Isolation and characterization of Bacillus licheniformis EM and its antagonistic effect against some important plant pathogens

Eman A. H. Mohamed 1 and Mohamed E. I. Badawy²

Department of Botany, Faculty of Science, Damanhour University, Damanhour, Egypt Department of Pesticide Chemistry and Technology, Faculty of Agriculture, 21545-El-Shatby, Alexandria University, Alexandria, Egypt

ABSTRACT

The antagonistic action of a newly isolated bacterium derived from an agricultural waste canal was evaluated against some economic plant pathogens. The isolate was characterized using API 20E commercial kit and molecularly identified by partial sequencing of the 16S rDNA. The phylogenetic analysis strongly related the isolate to Bacillus licheniformis EM. The antimicrobial activity of this isolate was evaluated in vitro against bacteria of crown gall Agrobacterium tumefaciens and soft mold Pectobacterium carotovorum and fungi of leaf spots and blights Alternaria alternata, grey mold Botrytis cinerea, root rot disease Fusarium oxysporum and damping off disease Pythium debaryanum. The results showed different susceptibility among the pathogens when serial concentrations of B. licheniformis EM late exponential phase cultures were used. Out of seven concentrations tested, the most significant antagonistic action was shown by 100, 200 and 300µl of bacterial suspension/20 ml NA medium, which showed almost complete inhibition against the tested bacteria. All the tested concentrations of B. licheniformis EM ranged from 20 to 500 µl/20ml PDA medium completely prevent fungi of A. alternata and P. debaryanum to grow. Therefore, the study suggests that B. licheniformis EM can be used as a potential biocontrol agent and recommend it for commercial formulations.

Keywords: Antagonistic activity; B. licheniformis EM; Antagonism, Plant pathogens.

INTRODUCTION

The use of biocontrol agents is becoming an increasingly important alternative to harmful synthetic pesticides for crop protection. Besides, chemical pesticides are not ideal for long term application due to the concerns associated with exposure risks, health and environmental hazards, residual persistence and tolerance of pests (Carson, 1962 and Radjacommare

et al., 2002). Dacteria and fungi are able to synthesize a wide range of metabolites with antimicrobial capabilities (Aneia et al., 2006, Haesler et al., 2008; Hernández-Rodríguez et al., 2008 and Kim et al., 2003). The materials based on such microorganisms have a high specificity against target plant pathogens; easy degradability; and low mass production cost.

Bacillus species offer several advantages over other Gram-negative bacteria and fungal biological control agents for protection against pathogens because of, being widely distributed in environment, having high thermal tolerance, showing rapid growth in liquid cultures and their longer shelf lives as a result of their ability to form endospores (Kim et al., 2003, Cavaglieri et al., 2005; Ongena and Jacques, 2008 and Perez-Garcia et al., 2011). They have been reported to be effective in the biocontrol of multiple plant diseases owing to their production of several broad-spectrum antibiotics (Sharga and Lyon, 1998; Emmert and Handelsman, 1900 and Cavaglier et al., 2005). Therefore, several strains of Bacillus species have been successfully developed as commercial biofungicides.

B. licheniformis is one of the most actively used Bacillus members in antagonizing plant pathogens (Lee et al., 2001; Cladera-Olivera et al., 2004 and Williamson et al., 2007). For example it was showed a potential effectiveness against crown gall disease (Boelema, 1969), soft rot (Cladera-Olivera et al., 2004), Fusarium wilt (Ulloa et al., 2006), leaf spot (Bashon et al., 1991), grey mould (Lee et al., 2006 and Williamson et al., 2007), and damping off in seedlings (Stankova-Opocenska and Dekker, 1970).

Many methods are available to identify and characterize bacteria. One of these available approaches is the utilization of commercial kits such as API ZYM system. This system measures the biochemical activities of the samples under test using rows of microtubules or paper stripes impregnated with various freeze-dried test substrates (Priest and Austin, 1993). These commercial kits were successfully used for differentiation between and within the species of Bacillus (Abdelkafi et al., 2005). In contrast to phenotyping, which means study the appearance or the reaction of bacterial cell; the genotypic methods directly analyze the DNA. An important tool for genotyping is the sequencing of the PCR- amplified 16S rDNA and comparison of the data with sequences from the data bases. This has been successfully applied in determining phylogenetic relationships or identifying bacteria (Goto et al., 2000 and Ki et al., 2009).

In this research, a newly Bacillus isolate, B. licheniformis EM, was isolated and characterized using API 20E commercial kit and identified by partial sequencing of the 16S rRNA gene. The in vitro antagonistic effect of B. licheniformis EM was investigated against plant pathogenic bacteria of crown gall Agrobacterium tumefaciens and soft mold Pectobacterium carotovorum and fungi of leaf spots and blights Alternaria alternata, grey mold Botrytis cinerea, root rot Fusarium oxysporum and damping off Pythium debaryanum.

MATERIALS AND METHODS

Materials: Potato Dextrose Agar (PDA), Nutrient Broth (NB) and Nutrient Agar (NA) media were purchased from Oxoid Ltd. (Basingstoke, Hampshire, UK). All materials were used without further purification. API 20E kit (Biomerieux, France). DNA, dNTPs, MgCl₂, KCl, tris-HCl, and Taq polymerase (Pharmacia Biotech., USA). Gene CyclerTM Bio-Rad, USA.

Bacillus isolation and purification: Samples have been previously collected at June 2009 from an agricultural waste canal near to Kafr El-Dawar, El-Behera Governorate, Egypt. One ml of the sample was suspended in 100 ml NB then incubated at 37°C under shaking conditions (200 rpm) for 24 h. Vegetative cells were then killed by adding chloroform (1%, v/v), vortexing and incubating at room temperature overnight. Spores were germinated by platting 0.1 ml of the spore suspension into plates containing NA medium. Colonies were picked up and further purified by streaking on NA plates.

Phenotyping: Pure cultures were examined for Gram reaction and sporulation ability, after incubation in NA plates at 37°C for 24 h. Biochemical characterization was performed using API 20E kit (Biomerieux, France). 0.1 ml of overnight *B. licheniformis* EM culture was used to inoculate each of the 22 wells, containing freeze-dried test substrates. The inoculated strips were incubated at 37°C for 7 h.

DNA extraction, amplification and purification: DNA was extracted from B. licheniformis EM and B. subtilis 168, a positive control, cultures according to Sambrook et al., (1989). The 16S rDNA was amplified, primer, PCR using the forward by bp. 1500 approx. reverse one AGAGTTTGATCMTGGCTCAG-3' and the TACGGYTACCTTGTTACGACTT-3'. The PCR mixture consists of 30

pmol of each primer, 100 ng of DNA, 200 μM dNTPs, 1.5 mM MgCl₂. 20 mM KCl, 10 mM tris-HCl pH 8.3, and 2.5 U of Taq polymerase. The 50 μl PCR mixture containing tube was placed in the DNA thermocycler. Gene Cycler Bio-Rad. The PCR conditions were as follows: initial denaturation of DNA at 95°C for 3 min and then 30 cycles of three-step PCR amplifications consisting of denaturation at 94°C for 1 min, primer reannealing at 55°C for 1 min and extension at 72°C for 2 min. Samples were subjected to an additional extension at 72°C for 10 min at the end of the amplification cycles (Ausubel *et al.*, 1999). The amplicons were finally purified using QlA quick PCR purification kit (Qiagen, USA).

Gel electrophoresis: Ten μ l of PCR products, mixed with the loading buffer, were loaded on a 1.5% (w/v) agarose gel and electrophoresed with 1X TEA (Tris EDTA Acetate) buffer. DNA was visualized by UV transillumination after staining with ethidium bromide. The molecular size of the amplified fragments was estimated using DNA ladder of 100bp.

Data analysis and construction of the phylogenetic tree: After obtaining the sequences, homology search was performed against DDBJ (DNA Data Bank of Japan), using Blast program to find the sequences producing significant alignment with the obtained sequences. Similarity percentages among the sequences were obtained using Biology WorkBench software version 3.2. Multisequence alignment and molecular phylogeny were performed using ClustalW (a distance-based analysis program at http://www.ddbj.nig.ac.jp/) program (Saitou and Nei, 1987). The tree topology was evaluated using the neighbor-joining method based on 1000 resamplings (Saitou and Nei, 1987 and Chun and Bae, 2000).

Test plant pathogenic microorganisms: Bacteria of crown gall (Family: Rhizobiaceae; Class: Alpha tumefaciens Agrobacterium Proteobacteria) and soft rot Pectobacterium carotovorum (Family: Enterobacteriaceae; Class: Gamma Proteobacteria) and fungi of leaf spots blights Alternaria alternata (Family: Dematiaceae; and Deuteromycetes), grey mold Botrytis cinerea (Family: Moniliaceae; Class: Deuteromycetes), root rot Fusarium oxysporum (Family: Tuberculariaceae; Class: Deuteromycetes) and damping off Pythium debaryanum (Family: Pythiaceae; Class: Oomycetes) were provided by the Microbiology Laboratory, Department of Plant Pathology, Faculty of Agriculture, Alexandria University, Egypt.

In vitro antagonism assay: The in vitro antagonistic effect was detected by mixing 5-500 µl of B licheniformis EM suspension/cell-free supernatant. obtained by shaking at 37° C till late exponential phase (O.D $_{550}$ = 0.9), with around 20 ml of warm NA (for bacteria) or PDA (for fungi) and inoculating the pathogen to the solidified plates. For P. carotovorum and A. tumefaciens, 0.1 ml of the bacterial cultures ($O.D_{550} = 1.2$ and 1, respectively) was separately spread on the surface of B. licheniformis EM plates that containing different volumes (10 - 300 µl/20ml NA medium) and incubated at 30°C for 24 hrs. The control culture was set inoculating the bacteria in NA not inoculated with B. licheniformis EM. For the plant pathogenic fungi, 10 to 500 μ l of B. licheniformis EM culture (O.D $_{550}$ = 0.9) was spread on 9-cm-diameter Petri dishes containing 20 ml PDA medium and immediately after this, 5-mm plugs from the leading edge of a 5-days old fungal culture were placed in the centre of each Petri dish. The control culture was set inoculating the fungus in PDA not inoculated with bacteria. The plates were incubated for 7 days at 28°C. The fungal inhibition was scored by measuring radial growth of the fungus in cm in every plate.

RESULTS

Isolation and identification of isolated bacteria: B. licheniformis EM, as a Gram positive, spore forming and rod-shaped bacterium was isolated from a highly polluted agricultural waste canal. This bacterium has been biochemically characterized using API 20E kit and the results are shown in Table (1). It has the ability to produce some enzymes such as β-galactosidase, arginine dihydrolase, lysine decarboxylase, omithine decarboxylase, urease, tryptophan deaminase, gelatinase, oxidase and catalase. In addition, it can utilize glucose and citrate. For molecular identification of the new isolate, the 16S rDNA (approx 1500 bp) was amplified using RP and LP pair of primers as shown in Figure (1). The same primers were used to partially sequence the 16S rDNA (approx. 485 bp). The sequences were deposited in the GenBank and the accession number was HM246696. Phylogenetic analysis of the target sequence and other homologous sequences from the data base revealed that this bacterium is strongly belonging to B. licheniformis Biology WorkBench 3.2 program showed that there is a 99% similarity between the target sequence, B. licheniformis EM, and other B. licheniformis strains (Figure 2).

Table (1). Characterization of B. licheniformis EM using API 20E

Characteristic	Result
β-Galactosidase	+
Arginine dihydrolase	+
Lysine decarboxylase	+
Omithine decarboxylase	+
Tryptophan deaminase	+
H ₂ S production	-
Urease production	+
Indole production	-
Acetoin production	+
Gelatinase production	+
Oxidase production	+
Catalase production	+
Citrate utilization	+
D-Glucose utilization	+
D-Mannitol utilization	-
Inositol utilization	-
D-Sorbitol utilization	-
D-Rhamnose utilization	-
D-Sucrose utilization	-
D-Melibiose utilization	•
Amygdalin utilization	-
L-Arabinose utilization	

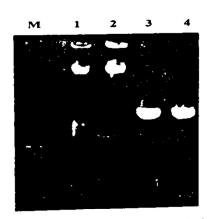


Figure (1). Gel electrophoresis of genomic DNA of B. licheniformis EM and B. subtilis 168 as a control (lanes 1 and 2, respectively), and approx. 1500 bp of the 16S rRNA gene from B. licheniformis EM and B. subtilis 168 (lanes 3 and 4, respectively). M, is 100 bp genetic marker.

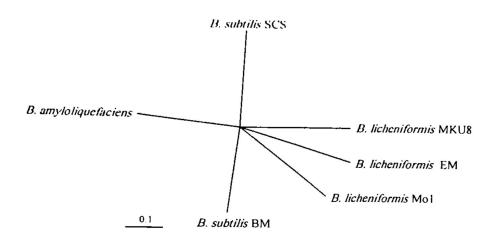


Figure (2). Phylogenetic tree based on partial sequences (approx 485 pb) of the 16S rRNA gene. The tree constructed by neighbor-joining method using ClustalW software. The scale indicates substitutions per site.

In vitro antagonistic activity between plant pathogenic bacteria and B. licheniformis EM: B. licheniformis EM was used in this study as an antagonistic bacterium against plant pathogenic bacteria of crown gall bacterium P. carotovorum (O.D₅₅₀ = 1.2) and soft mold A. tumefaciens (O.D₅₅₀ = 1). As shown in Table (2), B. licheniformis suspension was more efficient than the cell-free supernatant. Using different volumes of B. licheniformis culture, grown till late log phase (O.D₅₅₀ = 0.9) at 35°C and 200 rpm, showed different sensitivity levels among the two pathogens. As shown in Figure (3), P. carotovorum exhibited more sensitive response than A. tumefaciens and its growth was weakened at all the tested treatments of B. licheniformis. Out of seven concentrations tested, the most significant antagonistic action was shown by 100, 200 and 300µl of bacterial suspension/20 ml NA medium, which showed almost a complete inhibition against both of A. tumefaciens and P. carotovorum.

In vitro antagonistic activity between plant pathogenic fungi and B. licheniformis EM: The in vitro antifungal activity of B. licheniformis EM against four plant pathogenic fungi of A. alternata, B. cinerea, F. oxysporum and P. debaryanum is presented in Table 3 and Figure 4. The growth inhibition of the tested fungi by B. licheniformis was determined after a week of incubation. The interesting finding was that only 10 µl of the

100 200 300

antagonistic suspension was enough to prevent the growth of A. alternata and P. debaryanum (Figure 4A and B, respectively). In addition, a dramatic decrease in mycelia growth of B. cinerea and F. oxysporum was detected upon using 25 μ l of B. licheniformis culture (Table 3) however, 500 μ l of the bacterial suspension was required to almost inhibit the growth of both fungi (Figure 4C and D, respectively). It can be noticed that the inhibition percentages of the mycelial growth of F. oxysporum were higher (72.22 - 82.22%) than that obtained with B. cinerea (45.56 - 79.63%).

Table (2). Growth of *P. carotovorum* and *A. tumefaciens* in plates containing different concentrations of *B. lichenifiormis* EM suspension or cell-free supernatant, after incubation of 24 hrs at 30°C.

B. licheniformis	B. licheniforn	nis Suspension	B. licheniformis Supernatant	
EM (μl/20 ml NA)	P.	<i>A</i> .	P.	<i>A</i> .
(µDZU III NA)	carotovorum	tumefaciens	carotovorum	tumefaciens
0	+++	+++	+++	+ i +
10	++	+++	+++	+++
20	+	+++	++	+++
.40	+	+++	++ .	+++
50	_	++	+	+++

+++, good growth; ++, medium growth; +, weak growth; and -, no growth.

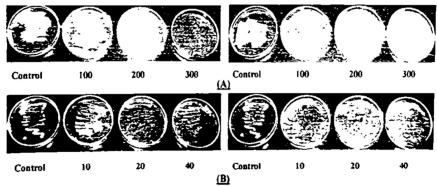


Figure (3). A: Growth of A. tumefaciens in plates of 0, 100, 200 and 300 µl supernatant (left) and suspension (right), respectively of B. licheniformis EM late exponential cultures/20 ml NA medium. B: Growth of P. carotovorum in plates of 0, 10, 20 and 40 µl supernatant (left) and suspension (right), respectively of B. licheniformis EM late exponential cultures/20 ml NA medium.

J Pest Cont & Environ. Sci. 19, NO. 1, 69-85 (2011)

Table (3). In vitro antagonistic activity of B. licheniformis EM as a biocontrol agent against fungi of A. alternata, B. cinerea, F. oxysporum and P. debaryanum.

B. lichenisormis	Inhibition of mycelial growth (%) ± SE				
EM	<i>A</i> .	B. cinerea	F.	P.	
(μl/20 ml PDA)	alternata	B. cinerea	oxysporum	deharyanum	
0	0.0 ± 0.0	0.0 ± 0.0	0.0±0.0	0.0±0.0	
10	100 ± 0.0	45.56±1.11	72.22±0.64	100±0.0	
25	100 ± 0.0	67.04±0.37	73.33±0.64	100±0.0	
50	100 ± 0.0	70.37±0.98	74.44±0.64	100 ± 0.0	
100	100 ± 0.0	72.22±0.64	77.78±0.64	100 ± 0.0	
300	100 ± 0.0	76.67±1.70	79.26±1.34	100±0.0	
500	100±0.0	79.63±0.98	82.22±0.64	100±0.0	

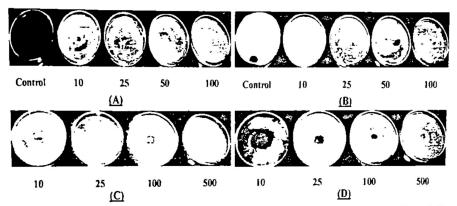


Figure (4). Growth of A. alternata (A), P. debaryanum (B), B. cinerea (C) and F. oxysporum (D) in plates containing different concentrations of B. licheniformis EM late exponential cultures/20 ml PDA medium.

DISCUSSION

A pure culture of Gram-positive and spore-forming rods of B. licheniformis EM has been characterized, identified and evaluated for its potential to antagonize a number of economically important plant pathogens. API system tests have been shown to be rapid, accurate and reproducible characterization tools. This semi-quantitative method has been successfully used in previous studies for separation between members belonging to genus Bacillus (Hernandez et al., 1998 and Waldeck et al., 2006). The use of molecular genetic characteristics to classify an organism

and place it in a map showing the relationship between this organism and other related ones is called molecular phylogeny and a tree/map showing such a relation is called phylogenetic tree (Li and Graur, 1991). Partial sequences (aprox. 485 bp) of the 16S rDNA were obtained for the new isolate and their phylogeny revealed that the 5' end region is a very efficient index for rapid identification. A similarity of about 99% was found between the novel isolate, B. licheniformis EM, and some other B. licheniformis strains derived from the GenBank. Goto et al., (2000) have proved that the 5' end of the 16S rRNA gene is a hyper variant region and can be efficiently used for grouping of Bacillus species.

Bacillus species have often been reported to be among the most beneficial bacteria as antagonists of fungi (Melent'ev et al., 2006 and Hao et al., 2011), bacteria (Hagelin et al., 2004 and Hammami et al., 2008) and insects (Aranda et al., 1996 and Quesada-Moraga et al., 2004). Therefore, they are commonly used in the control of several plant pathogens due to their ability to produce a multitude of broad spectrum antibiotic compounds.

In the present study, late exponential phase B. licheniformis EM culture and cell-free supernatant were separately used to antagonize the growth of P. carotovorum, a causative agent of soft rot disease (Cladera-Olivera et al., 2006), and A. tumefaciens, a causative agent of crow gall (Boelema, 1969). B. licheniformis produces a wide range of antimicrobial substances (Yakimov et al., 1996 and Munimbazi and Bullerman, 1998). For instance, B. licheniformis strain P40 has been found to produce a bacteriocin-like substance (BLS) that inhibits the growth of P. carotovorum and other pathogens (Cladera-Olivera et al., 2006 and Teixeira et al., 2009). B. licheniformis EM was used efficiently, in the current study, to inhibit the growth of both P. carotovorum and A. tumefaciens. Interestingly, the antagonistic effect was more efficient when cultures rather than cell-free supernatants were used. This result suggests that B. licheniformis may acts by other mechanisms such as competition to nutrients and space to antagonize the pathogens in addition to its ability to produce antimicrobial compounds such as BLS (Hammami et al., 2008).

The fungal cell wall is a highly dynamic structure which is continuously subjected to changes during cell expansions and divisions. The cell wall degrading enzymes are glycosyl hydrolases that degrade chitin and glucan polymer which comprises important structural elements in fungal cell walls (Peberdy, 1990). B. licheniformis has been also known to produce antifungal

agents against phytopathogenic fungi (Neyra and Sadasivan, 1996). A recent study of Kamil et al., (2007) showed that B. licheniformis was a potential biocontrol agent against F. culmorum, Pythium sp., A. alternata and others due to its chitinolytic activity. Moreover, they showed that B. licheniformis has significantly reduced the damping off disease in a green-house experiment. In the current study, growth inhibition of four economically important plant pathogenic fungi, A. alternata, B. cinerea, F. oxysporum, and P. debaryanum was detected up on using different concentrations of B. licheniformis late log phase cultures. This antagonistic effect may be due to the chitinolytic activity of B. licheniformis EM. Anitha and Rabeeth (2010) have been shown that Fusarium species cell wall is resistant, to some extent, to chitinase. Moreover, Sivan and Chet, (1986 and 1989) have argued that Fusarium species cell walls contain more proteins than do walls of other fungi. This may explain the higher concentration of B. licheniformis EM culture (500µ1/20 ml PDA) was required for inhibition of F. oxysporum growth rather than that was required (10µl/20 ml PDA) for A. alternata and P. debaryanum inhibition. However, 500µl of bacterial culture/20 ml medium was also required for a complete antagonism against B. cinerea.

In conclusion, our preliminary studies evaluate the effectiveness of the recently isolated and molecularly identified *B. licheniformis* EM bacterium to antagonize some important plant bacterial and fungal pathogens. Although a number of pesticides are available for plant pathogens control, this novel bacterial isolate is a potential biocontrol agent that is strongly recommended for commercial formulations of efficient antimicrobial effects and could be used in agriculture for disease control in plants.

Acknowledgment

The authors would like to thank Mr. Youssef M. M. Elbeshlawy, Department of Botany, Faculty of Science, Damanhour University, Damanhour, Egypt, for his help in providing the wastewater samples and isolation of the susceptible *B. licheniformis* strain.

REFERENCES

Abdelkafi, S.; Chamkha, M.; Casalot, L.; Sayadi, S. and Labat, M. (2005). Isolation and characterization of a novel *Bacillus* sp., strain YAS1, capable of transforming tyrosol under hypersaline conditions. FEMS Microbiol. Lett., 252: 79-84.

- Aneja, M.; Gianfagna, T. and Hebbar, P. (2006). *Trichoderma* produces nonanoic acid, an inhibitor of spore germination and mycelial growth of two cacao pathogens. Phys. Mol. Plant Pathol., 67: 304-307.
- Anitha, A. and Rabeeth, M. (2010). Degradation of fungal cell walls of phytopathogenic fungi by lytic enzymes of Streptomyces griseus. Afr. J. Plant Sci., 4: 61-66.
- Aranda, E; Sanchez, J.; Peferoen, M.; Guereca, L. and Bravo, A. (1996). Interactions of *Bacillus thuringiensis* crystal proteins with the midgut epithelial cells of *Spodoptera frugiperda* (Lepidoptera: Noctuidae). J. Invertebr. Pathol., 68: 203-212.
- Ausubel, F.; Brent, R.; Kingston, R.; More, D.; Seldam, G.; Smith, J. and Struhl, K. (1999). Short protocols in molecular biology. John Willeyand Sons, Inc., New York, N.Y., USA.
- Bashon, Y.; Levanony, H. and Or, R. (1991). Wind dispersal of *Alternaria alternata*, a cause of leaf blight of cotton. J. Pathol., 133: 225-238.
- Boclema, B. (1969). Resistance of rose root stocks to crown gall (Agrobacterium tumefaciens). Neth. J. Plant Pathol., 75: 147-150.
- Carson, R. L. (1962). Silent spring, Riverside. Press, Cambridge, MA, USA.
- Cavaglieri, L.; Orlando, J.; Rodriquez, M.; Chulze, S. and Elcheverry, M. (2005). Biocontrol of *Bacillus subtilis* against *Fusarium verticillioides* in vitro and at the maize root level. Res. Microbiol., 158: 748-754.
- Chun, J. and Bae, K. S. (2000). Phylogenetic analysis of *Bacillus subtilis* and related taxa based on partial *gyrA* gene sequences. Antonie van Leeuwenhoek 78, 123-127.
- Cladera-Olivera, F.; Caron, G. and Brandelli, A. (2004). Bacteriocin-like substance production by *Bacillus licheniformis* strain P40. Lett. Appl. Microbiol., 38: 251-256.
- Cladera-Olivera, F.; Caron, G. R.; Motta, A. S.; Souto, A. A. and Brandelli, A. (2006). Bacteriocin-like substance inhibits potato soft rot caused by *Erwinia carotovora*. Can. J. Microbiol., 52: 533-539.

- Finnert, F. A. B. and Handelsman, J. (1999). Biocontrol of plant disease a (Gram-) positive perspective. FEMS Microbiol. Lett., 171: 1-9
- Goto, K.; Omura, T.; Hara, Y. and Sadaie, Y. (2000). Application of the partial 16S rDNA sequence as an index for rapid identification of species in the genus *Bacillus*. J. Gen. Appl. Microbiol., 46: 1-8.
- Haesler, F.; Hagn, A.; Frommberger, M.; Hertkorn, N.; Schmitt-Kopplin, P.; Munch, J. C. and Schloter, M. (2008). In vitro antagonism of an actinobacterial Kitasatospora isolate against the plant pathogen Phytophthora citricola as elucidated with ultrahigh resolution mass spectrometry. J. Microbiol. Meth., 75: 188-195.
- Hagelin, G.; Oulie, I.; Raknes, A.; Undheim, K. and Clausen. O. (2004). Preparative high-performance liquid chromatographic separation and analysis of the maltacine complex- a family of cyclic peptide antibiotics from *Bacillus subtilis*. J. Chromatogr., 811: 243-251.
- Hammami, I.: Rhouma, A.; Jaouadi, B.; Rebai, A. and Nesme, X. (2008). Optimization and biochemical characterization of a bacteriocin from a newly isolated *Bacillus subtilis* strain14B for biocontrol of *Agrobacterium* spp. strains. Lett. Appl. Microbiol., 48: 253-260.
- Hao, W.; Li, H.; Hu, M.; Yang, L. and Rizwan-ul-Haq, M. (2011). Integrated control of citrus green and blue mold and sour rot by Bacillus amyloliquefaciens in combination with tea saponin. Postharv. Biol. Technol., 59: 316-323.
- Hernandez, E.; Ramisse, F.; Ducoureau, J.; Cruel, T. and Cavallo, J. (1998). Bacillus thuringiensis subsp. konkukian (serotype H34) superinfection: Case report and experimental evidence of pathogenicity in immunosuppressed mice. J. Clin. Microbiol., 36: 2138-2139.
- Hernández-Rodríguez, A.; Heydrich-Pérez, M.; Acebo-Guerrero, Y.; Velazquez-del Valle, M. G. and Hernández-Lauzardo, A. N. (2008). Antagonistic activity of Cuban native rhizobacteria against Fusarium verticilloides (Sacc.) Nirenb. in maize (Zea mays L.). Appl. Soil Ecol., 39: 180-186.

- Kamil, Z.; Rizk, M.; Saleh, M. and Moustafa, S. (2007). Isolation and identification of rhizosphere soil chitinolytic bacteria and their potential in antifungal biocontrol. Glob. J. Mol., Sci. 2, 57-66.
- Ki, J-S.; Zhang, W. and Qian, P-Y. (2009). Discovery of marine Bacillus species by 16S rRNA and rpoB comparisons and their usefulness for species identification. J. Microbiol. Meth., 77: 48-57.
- Kim, H-S.; Park, J.; Choi, S-W.; Choi, K-H.; Lee, G.; Ban, S.; Lee, C. and Kim, C. (2003). Isolation and characterization of *Bacillus* strains for biological control. J. Microbiol., 41: 196-201.
- Lee, J. P. and Moon, B. J. (2001). Cultural characteristics of antagonistic bacterium, *Bacillus licheniformis* N1 against *Botrytis cinerea*. Kor. J. Life Sci., 11: 173-180.
- Lee, J. P.; Lee, S-W.; Kim, C. S.; Son, J. H.; Lee, K. Y.; Kim, H. J.; Jung, S. J. and Moon, B. J. (2006). Evaluation of formulations of *Bacillus licheniformis* for the biological control of tomato gray mold caused by *Botrytis cinerea*. Biol. Cont., 37: 329-337.
- Li, W-H. and Graur. D. (1991). Fundamentals of molecular evolution. Sinauer Associates, Sunderland, MA., pp. 284.
- Melent'ev, A.; Helisto, P.; Kuz'mina, L.; Galimzianova, N.; Aktuganov, G. and Korpela, T. (2006). Application of *Bacillus* antagonists for biocontrol of fungi degrading raw wood. Prikl. Biokhim. Mikrobiol., 42: 70-75.
- Munimbazi, C. and Bullerman, L. (1998). Isolation and partial characterization of antifungal metabolites of *Bacillus pumilus*. J. Appl. Microbiol., 84: 959-968.
- Neyra, C. and Sadasivan, L. (1996). Notice of allowance awarded. *Bacillus licheniformis* producing antifungal agents and uses for control of phytopathogenic fungi. US patent application serial No. 08/268,922.
- Ongena, M. and Jacques, P. (2008). *Bacillus* lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol., 16: 115-125.

- J. Pest Cont. & Environ. Sci. 19, NO. 1, 69-85 (2011)
- Peberdy, J. (1990). Fungal cell walls- a review. In: Biochemistry of cell walls and membranes in fungi, Kuhn, P. J., Trinci, A. P., Jung, M. J., Goosey, M. W., (eds), Springer, Berlin Heidelberg, New York, pp. 5-30.
- Pérez-García, A.; Romero, D. and Vicente, A. (2011). Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Curr. Opin. Biotechnol., *In Press*. doi:10.1016/j.copbio.2010.12.003.
- Priest, F. and Austin, B. (1993). In: Modern Bacterial Taxonomy (2nd ed.). Chapman & Hall, London, UK, pp. 228.
- Quesada-Moraga, E.; Garcia-Tovar, E.; Valverde-Garcia, P. and Santiago-Alvarez, C. (2004). Isolation, geographical diversity and insecticidal activity of *Bacillus thuringiensis* from soils in Spain. Microbiol. Res., 159: 59-71.
- Radjacommare, R.; Nandakumar, R.; Kandan, A.; Suresh, S. and Bharathi. M. (2002). Pseudomonas fluroscences based bioformulation for the management of sheath blight disease and leaffolder insect in rice. Crop Prot., 21: 671-677.
- Saitou, N. and Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4: 406-425.
- Sambrook, J.; Fritsch, E. and Maniatis, T. (1989). Molecular cloning: A laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, New York, N.Y., USA.
- Sharga, B. and Lyon, G. (1998). *Bacillus BS107* as an antagonist of potato blackleg and soft rot bacteria. Can. J. Microbiol., 44: 777-783.
- Sivan, A. and Chet, I. (1986). Biological control of *Fusarium* sp. in cotton, wheat and muskmelon by *Trichoderma harzianum*. J. Phytopathol., 116: 39-47.
- Sivan, A. and Chet, I. (1989). Degradation of fungal cell walls by lytic enzymes of *Trichoderma harzianum*. J. Gen. Microbiol., 135: 675-682.

- Stankova-Opocenska, E. and Dekker, J. (1970). Indirect effect of 6-azauracil on Pythium debaryanum in cucumber. Eur. J. Plant Pathol., 76: 152-158.
- Teixeira, M.; Cladera-Olivera, F.; Santos, J. and Brandelli, A. (2009). Purification and characterization of a peptide from Bacillus licheniformis showing dual antimicrobial and emulsifying activities. Food Res, Int., 42: 63-68.
- Ulloa, M.; Hutmacher, R.; Davis, R.; Wright, S.; Percy, R. and Marsh, B. (2006). Breeding for Fusarium will race for resistance in cotton under field and green house conditions. J. Cot. Sci., 10: 114-127.
- Waldeck, J.; Daum, G.; Bisping, B. and Meinhardt, F. (2006). Isolation and molecular characterization of chitinase-d efficient Bacillus licheniformis strains capable of deproteinization of shrimp shell waste to obtain highly viscous chitin. Appl. Environ. Microbiol., 72: 7879-7885.
- Williamson, B.; Tudzynski, B.; Tudzynski, P. and Vankon, A. (2007). Botrytis cinerea: The cause of grey mould disease. Mol. Plant Pathol., 8: 561-580.
- Yakimov, M.; Fredrickson, H. and Timmis, K. (1996). Effect of heterogeneity of hydrophobic moieties on surface activity of lichenysin A, a lipopeptide biosurfactant from Bacillus licheniformis BAS50. Biotechnol. Appl. Biochem., 23: 13-18.

عزل وتوصيف بكتيريا باسبلاس ليتشينيفورميس وكاثيراتها المضادة ضد بعض مسببات الأمراض الشاتية الهامة

إيمان عبدالرازق حمن محمد و محمد الطاهر ابراهيم بدوى 2 الحسم النبات - كلية الطوم - جامعة بمبيور انسركيمياء السببات كلية الزراعة والشاخيس) جامعة الإسكندرية بن ٦٠

تع تقبيم الفعل الإمادي للبكتبريا المعزولة حنبثا المستمدة من قفاة حسرف المخلفات المزراعبة لمكافحة سعبات أمراض النبات الاقتصادية. العزلة تم التعرف عليها وتحديدها من قبل التـــلـــل الجزئي ال ٢١٦٨٨ . تحليل تطور السلالات ذات الصلة يثبت أن العزلة عي بكتيريا باسيلاس لبنشبنيفورميس (إم) (Bacillus licheniforms EM). تم تقييم النشاط الإبادي البكتيري لمهذه السلالة ضند العكتبرية العسببة لعرض التدرن التاجي Agrohacterium tumefaciens والبكتيريا المسببة للعنن الطرى لثمار الخضروات والفاكهة Pectobacterium carolovorum و ضد كلا من فطر Alternaria alternata المسبب لتبقع الأوراق، فطر Botrytis cinerea المسبب للعفن الرمادي غطر Fusarium vxy sporum المسبب لعفن الجذور وسقوط البادرات وفطر Pythium deharyanum العسبب لمرض الذبول المطرى في البائدات. وأظهرت النتائج حساسية معتنفة بين تلك السببات المرضية عندما استخدمت سلسلة تركيزات من معلق البكتيريا المختبرة. من المسلّ سبعة تركيزات ثم اختبار ها، تبين أن أهم فعل تثبيطي لهذه المسلالة كان من قبل 100, 200 و 300 مبكرونينر من معلق البكتيريا، 20 مل من البينة. والتي أظهرت تثبيط كامل تقريبا صد المبكتيريا المسبعة لمرض التندن التاجي A. lumefaciens والبكتيريا الممسببة للعفن المطرى للمار الخضروات والفاكهه P. carotovorum. كل التركيزات المختبرة من سلالة البكتيريا والتي تراوحت من 20 إلى 500 ميكرونيتر/ 20 مل من البيئة منعت نمو كلا من فطر A. alternata وفطر P. debaryanum. ولذلك، تغترح الدراسة انه يمكن إستخدام هذه المملالة من المكتبريا كعامل مكافحة ببولوجية ويرصى بها أن تحضر بتجهيزات تجارية.