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 Introduction
Cryopreservation of human spermatozoa is routinely 
used in many assisted insemination and fertilization 
programmes [1]. Cryopreservation causes extensive 
damage to the sperm membranes and decreases the 
percentage of motile spermatozoa and the velocity 
of their movement [2–4], decreasing the fertilization 
ability by decreasing the percentage of normal intact 
acrosomes and consequently the acrosine activity [5–7].

As early as 1971, Pedersen and Lebech [8] described 
severe impairment of sperms in terms of ultrastructural 
morphology. Several investigators have confi rmed this 
damage at the level of the membranes and acrosomes after 
freezing [9–12], which appear swollen and ruptured [13]; 
however, a comparison of the ultrastructural morphology 
of fresh and frozen–thawed testicular retrieved 
spermatozoa showed intactness of the nuclear membranes 
and chromatin in frozen–thawed samples.

Cryopreservation increases sperm  DNA 
fragmentation, as concluded by Li et al. [14] and 

Pérez-Cerezalesin et al. [15]. Further, Steele et al. [16] 
using the comet assay showed that control ejaculated 
sperm DNA was signifi cantly more damaged than 
testicular sperm DNA from control men; they also 
showed that the percentage of undamaged DNA in 
testicular sperm from fertile men was signifi cantly 
greater than the percentage of undamaged DNA in 
ejaculated sperm from the same men; this may explain 
the higher percentage of recovered spermatozoa in 
testicular samples compared with ejaculated samples 
and may also explain the higher pregnancy rates that 
were observed in frozen–thawed surgically retrieved 
spermatozoa used for intracytoplasmic sperm injection 
(ICSI) [17].

Despite the fact that sperm cryopreservation 
reduces sperm quality, samples from fertile men 
are signifi cantly better than those from infertile 
individuals [18,19]. An explanation for this 
discrepancy may be the higher rate of reactive oxygen 
species production in low-quality samples than in 
normal-quality samples [20–24].
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As ejaculate contains several cellular components other 
than spermatozoa, their sublethal damage results from 
the combined eff ects of cell dehydration/rehydration, 
membrane lipid phase transition, alteration in the 
enzyme activity or energy metabolism, and activation 
of lipid peroxidation cascade with generation of 
reactive oxygen species [23,25,26]. Th is may explain 
the lower results of ejaculated spermatozoa compared 
with other sperm sources. Several authors reported 
that the clinical pregnancy rate is similar when frozen–
thawed testicular spermatozoa or fresh gametes are 
used for ICSI [27–32]. Severe impairment of sperm 
motility depends largely on the initial quality of 
the sample, the cryoprotectant, or the method of 
freezing [10,23,33–36].

Th e present study aims at detecting the eff ect of sperm 
cryopreservation on the baby’s sex after ICSI in terms 
of the susceptibility of X versus Y chromosome baring 
spermatozoa to cryopreservation.

Patients and methods
Th is is a retrospective study of patients  who underwent 
cryopreservation of motile ejaculated (26 cases) and 
testicular (61 cases) spermatozoa using sperm freeze 
(FertiPro NV, Beernem, Belgium) as a cryoprotectant, 
programmed freezing protocol, and sperm storage in 
liquid nitrogen as the refrigerant (−196°C). One of the 
authors was the working embryologist.

Clinical history (full history and genital examination), 
laboratory data (hormonal profi le if needed, including 
follicular stimulating hormone, leutenizing hormone, 
testosterone, and prolactin), prethawing and post-
thawing sperm count, motility, and vitality were 
determined.

Sample analysis was performed according to the 
guidelines of the WHO [37,38] under a light 
microscope (Olympu s CH 3 0 RF 200; Olympus 
Company Limited, Tokyo, Japan).

Testicular tissue samples were collected in  a HEPES 
buff ered Earle’s balanced salt solution; the biopsy 
samples were shredded with two sterile microscopic 
glass slides. Fine pincers were used for further 
mincing [39], and the sample was examined under an 
inverted microscope (Olympus 1 × 70 S8F2; Olympus 
Company Limited). If no spermatozoa were detected 
the tissue fl uid was treated with erythrocyte lysing 
buff er and the sample was centrifuged [40]. A dish 
with microdrops was then prepared (2 mm each drop) 
from the pellet, covered with sigma oil, and examined 
under an inverted microscope [41,42].

Th e sample was diluted 1 : 1 (v/v) with the sperm 
freeze medium, which was added dropwise from the 
side of a 15-ml falcon tube (Falcon 2095; Becton 
Dickinso n, New Jersey, USA) over 10 min to 
minimize hyperosmotic stress, while continuously 
shaking the tube. Th e diluted semen was loaded 
into straws using an automatic pipette. Th e straws 
were sealed at one end with a cotton plug. After 
aspiration each straw was sealed on the other side. 
Th e straws were labeled individually with the name 
of the patient, fi le number, date of cryopreservation, 
and nature of the sample (Brady, New Jersey, USA), 
and placed in the chamber of a computer-controlled 
biological freezer (Nico ol LM 10; Air Liquide, 
Paris, France) and cooled with the freezing program 
described by Yavetz et al. [43]. Th e rate of freezing 
was as follows: from room temperature to 10°C at a 
rate of –1.6°C/min for 6 min (program 5), and from 
10 to -120°C at a rate of –5.5°C/min for 20  min 
(program 10). Th e sample was then removed from 
the controlled-rate freezer and plunged directly into 
the liquid nitrogen storage tank at -196°C [43].

When a straw had to be thawed, it was removed from 
the liquid nitrogen tank according to the patient 
identifi cation number, fi le number, registration data, 
and cryopreservation tank map and thawed at 37°C 
for 10 min. One end of the straw was cut and the straw 
was placed near the tip of a conical falcon tube and 
the other end was cut to let the sample fall into the 
tube. Th e cryoprotectant was removed by placing the 
sample in a tube to which 10 ml of Earle’s balanced 
salt solution containing 0.5% human serum albumin 
was added slowly dropwise. Equilibration at 37°C for 
10 min and then centrifugation at 1500 rpm for 10 
min were carried out. Th e supernatant was removed 
and the pellet was resuspended in a fi xed volume of 
200 ml. Th e sample was then evaluated using the 
guidelines of WHO [37,38] and the results were 
recorded.

The ICSI procedures involved sperm and oocyte 
preparation [30,44]. The ICSI procedure was 
performed as described by Van Steirteghem 
et al. [45], Al-Hassani et al. [46], Merchant 
et al. [35]. A duration of 16–18 h after injection, the 
oocytes were examined for the presence of pronuclei 
and polar bodies [47,48], and at 25 h after injection 
the oocytes were monitored for early cleavage [34]. 
The embryos were monitored at exactly 48 h for 
four-cell stage (day 2 transfer), or at exactly 72 h for 
7–9-cell stage (day 3 transfer). The embryos were 
then transferred to the uterine cavity according 
to the protocol followed by Merchant et al. [35], 
Racowsky et al. [49], Alikani et al. [50,51], Ziebe 
et al. [52]. Luteal support was provided with   either 
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human chorionic gonadotropins (hCG) or natural 
micronized progesterone (600 mg/day).

Results
Th is study included 87 ICSI cycles performed with 
post-thawed spermatozoa. Th e patients were classifi ed 
into two groups (I and II) according to the total sperm 
count before freezing. Group I included 43  patients 
with a sperm count less than 0.1 × 106/sample 
(countable samples). Group II included 44 patients 
with a sperm count more than 0.1 × 106/sample 
(uncountable samples).

Th ere was no statistically signifi cant diff erence in male 
clinical parameters, sperm freezing and thawing data, 
and female clinical parameters between pregnant and 
nonpregnant ladies in groups I and II, as shown in 
Tables 1–3, respectively.

There was a statistically significant difference in 
the numbers of fertilized M II and good-quality 
embryos between pregnant and nonpregnant ladies 
in groups I and II, whereas other ICSI parameters 
were statistically not significant, as shown in 
Table 4.

All patients underwent a pregnancy test 2 weeks 
after embryo transfer; 28 of 87 (32.2%) cases showed 
a positive pregnancy test as detected by the b-hCG 
in their serum. Gestational sac and presence of 
pulsating fetal heartbeat were detected by means of 
transabdominal ultrasound in 27 of 87 (31%) cases 
2 weeks after the pregnancy test. Only one of the 
ejaculated samples resulted in a positive pregnancy 
(1/26, 3.8%), compared with 26 of 40 (65%) from 
retrieved spermatozoa in groups I and II, as shown in 
Table 5. Twelve of the 27 positive pregnancies resulted 
in successful deliveries and the sex of the babies is 
shown in Table 6; seven of 27 cases are still pregnant 
and eight of 27 aborted. Th is study showed that the 
take baby home was 11 males and seven females in 
group I and II as shown in Table 6.

Th e percentage of good embryos to fertilized M II and 
the number of clinical pregnancies were signifi cantly 
higher in group I compared with group II. In contrast, 
no signifi cant diff erence between groups I and II was 
detected in other parameters, as shown in Table 7.

To detect a possible explanation to these fi ndings, we 
compared the female clinical parameters and ICSI 
data in groups I and II, as shown in Table 8. Th e results 
showed that the number of good and fair embryos and 
the number of embryos transferred was signifi cantly 

Table 1 The difference in male clinical and endocrinal 
parameters between pregnant and nonpregnant women

Male clinical and 
hormonal parameters

Pregnancy test 
positive

Pregnancy test 
negative

N Mean ± SD N Mean ± SD

Age (years) 22 38.2 ± 7 52 39.8 ± 6.6

Infertility duration (years) 22 10.3 ± 10.9 50 10.9 ± 6.53

Testicular size (ml) 21 12.4 ± 3.1 48 12.3 ± 2.9

FSH ( mIU/ml) 11 12.8 ± 9.2 24 10.8 ± 7.4

LH (mIU/ml) 8 12 ± 8.7 16 12.9 ± 11.9

Testosterone (ng/ml) 4 3.14 ± 2.7 18 4.9 ± 2.5

Prolactin (ng/ml) 5 21.3 ± 18.2 16 12.9 ± 14

Missing values were either repeated cases or missed data; All data 
are insignifi cantly changed; FSH, follicular stimulating hormone; 
LH, leutenizing hormone.

 Table 2 The difference in prefreezing and post-thawing data 
between pregnant and nonpregnant women

Prefreezing and post-
thawing data

Mean ± SD

Pregnancy test 
positive (N = 27)

Pregnancy test 
negative (N = 60)

PF total count ×106 3.6 ± 12.4 1.14 ± 2.25

PF motility% 28.3 ± 17.2 33.4 ± 23.7

PF total motile count ×106 0.5 ± 1.65 0.44 ± 1.4

Freezing duration (months) 3.9 ± 3.77 4.1 ± 4.24

PT total count ×106 3.2 ± 11.7 0.87 ± 1.8

PT motility% 21.8 ± 14 22.1 ± 18.7

PT total motile count ×106 0.23 ± 0.76 0.24 ± 0.94

All data are insignifi cantly changed; PF, prefreezing; PT, post-thawing.

 Table 3 The difference in female clinical, hormonal, and 
biological parameters between pregnant and nonpregnant 
women

Female clinical, hormonal 
and biological parameters

Pregnancy test 
positive

Pregnancy test 
negative

N Mean ± SD N Mean ± SD

Female age (years) 26 30.3 ± 6.15 53 32 ± 6.8

Female FSH (mIU/ml) 5 12.2 ± 2.2 16 10.8 ± 6.1

Number of cumulus masses 27 13.8 ± 7.36 60 13.2 ± 9.9

Number of mature oocytes 
( M II)

27 11.7 ± 7 60 11 ± 8.5

Missing values were either repeated cases or missed data; All data 
are insignifi cantly changed; FSH, follicular stimulating hormone.

 Table 4 The difference in intracytoplasmic sperm injection 
parameters between pregnant and nonpregnant women

ICSI parameters Mean ± SD

Pregnancy 
test positive 

(N = 27)

Pregnancy 
test negative 

(N = 60)

Number of injected M II 11.7 ± 7 10.9 ± 8.2

Number of fertilized M II 7.8 ± 4.8 5.35 ± 4.4*

Number of embryos 7 ± 3.8 5.27 ± 4.34

Number of good embryos 2.8 ± 2.1 1.8 ± 2.2*

Number of fair embryos 2 ± 2.3 1.33 ± 1.5

Number of bad embryos 2.15 ± 3 2.15 ± 3

Number of embryos transferred 4.22 ± 1.5 3.45 ± 1.91

ICSI, intracytoplasmic sperm injection; *Signifi cant difference using 
t-test at P < 0.05.
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higher in group I, which may explain the higher 
pregnancy rate (Table 7).

A comparison between the two groups regarding the 
sex of delivered babies showed that the number of 
male babies was signifi cantly higher in group I when 
compared with group II, as described in Table 9.

Discussion
Cryopreservation is associated with extensive damage 
to cell membranes, and results in alteration of the 
functional and metabolic status of the cells and 
mitochondria. Evidence suggests an increase in DNA 
single-strand breaks, and degree of DNA condensation 
or fragmentation in sperm after cryopreservation [7,24]. 
Pregnancy rate was signifi cantly higher in group I 
compared with group II [18/43 (41.9%) vs. 9/44 
(20.4%)]. Th e diff erence is attributed to the high 
percentage of good embryos/fertilized M II (115/275, 
41.8%) in group I versus group II (67/257, 26%) (P < 
0.05) and to the mean numbers of embryos transferred, 
which was statistically higher in group I (4.16 ± 1.65) 

compared with group II (3.23 ± 1.87) (P < 0.05). Th is 
diff erence could not be explained by female factors as 
the diff erences in mean age, serum follicular stimulating 
hormone level, number of cumulus masses, mature 
oocytes, number of injected oocytes, fertilized oocytes, 
and embryos were statistically insignifi cant between 
groups I and II. Th is may point to the eff ect of sperm 
factor on the ICSI outcome as some changes caused 
by cryopreservation resemble the changes occurring 
during normal capacitation that contribute to more 
effi  cient oocyte activation and/or pronuclear formation 
after ICSI [53,54].

Th e mean number of fertilized M II and the number of 
embryos were signifi cantly higher in pregnant ladies. 
No signifi cant diff erences between pregnant and 
nonpregnant ladies were detected in other parameters.

ICSI using frozen–thawed samples in group I yielded a 
higher male sex ratio (80.8%) compared with countable 
samples (28.6%). Th is study is contradictory to a 
previous work that showed no signifi cant diff erence in 
sex ratio when frozen–thawed spermatozoa were used 
for artifi cial insemination [55], as artifi cial insemination 
don or [56] or as IVF donor [57]. In contrast, Sidhu 
et al. [58] had reported that more male children 
(101 male versus 83 female children) we re born after 
IUI using cryopreserved thawed spermatozoa [53]. 
However, to our knowledge, no studies have reported 

 Table 5 The percentage of frozen ejaculated sperm samples 
and testicularly retrieved spermatozoa among pregnancy test 
results in groups I and II

Sperm sources n (%) Total

Pregnancy 
test positive

Pregnancy test 
negative

Ejaculated samples 1 (3.8) 25 (96.2) 26

Testicular samples 26 (42.6) 35 (57.4) 61

Total 27 (31) 60 (69) 87

P value 0.000

 Table 6 The number and percentage of delivered cases 
and their baby’s sex in groups I and II

Outcomes Baby sex Total 
babies

Male Female Male and 
female

Single 5 (71.5) 2 (28.5) – 7

Twins – 1 (25) 3 (75) 8

Triplets 1 (100) – – 3

Total babies 8 (44.5) 4 (22.2) 6 (33.3) 18

 Table 7 A comparison between groups I and II regarding 
embryological records

Embryological data n (%)

Group I (N = 43) Group II (N = 44)

Fertilization rate 275/496 (55.4) 257/474 (54.2)

Good embryos/fertilized M II 115/275 (41.8) 67/257 (26)*

Chemical pregnancy 18/43 (41.9) 10/44 (22.7)

Clinical pregnancy 18/43 (41.9) 9/44 (20.4)*

Implantation rate 28/179 (15.6) 13/142 (9.2)

*Signifi cant difference using t-test at P < 0.05.

 Table 8 The differences in female clinical parameters and 
intracytoplasmic sperm injection data between groups I and II

Female clinical and ICSI parameters Group (I) 
(N = 43)

Group (II) 
(N = 44)

Female age (years) 31 ± 6 31.6 ± 7.2

Female FSH (mIU/ml) 9.5 ± 3.8 13.24 ± 6.78

Number of cumulus mass 12 ± 7.6 13.27 ± 9.43

Number of Mature oocytes (M II) 11.5 ± 7.2 10.8 ± 8.37

Number of injected M II 11.5 ± 7.2 10.77 ± 8.4

Number of fertilized M II 6.4 ± 4 5.84 ± 5.3

Number of embryos 6.1 ± 3.6 5.48 ± 4.76

Number of good embryos 2.67 ± 2.51 1.52 ± 1.68*

Number of fair embryos 1.09 ± 1.6 1.98 ± 1.91*

Number of bad embryos 2.35 ± 2.8 1.95 ± 3.13

Number of embryos transferred 4.16 ± 1.65 3.23 ± 1.87*

Number of sacs 1.56 ± 0.7 1.44 ± 0.73

FSH, follicular stimulating hormone; ICSI, intracytoplasmic sperm 
injection; *Signifi cant difference using t-test at P < 0.05.

 Table 9 The distribution of baby sex between groups I and II

Baby sex n (%)

Male Female Total

Group I 9 (80.8) 2 (18.2) 11

Group II 2 (28.6) 5 (71.4) 7

Total 11 (61.1) 7 (38.9) 18

P value 0.049

*Signifi cant difference using t-test at P < 0.05.
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diff erences in sex ratio when ICSI was performed 
using cryopreserved thawed spermatozoa.

During spermatogenesis the chromatin becomes highly 
condensed within a protamine matrix [59]. Th e DNA 
is organized into loops, attached at their bases to the 
nuclear matrix, anchored to the base of the sperm tail 
by the nuclear annulus, and stabilized by disulfi de 
bonds [60,61]. Th is tight packing of the DNA reduces 
exposure to free radical attack. It has been proven that 
hidden anomaly such as higher levels of loosely packaged 
chromatin and damaged DNA can be present in sperm 
nuclei from men with defi cient spermatozoa. Th e most 
frequent visible changes are related to the protamine-
defi cient, nicked, and partially denatured DNA [62,63].

A properly performed cryopreservation may selectively 
aff ect defective rather than normal spermatozoa [64]. 
Furthermore, spermatozoa that successfully survived 
the freeze–thaw procedure also exhibited an improved 
chromatin structure and nuclear maturity. Th ese data 
suggest that sperm cryopreservation when performed 
correctly may not only improve the fertilization rate but 
may also enhance early embryo development parameters 
as well as pregnancy outcome after ICSI [65].

As most of the cases had few uncountable sperms, limited 
number of spermatozoa have been retrieved and used for 
oocyte injection. Th is fi nding may be explained by the fact 
that cryopreservation acts as an artifi cial selecting process 
with minimal eff ect on the Y chromosome (60 megabase) 
due to its smaller size and lower molecular weight compared 
with the larger X chromosome (160 megabase) [53]. We 
think that the fl ow cytometric sorting used to separate 
spermatozoa baring Y chromosome based on sex 
chromosome content  might be of added value for use 
as a preconception method of infl uencing baby sex [66] 
to avoid having children aff ected by sex-linked disease. 
Th ere are over 1100 X-linked diseases and ∼60 Y-linked 
diseases. Th e embryonic sex data (as  determined by PGD) 
show that the proportions of XX embryos after X-sort 
and XY embryos after Y-sort were consistent with  the 
post-sort FISH results.

If sperm cryopreservation sorting did adversely aff ect 
the sperm function, one would expect lower rates of 
fertilization, cleavage, and pregnancy, which was not 
the case in this study.

In our study seven cases are still pregnant and the 
baby’s sex has not been determined yet; the sex of these 
unborn children may or may not confi rm the results of 
this study.

In conclusion, ICSI using post-thawed spermatozoa 
of countable samples yielded a higher male sex ratio 

(80.8%) compared with uncountable samples (28.6%). 
Th us, it is suggested that sperm cryopreservation 
might aff ect the pregnancy outcome after ICSI, which 
needs further controlled studies on a larger scale to be 
validated.
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