); i-e-, both oleic and fatty are major acids specific Sclerotinia sclerotiorum-


Shaw (1965) supported the view that the presence of certain fatty acid is probably genus or even species spcific- Tyrrell (1967) showed that different isolates of the same fungus quantitatively differed in fatty acid composition. Farag et al. (1981) concluded that variation in fatty acid pattern could be used as a criterion for fungal taxonomy. Khalil and Ragab (1988) indicated that sclerotia contained a high proportion of unsaturated fatty mycelium and acids than the young sclerotia developed considerably unsaturated more acids than the older sclerotia. They found that the proportion of oleic acid in sclerotia was irrespective of their age. This emphasizes the role of oleic acid in disease incidence reported in the present study-

JPC&ES. Voi:5 No:2 (1993).

Table 2. Free fatty acid composition, %, in sclerotia of Sclerotinia sclerotiorum affecting five vegetable plants.

	7.					
Fatty acids	Pea	Squash	Cucumber	Pepper	Eggplant	
*16:0 Palmitic	16-107	15,000	40.50			
16:1 Palmitic	0.0	15.899 0.0	19.561 0.0	31.740	30.451	
18:0 Stearic	3.264	5.584	4.313	0.0 9.751	6.073 9.024	
18:1 Oleic •	33-509	32.009	22.495	48.068	47.257	
18:2 Linoleic	44.655	38-558	44.144	10.441	0.874	
TU/TS**	4.035	3.288	2.791	1.410	1.373	

- * Number of carbon atoms: number of bonds per molecule.
- ** TU/TS refers to the ratio between the total unsaturated fatty acids to the total saturated fatty acids.

3 GLC chromatograms of free fatty acid methyl esters in sclerotia of Sclerotinia sclerotiorum affecting Pea , Pepper and Eggplant. Fig.

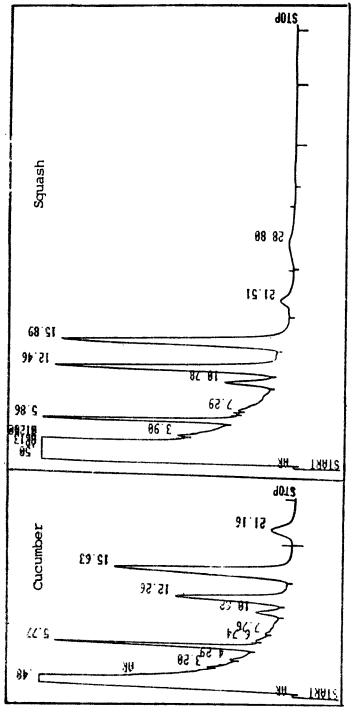


Fig. 4: GLC chromatograms of free fatty acid methyl esters in sclerotia of <u>Sclerotinia sclerotiorum</u> affecting Cucumber and Squash

Retention time (min.)

LITERATURE CITED

Adams, P.B. (1975).

Factors affecting survival of *Sclerotinia* sclerotiorum in soil- Plant Dis- Rept- *59* : 599-603-

Adams, P.B. and C.J. Tate (1976).

Mycelial germination of Sclerotinia sclerotiorum on soil- Plant Dis- Rept- 60 : 515-518-

Assawah, M.W., H.M. El-Arosi and E.H. Wasfy (1969).

Inducument of sporulation in Sclerotinia sclerotiorum (Lib.) De Bary- Alexandria J. Agric- Res. 16 : 217-223-

Bedi, K.S. (1956).

Studies on *Scienotinia scienotiorum* (Lib.) De Bary. I. Some chemical factors affecting the formation of scienotia. Proc. Nat. Acad. Sci. India, Sect. B. 26: 112-113.

-----. (1962).

Effect of temperature on the formation of sclerotia of Sclerotinia sclerotionum (Lib.) Be Bary- Indian Phytopath- 15:55-60.

Chupp. C. and A.F. Sherf (1960).

Vegetable Diseases and their Control. The Ronald Press Co., N-Y., 693 pp.

Domsch, K.II., W. Gams and T.II. Anderson (1980).

Compendium of Soil Fungi-

Vol. 1. Academic press, N.Y. 85 pp.

- Echandi, E. and J.C. Walker. (1957).

 Pectolytic enzymes produced by Scienctions

 scienational Phytopath. 47 > 303-306.
- El-Tobshy, Z.M. and M.A. Zayed (1978).

 Pectolytic and cellulytic enzymes associated with pathogenesis of Scienatinia scienationum in Squash and Carrot during storage.

 Proceedings of the Fourth Conference of Pest Control Part II, 1289-1297.
- El-Zarka, M.A. (1967).

 The Occurrence of Sclerotiniose Diseases on Certain Vegetable and Aromatic Crop Plants (In Arabic). The Second Conference of Horticulture, U.A.R. (Egypt).
- Farag, R.S., A.M. Youssef, F.A. Khalil and R.A. Taha (1981).

 The lipids of various fungi grown on artificial medium. J. Am. Oil Chemists' Soc. 58 2 765.
- Hanlin, R.T. (1990).

 Illustrated Genera of Ascomycetes APS Press,
 USA, 263 pp.

Satour et al.

Khalil, F.A. and M.M. Ragab (1988).

The behaviour and survival of Scienotinia sclerotionum in relation to sclerotial lipid contents. Egypt. J. Phytopath. 20(2):107-116.

Moore, W.D. 1955.

Relation of rainfall and temperature to the incidence of *Scierotinia scierotiorum* in vegetable in South Florida during the years 1944 to 1945. Plant Dis-Rept., 33 : 470-472.

Morgan, W.M. and M.S. Ledieu (1979).

Pest and disease control in glasshouse crops.

British Crop Protection Council Publications,

Croydon. (Diseases of greenhouse Plants,

349 pp.)

Nelson, B., D. Duval and H. Wu (1988).

An: In vitro technique for large-scale production of Scienotinia scienotionum. Phytopath 78 (11): 1470-1473.

Ragab, Mona, M. (1980).

Some Pathological and Physiological Aspects of Sclerotinia sclerotiorum. M.Sc. Thesis, Fac. of Agric., Cairo Univ., Egypt. 110 pp.

Shaw, R. (1965).

The occurrence of gamma—lindenic acid in fungi- Biochem- Biophys Acta $\mathcal{SS}(2)$: 230—237-

JPCAIS. Vol:5 No:2 (1993).

Stahl, E. (1967).

Thin Layer Chromatography. 2nd. Ed. Springer Verlag, Berlin, 359 pp.

Sumner, J.L. and N. Colotelo (1970).

The fatty acid compositions of sclerotia. Can-J. Microbiol. 16: 1171-1178.

Tyrrell, D. (1967).

The fatty acid compositions of 17 Entomophthora isolates Can J. Microbiol 13: 755-760.

Walker, J.C. (1952).

Diseases of Vegetable Crops.

McGraw-Hill Book Co., Inc., N.Y., 529 pp.

米米米米米米米米米米米米米米米

الإختلافات المرضية والظاهرية والكيميائية بين الاجسام الحجرية لفطر سكليروتينيا سكليروتيورم الذى يميب بعض نباتات الخضر

الملخص العربي

أطهرت الدراسة المرضية ، وقياس قطر نمو الفطر ، والصفات الظاهرية ، وتركيب الأحماض الدهنية للأجسام الحجرية لعزلات مختلفة لفطر سكليروتينيا سكليروتيورم نمط مختلفا في سلوكها ، حيث تشابهت العزلات المأخوذة من الفلفل ، والباذنجان (الفصيلة الباذنجانية) ، وتماثلت ، كذلك ، الكوسة والخيار (الفصيلة القرعية) ، وكان للبسلة (الفصيلة الفراشية) سلوكها المتميز.عموما ، صاحب زيادة حجم الأجسام الحجرية زيادة الإصابة المرضية للعزلات ، سجلت عزلات الفلفل ، والباذنجان أعلى نسبة للإصابة ، وكانت الكوسة ، والخيار متوسطة ، والبسلة معتدلة في هذا الصدد ، أمكن الكشف عن خمسة أحماض دهنية بالأجسام الحجرية المختبرة ، وهي أحماض البالمتيك ، والبالمتوليك ، والستياريك ، والأولييك ، واللينوليك ، وكانت تختلف في نسبتها تبعا لإختلاف العزلات ، صاحب العزلات ذات القدرة العرضية العالية إنخفاض في نسبة الأحماض الدهنية الغير مشبعة إلى تلك المشبعة ، وكذلك محتوى عالى من أحماض البالمتيك والأولييك ، وإنخفاض محتوى اللينوليك .