Volatile oils, lipid constitutes and the antimicrobial activity of Daucus syrticus growing in Libya

Fatma M. Abd Allaa, Khaled A. Abdelshafeeka,c, Ali M. El-sollb, Wael M. ELsayeda

^aChemistry Department, Faculty of Science, Sirte University bChemistry Department, Misurata University, Libya Chemistry of Medicinal Plants Department, National Research Centre, Cairo, Egypt

Correspondence to Khaled. A. Abdelshafeek, Chemistry Department, Faculty of Science, Sirte University, Sirt, Libya, PO Box 674, Egypt, 00218914030557 e-mail: khabdelhady@gmail.com

Received 16 June 2013 Accepted 22 August 2013

Journal of the Arab Society for Medical Research 2013, 8:96-103

Background/aim

Apiaceae is a large plant family; it comprises about 60 annual and biannual species mostly distributed in Europe, Africa, West Asia, and Australia. The Daucus genus is one of the most common genera of this family in which Daucus syrticus (DS) is a common member, growing mainly in the Sirt region (Libya). It is locally known as wild carrot. This study aims to investigate volatile oils, lipid constitutes, and the antimicrobial activity of DS extracts.

Materials and methods

The herb of DS was collected from Wadi Telal, Sirt region (Libya), during January and April 2011. About 250 g of different parts from fresh plant material (aerial parts, roots, and seeds) of DS were subjected to hydrodistillation. Extraction of lipid constituents was carried out as follows: About 1500 g of dried powdered plant material of DS were extracted with petroleum ether in a soxhlet. The antimicrobial activity was determined using the disk diffusion method, and the inhibition zone (IZ) was measured for each extract under study against Escherichia coli, Bacillus subtilis, Aspergillus niger, and Candida albicans.

Results

Results of Gas chromatography/Mass spectrometry GC/MS analyses of the volatile oils of the aerial parts (January and April collections) proved that they contain a mixture of 47 and 33 compounds, respectively, whereas the roots (April and July) were found to contain a mixture of 32 and 20 compounds, respectively. In addition, the seeds (July) were found to contain 18 compounds, with β -asarone (26.23%) as the main compound. Investigation of the lipid fraction of the herb revealed the presence of a mixture of fatty alcohols; the major contents of the unsaponifiable fraction were identified as a series of *n*-alkanes C₈-C₂₈ (84.85%), four steroidal compounds, triterpene, and a mixture of fatty acid methyl esters consisting of eight different acids. The antimicrobial evaluation of DS extracts exhibited different IZ values against the tested microorganisms.

Conclusion

The main constituents of the different volatile oils of the aerial parts, the roots, and the seeds were identified. The fraction of total fatty acid had the highest activity against E. coli (IZ = 2.7, minimum inhibitory concentration = 250 mg/ml).

antimicrobial activity, Apiaceae, Daucus syrticus, lipid constituents, volatile oils

J Arab Soc Med Res 8:96-103 © 2013 The Arab Society for Medical Research 1687-4293

Introduction

The genus Daucus, family Apiaceae (Umbelliferae), comprises about 60 annual and biannual species, distributed mostly in Europe, Africa and West Asia, and a few in North America and Australia [1]. It is represented by three species in Libya [2]. The essential oils obtained from the leaves and fruits of Daucus gingidium ssp. gingidium have been studied by Flamini et al. [3]. They found that the main constituents of the essential oil from the leaves were sabinene, α-pinene, germacrene-D, and limonene. However, sabinene was the main compound identified in the essential oil from the fruits, followed by α -pinene and 4-terpineol. The main components in the essential oil of the flowers and fruits of Daucus carota [4,5] were α -pinene, sabinene, myrcene, limonene, and three monoterpene alcohols (geraniol, nerol, and carotol).

The main constituents of the essential oil from the leaves of *Daucus sahariensis* were myristicin, α -pinene, cis-chrysanthenyl acetate, and β-bisabolol, and those from the fruits were myristicin, α -pinene, limonene, and *cis*-chrysanthenyl acetate (7.4%) [6].

The fatty acid fractions of different organs (leaves, stems, and roots) of Daucus crinitus were characterized as lauric acid (17.9, 17.5, and 18.1%, respectively) and other long-chain fatty acids (until C_{22}) [7]. The plants of Daucus spp. genus were reported to have many medicinal properties such as antibacterial [8], stimulant [9], antiseptic, carminative, diuretic, hepatoprotective [10], antisteroidogenic [11], and anti-inflammatory [10,12].

This work aims to investigate the volatile oils, lipid constitutes, and antimicrobial activity of Daucus syrticus (DS) extracts.

DOI: 10.4103/1687-4293.123793

Materials and methods Plant material

The herb of DS was collected from Wadi Telal (Sirt region, Libya) during January and April 2011. The roots were collected during April and July 2011, whereas the seeds were collected during July 2011. The plant was identified by Dr El-Sayed Nafa, Botany Department, Faculty of Science, Sirte University (Sirt, Libya).

Instruments

GC/MS analyses of different volatile oils and acetoneinsoluble fractions were carried out using an Agilent 6890 gas chromatograph equipped with an Agilent mass spectrophotometer with a direct capillary interface and fused silica capillary column HP-5MS $(30 \text{ m} \times 0.32 \text{ mm} \times 0.25 \text{ } \mu\text{m} \text{ film thickness})$. Samples were injected under the following conditions: the GC temperature program was started at 60°C (3 min), and then elevated to 280°C at the rate of 8°C/min. The detector and injector temperature were set at 280 and 250°C, respectively. Helium was used as the carrier gas at about 1.0 ml/min in a pulsed splitless mode, the solvent delay was 3 min and the injector size was 1.0 ml. The mass spectral detector was operated in an electron impact mode with an ionizing energy of 70 eV scanning from 50 to 500 m/z. The ion source temperature was 230°C and the quadruple temperature was 50°. Wiley and NIST were used as the mass spectral database.

Gas liquid chromatography (GLC) analysis of unsaponifiable matters and fatty acid methyl esters

GLC analyses were carried out under the following conditions: Instrument, Hewlett Packard, HP-6890 GC method; oven: initial temperature 70°C, initial time 2 min; rate: rate 8, final temperature 280°C, final time 20 min; inlet temperature 280°C, detector temperature 300°C; Flame Ionization Detector Column capillary column HP, 5% phenyl methyl siloxane (length 30 m, diameter 320 µm, and film thickness 0.25 µm); flow rates: N₂ 20 ml/min, H₂ 20 ml/min, air 200 ml/min.

Preparation of different volatile oils

About 250 g of different parts from fresh plant material (herb, roots, and seeds) of DS were subjected to hydrodistillation in an all-glass Clevenger-type apparatus for about 3 h [13]. The oil obtained was removed after complete distillation and dried over anhydrous sodium sulfate to yield a pale yellow oil having a characteristic odor. (Herb: 0.01 and 0.02% v/w for January and April, respectively; roots: 0.019 and 0.090% v/w for April and July, respectively; and seeds: 0.023% v/w for July).

Extraction of lipid constituents

About 1500 g of the dried powdered plant of DS were extracted with petroleum ether (40-60 b.r.) using a soxhlet apparatus. The combined petroleum ether extract was passed through Fuller's earth to remove the colored pigments, filtered, dried over anhydrous sodium sulfate, and evaporated in vacuo at 40°C till dry to yield a pale yellow residue (12 g). The petroleum ether residue was dissolved in boiling acetone (250 ml) and left overnight at room temperature. An amorphous precipitate was filtered, washed with cold acetone, and recrystallized from chloroform/methanol to yield white crystals (4 g) of acetone-insoluble fraction (hydrocarbon and fatty alcohol mixture). The filtrate (acetone-soluble fraction) was evaporated till dry (6.85 g).

Saponification of the acetone-soluble fraction

The acetone soluble-fraction (6.5 g) was saponified by refluxing with 100 ml N/2 alcoholic KOH. The alcoholic solution was concentrated to about 25 ml and diluted with cold distilled water (100 ml). The unsaponifiable matters were extracted with ether (3 × 100 ml). The combined ether extract was washed with distilled water, dehydrated over anhydrous sodium sulfate, and evaporated in vacuo till dry to yield a yellowish brown semisolid residue of unsaponifiable matters (3.2 g).

Extraction of total fatty acids

The hydroalcoholic soap solution after saponification was rendered acidic (pH = 2) with 5% sulfuric acid. The liberated fatty acids were extracted thoroughly several times with ether. The combined ether extract was washed with distilled water till free from acidity and dehydrated over anhydrous sodium sulfate. The solvent was evaporated in vacuo at about 40°C till dry (2.8 g).

Preparation of fatty acid methyl esters

About 2.5 g of the total fatty acids were dissolved in 75 ml dry methanol containing 5% HCl and refluxed on a boiling water bath for 4 h; the solvent was concentrated up to 25 ml and diluted with 100 ml distilled water. The methyl esters of fatty acids were extracted with successive portions of chloroform (3 × 100 ml). The combined chloroform extract was washed with distilled water till free from acidity, dried over anhydrous sodium sulfate and filtered, and the solvent was evaporated in vacuo at 40°C (2.0 g).

Antimicrobial activity

Preparation of different extracts for antimicrobial activity

About 100 g of the air-dried powdered plant were extracted firstly with petroleum ether using a Soxhlet for 24 h to obtain the petroleum ether extract, which was tested, and other fractions such as fatty alcohols, fatty acids and unsaponifiable matters were also prepared and tested for their antimicrobial activity. Five concentrations [(a) 50 μ g/ml, (b) 100 μ g/ml, (c) 150 μ g/ml, (d) 200 μ g/ml, (f) 250 μ g/ml] were prepared from each extract (fraction).

Biological experiments

The antimicrobial activity was evaluated using the microdilution method, in which the minimum inhibitory concentration was determined. Extracts were tested against a set of microorganisms including Gram-positive and Gram-negative bacteria, yeasts, and fungi according to the methods described by Cowan [14] and Kim *et al.* [15].

Maintenance of the microorganism

The microorganisms used in the current work were obtained from the Natural and Microbial Products Chemistry Department, National Research Center (Dokki, Cairo, Egypt). The bacterial species used were maintained on nutrient agar medium at 37°C; potato dextrose agar was used for fungi. After 12 h of activation, bacterial suspensions were prepared, and their turbidity was standardized by estimation of the optical density on a spectrophotometer (UV-VIS, 1610; Shimadzu, Tokyo, Japan). The final densities of bacteria were 1 × 106 and 1 × 105 cell/ml, respectively. In contrast, the fungal strain was used after 3 days of incubation, and was diluted using saline to yield a 1 × 104 spore/ml dilution.

Results

Results of the GC/MS analysis of the volatile oil of the DS herb in January proved that it contains monoterpene hydrocarbons (31.91%), oxygenated monoterpenes (18.02%), sesquiterpene hydrocarbons (32.34%), oxygenated sesquiterpenes (4.98%), diterpene hydrocarbons (2.39%), oxygenated diterpenes (0.51%), sesterterpene hydrocarbons (1.31%),triterpene hydrocarbons (0.49%), carboxylic acid (3.64%), esters (1.61%), and heterocyclic compounds (2.08%). However, the volatile oil of the herb in April was found to contain a mixture of 33 compounds, accounting for 99.01% of the total essential oil; the percentages of different classes are monoterpene hydrocarbons monoterpenes (61.32%),oxygenated (13.06%),sesquiterpene hydrocarbons (17.61%), oxygenated diterpene hydrocarbons sesquiterpenes (1.46%),(0.77%),hydrocarbons sesterterpene (1.51%),triterpene hydrocarbons (1.17%), esters (1.54%), and heterocyclic compounds (0.56%).

The volatile oil of the roots in April (32 compounds) consists of oxygenated monoterpenes (14.81%), sesquiterpene hydrocarbons (5.52%), oxygenated sesquiterpenes (7.61%), diterpene hydrocarbons (8.57%),sesterterpene hydrocarbons (29.15%),triterpene hydrocarbons (8.03%), carboxylic acid (4.94%), esters (8.32%), and heterocyclic compounds (1.17%). The oil from the roots in July consisted of a mixture of 20 compounds belonging to many classes as follows: siloxane compounds (40.86%), monoterpenes hydrocarbons (3.34%), oxygenated monoterpenes (11.47%),sesquiterpene hydrocarbons (4.49%),oxygenated sesquiterpenes (0.15%), sesterterpene hydrocarbons (3.12%), diterpene hydrocarbons (4.78%), triterpene hydrocarbons (8.90%), oxygenated triterpenes (6.39%), carboxylic acid (5.80%), and heterocyclic compounds (9.67%).

The essential oil of the seeds was found to comprise 18 compounds, accounting for 99.81% of the total essential oil, among which monoterpene hydrocarbons (28.45%), oxygenated monoterpenes (28.18%), sesquiterpene hydrocarbons (8.16%), oxygenated sesquiterpenes (14.19%), and esters (20.86%) were found to be present. The results obtained are shown in Tables 1 and 2.

Results obtained from GC/MS of the acetone-insoluble fraction revealed the presence of a mixture of hydrocarbons and fatty alcohols, which were identified as tetracosanol, pentacosane, hexacosane, heptacosane, octacosane, nonacosane, and heptatriacontanol, as shown in Table 3.

The GLC analysis of the unsaponifiable fraction is shown in Table 4. Results of GLC of fatty acid methyl esters are summarized in Table 5. The antimicrobial activity of different extracts with different concentrations, as in a, b, c, d and f, were 50, 100, 150, 200, and 250 $\mu g/ml$, respectively, using the Disc diffusion method modified by Kirby–Bauer and the Streaking methods [16] against some selected microorganisms (bacteria and fungus). The data are shown in Tables 6 and 7.

Discussion

Investigation of the volatile oil of the DS herb collected during January revealed the presence of different classes of terpene and nonterpene compounds, among which γ -terpinene, α -terpineol, α -humulene, α -bisabolol, neophytadiene, phytol, heptacosane, nonacosane, n-hexadecanoic acid, 9,12,15-octadecatrienoic acid methyl ester and acetyl-5-methyl-furan were found to be the main compounds. These data were in agreement

Table 1 Composition of the essential oils of the herb, roots and seeds of Daucus syrticus

			11. 4.		% Danta		0	
Number	Outro	Malaalaa	Herb		Roots		Seeds	
Number	Compound	Molecular weight	January	April	April	July	July	
1	α-Terpinene	136	0.57	4.45	_	_		
2	(+)-4-Carene	136	1.35	_	_	_	0.43	
3	P-cymene	134	4.98	_	_	3.34	_	
4	γ-Terpinene	136	21.89	22.58	_	_	14.58	
5	β-Ocimene	136	1.14	_	_	_	_	
6	α-Terpinolene	154	4.36	_	_	0.40	0.89	
7	lpha-Terpineol	154	12.69	_	_	_	_	
8	Thiophene, tetrahydro-, 1,1-dioxide	118	0.48	0.56	1.17	7.97	_	
9	Copaene	204	1.1	0.68	_	_	_	
10	trans-Caryophyllene	204	1.90	0.66	0.37	_	_	
11	γ-Elemene	204	6.30	4.71	0.38	1.01	_	
12	α-Humulene	204	14.68	1.50	2.84	1.24	5.20	
13	2-Acetyl-5-methylfuran	124	1.60	_	_	_	_	
14	Germacrene-D	204	1.63	2.26	_	_	_	
15	β-lonone	192	0.52	_	_	_	_	
16	Germacrene-B	204	0.06	0.67	_	_	_	
17	α-Farnesene	204	2.69	_	_	_	_	
18	δ-Cadinene	204	1.30	3.10	_		_	
19	Myristicin	204	0.45	0.35	13.09	11.07	_	
20	Cis-α-bisabolene	204	1.45	0.05	_	_	4.40	
21	(-)-Spathulenol	220	0.30	_	_		_	
22	α-Gurjunene	204	0.23	_	_	_	2.96	
23	12-Oxabicyclo [9.1.0] dodeca-3,7-diene	138	0.23	_	1.72	_	2.50	
20	1,5,5,8-tetramethyl	130	0.77		1.72			
24	τ-Muurolol	222	0.80	_	_	_	0.43	
25	α -Cadinol	222	0.70	_	_	_	_	
26	α-Bisabolol	222	1.71	0.77	0.45	0.15	_	
27	Juniper camphor	222	0.7	_	_	_	_	
28	Tetradecanoic acid	228	0.65	_	_	_	_	
29	Neophytadiene	278	1.50	_	_	_	_	
30	7,10,13-Hexadecatrienoic acid	306	0.8	_	_	_	_	
31	Hexadecanoic acid methyl ester	270	0.11	_	0.27	_	_	
32	9,12,15-Octadecatrienoic acid methyl ester	292	1.24	_	_	_	_	
33	n-Hexadecanoic acid	257	2.19	_	4.94	5.80	_	
34	1-Naphthalenamine 5,6,7,8-tetrahydro- <i>N</i> , <i>N</i> -dimethyl	175	0.10	_	_	_	_	
35	Heneicosane	296	0.80	0.15	1.01		_	
36	Benzene,1-(2-butenyl)-2,3-dimethyl	160	0.78	_	_	_	_	
37	Phytol	296	0.51	_	_	_	_	
38	9,12-Octadecadienoic acid (2,2)	280	0.26	_	_	_	_	
39	Docosane	310	0.09	0.19	2.42	_	_	
40	Benzene,4-(2-butenyl)-1,2-dimethyl	160	0.20	_	_	_	_	
41	Tricosane	324	0.10	0.43	2.68	_	_	
42	Tetracosane	338	0.13	_	3.92	_	_	
43	Pentacosane	352	0.23	0.32	4.44		_	
44	Hexacosane	366	0.29	0.30	6.43		_	
45	Heptacosane	380	0.36	0.38	6.41	_	_	
46	Octacosane	394	0.20	0.51	7.94	3.12		
47	Nonacosane	408	0.49	1.17	8.03		_	
48	Pentadecane	212	_		0.29		_	
49	Phenol,2,6-bis(1,1-di-methylethyl)-4-methyl	220	_	_		_	_	
50	Hexadecane	226	_	_	0.69	_		
51	Heptadecane	240	_	_	0.85	_	_	
52	Octadecane	254	_	_	0.83	_		
53	Butyl tetradecyl phthalate	223	_	_	0.63	_		
54	Nonadecane	268	_	_	0.74	_	_	
J-1	INGHAUEGANE	200			0.42		_	

Table 1	(Continued)						
55	Eicosane	284	_	_	0.62	_	
56	Ethyl linoleate	308	_	_	0.53	_	_
57	1-Octadecene	252	_	_	1.27	_	_
58	1-Nonadecene	266	_	_	0.42	_	_
59	Limonene	136	_	28.82	_	_	6.05
60	Isoterpinene	254	_	5.47	_	_	_
61	Linalool	136	_	_	_	_	0.67
62	α -Fenchyl acetate	196	_	1.40	_	_	14.87
63	Geranyl acetate	196	_	_	_	_	5.92
64	Cis-methyl isoeugenol	204	_	_	_	_	7.39
65	1,6-Germacradien 5-ol	222	_	_	_	_	0.23
66	Carotol	222	_	_	_	_	8.99
67	β-Asarone	108	_	_	_	_	26.23
68	(-)-(Z)-Lanceol	220	_	_	_	_	0.14
69	Benzoic acid cyclohexyl ester	204	_	_	_	_	0.07
70	4-Terpineol	154	_	12.41	_	_	0.39
71	7-Oxadicyclo [4.1,0] hepta-2-one, 1-methyl-4-(1-methylethenyl)	166	_	0.30	_	_	_
72	(-)-myrtenyl acetate	194	_	0.14	_	_	_
73	lpha-Cubebene	204	_	0.69	_	_	_
74	β-Cubenene	204	_	2.50	_	_	_
75	Zingiberene	204	_	0.23			_
76	Dioctyl phthalate	391	_	5.47	_	_	_
77	γ-Cadinene	222	_	1.01	_	_	_
78	β-Eudesmol	222	_	0.33	_	_	_
79	Cyclotetrasiloxaneoctamethyl	281	_	_		3.57	_
80	Pentadecane,2,6,10, 14-tetramethyl	267	_	_	_	2.24	_
81	Arsenous acid, tris (trimethylsilyl) ester	289	_	_	_	22.14	_
82	Cyclopentasiloxane, decamethyl	355	_	_	_	10.23	_
83	Cyclohexasiloxane, dodecamethyl, cycloheptasiloxane, tetradecamethyl	429	_	_	_	2.17	_
84	Propanephosphonic acid	450	_	_	_	1.03	_
85	Bis(trimethylsilyl) ester triacontane	235	_	_	_	1.18	_
86	Propanephosphonic acid, bis(trimethylsilyl) ester	422	_	_	_	8.90	_
87	Friedelin	426	_	_	_	6.39	_
88	2-Ethylacridine	207	_	_	_	1.70	_

Table 2 The main classes of chemical constituents of different volatile oils of Daucus syrticus

				%		
		Herb	Ro	oots	Se	eds
Number	Compound	January	April	April	July	July
1	Monoterpenoids hydrocarbon	31.91	61.32	_	3.34	28.45
2	Oxygenated monoterpenoids	18.02	13.06	14.81	11.47	28.18
3	Sesquiterpenoids hydrocarbons	32.34	17.61	5.52	4.49	8.16
4	Oxygenated Sesquiterpenoids	4.98	1.46	7.61	0.15	14.19
5	Ester compounds	1.61	1.54	8.32	_	20.86
6	Diterpenoids hydrocarbon	2.39	0.77	8.57	4.78	_
7	Oxygenated diterpenoids	0.51	_	_	_	_
8	Carboxylic acid	3.64	_	4.94	5.80	_
9	Sesterterpenoids hydrocarbons	1.31	1.51	29.15	3.12	_
10	Triterpenoids hydrocarbons	0.49	1.17	8.03	8.90	_
11	Oxygenated triterpenoids	_	_	_	6.39	_
12	Hetero cyclic compounds	2.08	0.56	1.17	9.67	_
13	Siloxane compounds	_	_	_	40.86	_
	Total identified	98.65	99.01	98.71	98.97	99.24

with those reported by Mansour et al. [17], who investigated the volatile oil of Daucus glaber in April

2004 and identified γ -terpinene as one of the main compounds. However, the volatile oil of the DS herb

Table 3 GC/MS data of the acetone-insol, fraction of Daucus svrticus

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Relative%		Compound	Chemical formula
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	21.28	364	Tetracosanol	C ₂₄ H ₄₉ OH
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	3.17	352	Pentacosane	C ₂₅ H ₅₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	2.50	279	Unkwon	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	1.04	366	Hexacosane	$C_{26}H_{54}$
7 52.23 408 Nonacosane $C_{29}H_{60}$	5	15.75	380	Heptacosane	C ₂₇ H ₅₆
	6	1.27	394	Octacosane	C ₂₈ H ₅₈
8 2.77 536 Heptatriacontanol $C_{37}H_{75}OH$	7	52.23	408	Nonacosane	C ₂₉ H ₆₀
	8	2.77	536	Heptatriacontanol	$C_{37}H_{75}OH$

Table 4 GLC analysis of the unsaponifiable fraction of Daucus syrticus

Compound	Relative%	Compound	Relative%
n-C ₈	0.56	C ₂₁	3.2
C ₉	0.44	C ₂₂	8.12
C ₁₀	0.34	C ₂₃	18.52
C ₁₁	0.59	C ₂₅	15.98
C ₁₂	1.06	C ₂₆	1.50
C ₁₃	2.12	C ₂₇	2.48
C ₁₄	1.94	C ₂₈	0.86
C ₁₅	0.55	Cholesterol	0.43
C ₁₆	3.44	Campesterol	0.40
C ₁₇	3.00	Stigmasterol	0.60
C ₁₈	3.35	β -Sitosterol	0.85
C ₁₉	7.7	α -Amyrine	0.96
C ₂₀	9.10		

Table 5 GLC data of fatty acid methyl esters of Daucus syrticus

Peak number	Fatty acid	Relative%
1	Lauric (C _{12:0})	0.48
2	Myristic (C _{14:0})	1.97
3	Palmitic (C _{16:0})	16.68
4	Stearic (C _{18:0})	14.64
5	Oleic (C _{18:1})	1.35
6	Linoleic (C _{18:2})	29.30
7	Linolenic (C _{18:3})	34.35
8	Behenic (C _{22:0})	1.23

Table 6 Antimicrobial activity of different extracts of Daucus svrticus

-,				
Extract	Escherichia coli	Bacillus subtilis	Aspergillus niger	Candida albicans
Volatile oil of the herb	1.4	1.3	1.0	1.2
Volatile oil of seeds	1.1	1.0	0.8	0.9
Petroleum ether	0.4	0.6	0.5	_
Acetone soluble	0.6	0.7	0.4	0.4
Acetone insoluble	0.5	0.9	_	+
Fatty acids	1.2		_	_

The scale of measurement was as follows (disk diameter not included): 14-11 mm zone of inhibition is strong; 10-8 mm zone of inhibition is moderate/mild; 7-4 mm zone of inhibition is weak; and <4 mm, no inhibition.

collected during April was found to contain a mixture of 33 compounds, accounting for 99.01% of the total

essential oil, with limonene, 4-terpineol, γ-elemene, α-bisabolol, tricosane, octacosane, nonacosane, fenchyl acetate and thiophene, tetrahydro-, 1,1-dioxide being the main compounds. These data were found to be in agreement with those reported by Bendiabdellah et. al. [18] and Meliani et. al. [19] who investigated the volatile oil of Daucus muricatus in May 2012 and Daucus carrota in June 2013, and identified limonene as one of the main compounds. The volatile oil of the roots in April was composed of 32 compounds, among which myristicin, α-humulene, phenol, 6-bis(1, 1-dimethyleth)-4-methyl, tricosane, octacosane, nonacosane, hexadecanoic acid, dioctyl phthalate and thiophene, tetrahydro-, 1,1-dioxide were the main compounds. The results obtained were in accordance with those reported by Smaili et al. [6], who investigated the volatile oil of D. sahariensis in 2011 and identified myristicin as one of the main compounds. In contrast, the oil from the roots collected during July consisted of a mixture of 20 compounds belonging to many classes, among decamethylcyclopentasiloxane, p-cymen, myristicin, α-humulene, α-bisabolol, octacosane, tricosane, triacontane, friedelin, hexadecanoic acid, and thiophenetetrahydeo-1,1-dioxide were the major compounds. The presence of siloxane compounds has been reported before in other plants of the Apiaceae family such as dill and in essential oils of other Daucus spp. [20]; also isolated octamethylcyclotetrasiloxane from the volatile oil of Actinidia deliciosa.

From the essential oil of the seeds, 18 compounds were identified, accounting for 99.81% of the total essential oil, among which γ-terpinene, β-asarone, α-humulene, carotol, and α-fenchyl acetate are the main compounds. These data agree with those reported by Kameoka et al. (1989) [21] and Halim et al. [5], who investigated the volatile oil of D. carota and identified β -asarone and carotol as the main compounds. It was found that the acetoneinsoluble fraction contains two fatty alcohols and five hydrocarbons, among which nonacosane was the main constituent (52.23%).

Data obtained from the GLC analysis of the unsaponifiable fraction showed that it contains a series of hydrocarbons (80.24%), sterols, (2.28% cholesterol, stigmasterol, and β-sitosterol) and campasterol, triterpenes (0.96% α-amyrine), which is in accordance with that reported by Hong et. al. [22], who proved the presence of stigmasterol in the D. carota lipid fraction. The GLC of fatty acid methyl esters revealed the presence of saturated fatty acids (35%) and unsaturated fatty acids (65%), among which plasmatic and linolenic acid are the main compounds, respectively. These data were in accordance with those reported by Dib et al. [7]

Table 7 Determination of minimum inhibitory concentration of different extracts of Daucus syrticus

			Mic	crobes		
		Bacteria		Fungi	yeast	
Extract	Concentration	Escherichia coli	Bacillus subtilis	Aspergillus niger	Candida albicans	
Volatile oil of the herb	50 mg/ml	0.9	1.00	0.5	0.7	
	100 mg/ml	1.1	1.1	0.7	0.9	
	150 mg/ml	1.4	1.7	0.8	1.1	
	200 mg/ml	1.4	1.8	0.8	1.2	
	250 mg/ml	1.4	1.8	0.8	1.2	
Volatile oil of seeds	50 mg/ml	0.8	0.5	0.5	0.6	
	100 mg/ml	1.1	0.8	0.7	0.8	
	150 mg/ml	1.2	1.0	0.8	0.9	
	200 mg/ml	1.2	1.0	1.0	1.0	
	250 mg/ml	1.2	1.0	1.0	1.1	
Acetone soluble	50 mg/ml	1.0	1.00	0.5	0.7	
	100 mg/ml	1.5	1.3	1.1	0.9	
	150 mg/ml	2.4	1.7	1.8	1.1	
	200 mg/ml	2.3	2.3	2.00	1.2	
	250 mg/ml	2.6	2.4	2.1	1.2	
Petroleum ether	50 mg/ml	0.6	0.5	0.7	_	
	100 mg/ml	0.9	1.1	0.9	-	
	150 mg/ml	1.4	1.2	1.0	0.7	
	200 mg/ml	1.9	1.2	1	0.9	
	250 mg/ml	1.9	1.2	1.1	0.9	
Fatty acids	50 mg/ml	1	1	0.7	0.7	
	100 mg/ml	1.4	1.3	1.1	1.0	
	150 mg/ml	2.7	1.9	1.5	1.5	
	200 mg/ml	2.7	2.4	1.7	1.7	
	250 mg/ml	2.7	2.4	1.7	1.7	

Antibacterial control is Cephalexin at a concentration of 150 mg/ml: 2.9 cm. Antifungal control is Nystatin at a concentration of 150 mg/ml: 3.1 cm.

who they studied the composition of fatty acids in D. crinitus and found that the major fatty acids are lauric acid and behenic acid.

The study of the antimicrobial activity of different oils and extracts of DS revealed the presence of different degrees of activity as shown in Tables 5 and 6: the volatine oil of the herb exhibited the highest activity against B. subtilis and the fatty acids against Escherichia coli; the petroleum ether extract had a moderate activity against — Gram negative and Gram positive bacteria and yeasts, but had no effect on Aspergillus niger. The acetone-insoluble extract had a remarkable effect against Gram negative and Gram positive bacteria, yeasts and fungi used. The fatty acid fraction had high activity against Gram negative and Gram positive bacteria, with a moderate effect on yeasts and fungi.

Conclusion

The volatile oils of different parts (herb, roots, and seeds) of DS growing in Libya were isolated and their constituents were identified using GC/MS technique for the first time; in addition, the antimicrobial activity of different extracts of the plant was investigated.

Acknowledgements

Conflicts of interest

References

- Sáenz laín C Research on Daucus L. (Umbelliferae). Actas III Congr ÓPTIMA Anales Jard Bot Madrid 1981; 37:481-534.
- 2 Kumarasamy Y, Nahar L, Byres M, Delazar A, Sarker SD. The assessment of biological activities associated with the major constituents of the methanol extract of 'wild carrot' (Daucus carota L.) seeds. J Herb Pharmacother 2005; 5:61-72.
- 3 Flamini G, Cioni PL, Maccioni S, Baldini R. Composition of the essential oil of Daucus gingidium L. ssp. gingidium. Food Chem 2007; 103:1237–1240.
- 4 Staniszewska M. Kula J. Composition of the essential oil from wild carrot umbels (Daucus carota L. ssp. carota) growing in Poland. J Essent Oil Res 2001: 13:439-441.
- 5 Halim AF, Mashaly MM, Sandra PAnalysis of the fruit essential oil of Daucus carota var. Boissieri schweinf. 1988; Alexandria, Egypt. 1st Anglo-Egyptian Conference of Pharmaceutical Science. pp. 15-17.
- 6 Smaili T, Zellagui A, Cioni PL, Flamini G. A myristicin-rich essential oil from Daucus sahariensis growing in Algeria. Nat Prod Commun 2011; 6:883-886.
- 7 Dib MA, Bendahou M, Bendiabdellah A, Djabou N, Allali H, Tabti B, et al. Partial chemical composition and antimicrobial activity of Daucus crinitus Desf. extracts. Grasas y Aceites 2010; 61:271-278.
- 8 Emilio LG. The daucana (carotene) class of sesquiterpenes. Phytochemistry 1994; 37:597-632.
- 9 Bishayee A, Sarkar A, Chatterjee M. Hepatoprotective activity of carrot (Daucus carota L.) against carbon tetrachloride intoxication in mouse liver. J Ethnopharmacol 1995; 47:69-74.

- 10 Majumder PK, Dasgupta S, Mukhopadhaya RK, Mazumdar UK, Gupta M. Anti-steroidogenic activity of the petroleum ether extract and fraction 5 (fatty acids) of carrot (Daucus carota L.) seeds in mouse ovary. J Ethnopharmacol 1997; 57:209-212.
- 11 Porchezkian E, Ansari SH, Ali M. Analgesic and anti-inflammatory activity of volatile oil from Daucus carota Linn seeds. Indian J Nat Prod 2000;
- 12 Patil MVK, Kandhare AD, Bhise SD. Anti-inflammatory effect of Daucus carota root on experimental colitis in rats. Int J Pharm Pharm Sci 2012; 4:337-343.
- 13 Kumari GNK, Aravind S, Balachandran J, Ganesh MR, Soundarya Devi S, Rajan SS, et al. Antifeedant neo-clerodanes from Teucrium tomentosum Heyne. (Labiatae). Phytochemistry 2003; 64:1119-1123.
- 14 Cowan MM. Plant products as antimicrobial agents. Clin Microbiol Rev 1999; 12:564-582.
- 15 Kim JH, Lim JS, Kim SW. The improvement of cephalosporin C production by fed-batch culture of Cephalosporium acremonium M25 using rice oil. Biotechnol Bioprocess Eng 2004; 9:459-464.

- 16 Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966; 45:493-496.
- 17 Mansour E-SS, Maatooq GT, Khalil AT, Marwan E-SM, Sallam AA. Essential oil of Daucus glaber Forssk Z Naturforsch C 2004; 59(5-6):373-378.
- 18 Bendiabdellah A, El Amine Dib M, Djabou N, Allali H, Tabti B, Muselli A, Costa J. Biological activities and volatile constituents of Daucus muricatus L. from Algeria. Chem Cent J 2012; 6:48.
- 19 Meliani N, Dib MA, Allali H, Tabti B. Comparative analysis of essential oil components of two Daucus species from Algeria and their antimicrobial activity. Int Res J Biol Sci 2013; 2:22-29.
- 20 Kambiz L, Mohammed JS, Neda P, Saeideh M, Ali AH. The essential oil of Dill collected from Gilan, Iran. Ann Biol Res 2012; 3:1010-1013.
- 21 Kameoka H, Sagara K, Miyazawa M. Components of essential oils of Kakushitsu (Daucus carota L. and Carpesium abrotanoides L.). J Agric Chem Soc Japan 1989; 63:185-188.
- 22 Fu HW, Zhang L, Tao Y, Feng YL, Tian JK. Guaiane type sesquiterpenes and other constituents from Daucus carota L. Biochem Syst Ecol 2010;