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Background and aim
The role of T helper-17 lymphocytes in the regulation of the immune response
against Schistosoma soluble egg antigens is still controversial. In this study, the in-
vitro effects of T helper-17 cytokines [interleukin (IL)-17 and IL-22] on granulocyte
functions isolated from Schistosoma-infected patients or healthy individuals were
examined.
Patients and methods
Twenty-seven Schistosoma mansoni-infected patients and 13 healthy individuals
from Kasr Al-Aini Viral Hepatitis Center were enrolled in the present study.
Granulocytes were isolated from whole blood of patients and controls by
Ficoll–Paque density gradient for removal of the mononuclear layer and then
lysis of red blood cells. Granulocytes were stimulated in vitro with soluble egg
antigen in the presence of IL-17, IL-22, or both. After 24 h, the supernatants were
collected for themeasurement of tumor necrosis factor (TNF)-α , hydrogen peroxide
(H2O2), myeloperoxidase (MPO), and nitric oxide (NO) using enzyme-linked
immunosorbent assay as surrogate markers for granulocyte functions.
Results
The results indicated that the presence of IL-17 significantly decreased (P<0.05)
TNF-α , H2O2, MPO, and NO production by granulocytes isolated from
Schistosoma-infected patients. In contrast, in the presence of IL-22 or both IL-
17 and IL-22, there were significant increases in the production of H2O2 and TNF-α
by granulocytes isolated from Schistosoma-infected patients. Moreover, in the
presence of both IL-17 and IL-22, nonsignificant changes were observed in MPO or
NO levels compared with those in the control participants.
Conclusion
IL-17, in contrast to IL-22, inhibited the functional activity of granulocytes isolated
from S. mansoni-infected patients. Therefore, neutralization of IL-17 may work as a
therapeutic strategy for these patients.

Keywords:
cytokines, granulocytes, Schistosoma spp, T helper-17 cells

J Arab Soc Med Res 11:29–36

© 2016 Journal of The Arab Society for Medical Research

1687-4293

Introduction
Schistosomiasis, an infectious disease caused by
parasitic Trematodes (schistosomes), is a major
public health problem in tropical and subtropical
regions [1]. The disease causes health problems and
labor loss, with a strong impact on socioeconomic
development [2]. Approximately 207 million
individuals are infected and 779 million are at risk
of being infected in 76 endemic countries (mostly in
Africa), leading to the loss of about 4.5 million
disability-adjusted life years [1–4]. In Egypt, two
species, Schistosoma haematobium and Schistosoma
mansoni, cause urinary and intestinal schistosomiasis,
respectively [5].

Schistosoma eggs and their secreted products provide a
continuous antigenic stimulus for the immune
response. If these antigens are not sequestered or

neutralized effectively, they can damage the affected
tissues. Hepatocytes are particularly sensitive to toxins
secreted by the Schistosoma eggs [6]. The lesions are
mediated and orchestrated by CD4+ T cells as reported
by several studies [7–10].

Several studies suggested that T helper-17 (Th17)
cells, a new CD4+ T-cell lineage, regulate the
immune responses by secreting interleukin (IL)-17/
IL-22 and thereby stimulating the production of
additional proinflammatory and chemotactic
molecules [11–17]. The role of Th17 cells and their
secreted cytokines (IL-17 and IL-22) in the
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recruitment of granulocytes in the presence of
Schistosoma soluble egg antigens (SEA) has been
partially studied [18,19]. IL-17 aids the recruitment
of granulocytes during the inflammatory response
against Schistosoma SEA and the development of
granuloma. However, the effect of IL-22 is still unclear
[16,20]. In thepresent study, theeffectsofTh17cytokines
(IL-17 and IL-22) on granulocyte functional activities in
vitro were studied using human granulocytes isolated
from the whole blood of Schistosoma-infected and
control participants. Granulocytes were stimulated with
SEA in the presence of Th17 cytokines and cultured
overnight. Their mediators such as tumor necrosis factor
(TNF)-α , hydrogen peroxide (H2O2), myeloperoxidase
(MPO), and nitric oxide (NO) were measured in the
culture supernatant as surrogate markers for granulocyte
functions.

Patients and methods
Patients
Twenty-seven S. mansoni-infected patients (20menwith
a mean age of 47.4±14.6 years and seven women with a
mean age of 48±12 years) and 13 healthy individuals with
no history of Schistosoma infection (fourmenwith amean
age of 40.88±16 years andninewomenwith amean age of
40.6±14.6 years) were enrolled in the present study. This
study is a part of our project no. 1814 funded by Science
andTechnologyDevelopmentFund,Egypt, andenrolled
150 patients, most of whom were coinfected with
hepatitis C virus. The present study focuses on S.
mansoni monoinfected patients.

Participants were enrolled from Kasr Al-Aini Viral
Hepatitis Center, Faculty of Medicine, Cairo
University, from October 2013 to June 2015. All
patients were subjected to a physical examination
and a clinical history was obtained. All patients had
a history of schistosomiasis, detection of S. mansoni
ova in stool or rectal biopsy samples, and
seropositivity for schistosomal antibodies (indirect
hemagglutination; Femouz Laboratories, Asniéres,
France). The patients enrolled in the study had
no serological markers for the presence of all
hepatitis viruses, cytomegalovirus infection,
Epstein–Barr virus infection, or other hepatic or
intestinal parasites. None of the patients had a
history of habitual alcohol consumption or
hepatocellular carcinoma.

Approximately 15mlof bloodwaswithdrawn fromall the
enrolled participants using ethylenediaminetetraacetic
acid (EDTA) anticoagulated vacutainer tubes. The
study was approved by the Research Ethics Committee

of Cairo University, Egypt. All participants signed an
informed consent.

Isolation of granulocytes from whole blood
Isolation of human granulocytes from whole blood was
performed by the Ficoll–Paque density gradient as
described by Mollinedo et al. [21]. Whole blood in
EDTA anticoagulant (15ml) was diluted 1 : 1 in
phosphate buffer saline (Sigma, St Louis, Missouri,
USA) and slowly layered on the Ficoll–Paque solution
(Axis-Shield PoC AS, Oslo, Norway) in a sterile tube.
The tubeswerecentrifuged at 1500 rpmfor25minat 4°C
in the cooling centrifuge (). The upper layers were
discarded and the pellet-containing granulocytes and
erythrocytes (around 5ml) were collected. Erythrocytes
were lysed by addingACK lysis buffer (8.024mgNH4Cl,
1.001mg KHCO3, and 3.722mg EDTA-Na2 · 2H2O
wereadded to1 : l ofH2O)andmixing slowlyby inversion
for 5min and left for 20min to lyse erythrocytes
completely. The granulocyte suspension was
centrifuged at 2000 rpm for 10min, the supernatant
was discarded, and cells were washed with Dulbecco’s
modified eagle medium media (). Finally, granulocytes
were resuspended in Dulbecco’s modified eagle medium
and 10% fetal bovine serum (HyClone, USA) and cells
were counted. The viability of isolated granulocytes was
greater than 98% as measured by trypan blue dye
(ADWIC, Cairo, Egypt) exclusion.

Overnight cultures of granulocytes
Isolated granulocytes were stimulated by different
antigens such as lipopolysaccharide (LPS) (100 ng/
ml) as a positive control, SEA (1 ng/ml), or SEA in
the presence of IL-17 (125 pg/ml), or IL-22 (300 pg/
ml) or both IL-17 and IL-22 in a 96-well cell culture
plate. The concentrations of antigens and cytokines
were used according to the study of Nady and Shata
[22]. Each experiment was conducted in triplicate. The
cultures were maintained at 37°C in a 5% carbon
dioxide incubator for 18 h. The supernatant was
collected and stored in −70°C for further analysis.

Measured granulocytes mediators
NO was measured according to the method of Green
et al. [23]. NO in the supernatant was assayed by the
Griess reaction, which has the ability to produce a
chromophore with the Griess reagent. Reading of the
color changes was measured using a microtiter plate
reader (Bio Tec, Winooski, USA) at dual wavelength
(450 and 640 nm). A standard curve was used to
measure the concentration of nitrite.

TNF-α was measured according to the method of
Fossati et al. [24] using the enzyme-linked
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immunosorbent assay kit (BosterImmunoleader,
Pleasanton, CA, USA).

H2O2 was measured using H2O2 colorimetric methods
(‘Bio-diagnostic Com. Giza, Egypt) according to the
method of Segal [25].

Human MPO was measured using the human MPO/
MPO enzyme-linked immunosorbent assay kit
(Booster Immunoleader) according to the method of
Segal [25].

Statistical analysis
Statistical analysis was carried out using a t-test to
compare granulocyte functions of Schistosoma-
infected individuals with those of noninfected
individuals using Graph Pad Prism 6 Software
(GraphPad, San Diego, California, USA). The
data are presented as mean±SD. Percent change
from nonactivated granulocytes was calculated.
Results with a P value of less than 0.05 were
considered significant.

Results
Tumor necrosis factor-α production by overnight
activated granulocytes
The present results as shown in Fig. 1 indicated that
LPS-stimulated granulocytes isolated from control
participants produced significantly higher levels of
TNF-α (P=0.0193) than that produced by
granulocytes isolated from Schistosoma-infected
patients. However, there was no significant
difference in the levels of TNF-α produced in
response to SEA by granulocytes isolated from
either controls or Schistosoma-infected patients. In
contrast, the presence of IL-17 significantly
(P=0.0127) decreased the TNF-α level in
Schistosoma-infected granulocytes compared with that
in the control granulocytes. However, in the presence
of IL-22 or both IL-17 and IL-22, highly significant
(P<0.0001) levels of TNF-α were produced by

Schistosoma-infected granulocytes compared with
those produced by control granulocytes (Table 1).

Hydrogen peroxide production by overnight activated
granulocytes
The differences in the levels of H2O2 produced by
LPS-stimulated granulocytes isolated from either
control participants or Schistosoma-infected patients
were not statistically significant. SEA induced the
release of significant (P=0.0021) levels of H2O2

from granulocytes isolated from control participants
compared with that produced from Schistosoma-
infected patients. In addition, the presence of IL-17
significantly (P=0.0302) inhibited the release of H2O2

by Schistosoma-infected granulocytes compared with
that produced by control granulocytes. The presence
of IL-22 alone had no significant effect on the levels of
H2O2 produced by granulocytes isolated from either
controls or Schistosoma-infected patients. A marked
increase (P<0.001) was observed in the levels of
H2O2 produced by granulocytes isolated from
Schistosoma-infected patients compared with the
controls in the presence of both IL-17 and IL-22
(Fig. 2 and Table 2).

Nitric oxide production by overnight activated
granulocytes
LPS-stimulated granulocytes isolated from control
participants produced significantly (P=0.021)
higher levels of NO than those produced by
granulocytes isolated from Schistosoma-infected
patients. In contrast, SEA induced a significant
(P=0.0053) increase in NO production by
Schistosoma-infected granulocytes compared with
that produced by control granulocytes. However,
in the presence of IL-17, a significant (P=0.0018)
inhibition in NO production was observed in
Schistosoma-infected granulocytes compared with
that produced by control granulocytes. In the
presence of IL-22 or both IL-17 with IL-22, no
significant changes in the levels of NO were
produced by granulocytes isolated from either

Table 1 Tumor necrosis factor-α level (pg/ml) produced by granulocytes stimulated overnight with soluble egg antigen in the
presence of T helper-17 cytokines

Stimulus used to activate granulocytes

Groups (granulocyte
source)

No
stimulus

LPS (100 ng/ml) SEA (1 ng/
ml)

SEA+IL-17 (125 pg/
ml)

SEA+IL-22 (300 pg/
ml)

SEA+IL-17+IL-
22

Controls participants 1.7±0.5 20.36±7.8
(1126.4)

8.6±1.7
(405.7)

15±0.7 (782) −11±2.8 (−747) −5.7±2.6
(−435.3)

Schistosoma-infected
patients

3.2±3.1 6.8±4.5 (112.5)* 5.9±3.4
(84.4)

6.2±9.4 (93.75)* 2.5±3.1 (−22)** 4.3±3.1 (34.38)
**

All data are represented as mean±SD and percentage change from nonactivated granulocytes are given in parentheses. IL, interleukin;
LPS, lipopolysaccharide; SEA, soluble egg antigen. *Significantly different from control participants at P<0.05. **Significantly different
from control participants at P<0.0001.
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controls or Schistosoma-infected patients (Fig. 3 and
Table 3).

Myeloperoxidase production by overnight activated
granulocytes
No significant changes were observed in the levels of
MPO produced by granulocytes isolated from either
controls or Schistosoma-infected patients in response to
LPS or SEA. In the presence of IL-17 alone were
significant changes (P=0.0054) in the MPO levels
observed in Schistosoma-infected granulocytes

compared with that produced by control
granulocytes (Fig. 4 and Table 4).

Discussion
TheroleofTh17cells in schistosomiasishasbeenpartially
explored in mice models [26–33]; however, limited data
are available in terms of human schistosomiasis. Previous
studies have indicated that enhanced neutrophil
recruitment and activation is an important factor in
Th17 cell-mediated inflammation [16,20]. A recent
study suggested that one apparent mechanism used by
Th17 cells to regulate the immunopathology is through
the recruitment of granulocytes [34]. Both granulocytes

Figure 2

Hydrogen peroxideproduced by granulocytes stimulated overnight
with SEA in the presence of Th17 cytokines. *, significant different as
compared to control subjects at P < 0.05. **, significant different as
compared to control subjects at P < 0.001.

Figure 1

TNF-α produced by granulocytes stimulated overnight with SEA in the
presence of Th17 cytokines. *, significant different as compared to
control subjects at P < 0.05. ***, significant different as compared to
control subjects at P < 0.0001.

Table 2 Hydrogen peroxide level (μmol/l) produced by granulocytes stimulated overnight with soluble egg antigen in the
presence of T helper-17 cytokines

Stimulus used to activate granulocytes

Groups (granulocyte
source)

No
stimulus

LPS (100 ng/ml) SEA (1 ng/ml) SEA+IL-17
(125pg/ml)

SEA+IL-22
(300 pg/ml)

SEA+IL-17+IL-22

Controls participants 499.8±5.7 511.7±20.9 (2.5) 524.8±4.9 (5.2) 512.4± 9.3 (2.7) 514.1±16.3 (3.0) 515.6±10.4 (3.3)

Schistosoma-infected
patients

295.8±2.1 292.8±0.0 (−1.0) 294.3±2.1 (−0.5)* 270.3±0.0 (−8.6)* 294.3±2.1 (−0.5) 381.4±22.1 (28.9) **

All data are represented as mean±SD and percentage change from nonactivated granulocytes are given in parentheses. IL, interleukin;
LPS, lipopolysaccharide; SEA, soluble egg antigen. *Significantly different from control participants at P<0.05. **Significantly different from
control participants at P<0.0001.

Table 3 Nitric oxide level (μM/g) produced by granulocytes stimulated overnight with soluble egg antigens in the presence of T
helper-17 cytokines

Stimulus used to activate granulocytes

Groups (granulocyte
source)

No
stimulus

LPS (100 ng/ml) SEA (1 ng/ml) SEA+IL-17
(125 pg/ml)

SEA+IL-22
(300 pg/ml)

SEA+IL-17+IL-
22

Controls participants 78.4±3.6 115.6±10.7 (47.6)* 74.3±1.6 (−5.2) 99.8±9.1 (27.4) 73.9±3.2 (−5.5) 80.5±4.6 (2.8)

Schistosoma-infected
patients

75.8±5.3 76.1±4.4 (0.4) 78.4± 2.6 (3.3)* 65.9±2.3 (−13)* 74.7±5.5 (−1.5) 73.5±1.4 (−3.14)

All data are represented as mean±SD and percentage change from nonactivated granulocytes are given in parentheses. IL, interleukin;
LPS, lipopolysaccharide; SEA, soluble egg antigen. *Significantly different from control participants at P<0.05.
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and eosinophils contribute significantly toward
immunopathology induced by Schistosoma SEA [35].
The aim of the present study was to examine the role
of Th17 cells or their secreted cytokines (IL-17 and IL-
22) in the functions of granulocytes in response to
Schistosoma SEA in vitro in healthy individuals and
Schistosoma-infected patients.

In the present study, LPS-stimulated granulocytes
isolated from control participants produced significant
levels of TNF-α and NO that were higher than those
produced by granulocytes isolated from Schistosoma-
infected patients, suggesting a potential defect in those
granulocytes isolated from Schistosoma-infected patients.
Previous studies reported that TNF-α is produced
through the activation of Toll-like receptors, which are
the appropriate receptors of LPS [36]. No significant
changes in the levels ofH2O2 orMPOwere produced by
LPS-stimulated granulocytes isolated from either control
participants or Schistosoma-infected patients, suggesting
that the activations pathways for TNF-α andNOmay be
different from that of H2O2 or MPO.

The current results showed that overnight stimulation of
granulocytes with SEA did not induce significant levels
of TNF-α in either controls or Schistosoma-infected

patients. However, in the presence of IL-22 alone or
both IL-17 and IL-22, significant levels of TNF-α were
producedbySchistosoma-infectedgranulocytes compared
with those produced by control granulocytes, suggesting
higher sensitivity to IL-22 or IL-22+IL-17 of the
granulocytes isolated from Schistosoma-infected
patients compared with those from controls for TNF-
α secretion. However, this sensitivity is blocked, in the
presence of IL-17 alone, which significantly decreased
TNF-α level in Schistosoma-infected granulocytes
compared with that in control granulocytes.

The release of TNF-α is triggered by binding to one of
two distinct receptors designated tumor necrosis
factor receptor 1 and tumor necrosis factor receptor
2, which are differentially expressed on various cell
types in normal and diseased tissues [37,38].
Therefore, the unresponsiveness to SEA may be
because SEA has no binding capacity to these
receptors, whereas the presence of IL-22 enhanced
this capacity and induced the production of TNF-α .
In our previous work, it was observed that SEA
exerted inhibitory effects on TNF-α production by
granulocytes and this antigen might work on the same
granulocyte receptors and may have similar activation
pathways [39].

Figure 3

NO produced by granulocytes stimulated overnight with SEA in the
presence of Th17 cytokines. *, significant different as compared to
control subjects at P < 0.05.

Figure 4

Myeloperoxidase produced by granulocytes stimulated overnight
with SEA in the presence of Th17 cytokines. *, significant different
as compared to control subjects at P < 0.05.

Table 4 Myeloperoxidase level (ng/ml) produced by granulocytes stimulated overnight with soluble egg antigen in the presence
of T helper-17 cytokines

Stimulus used to activate granulocytes

Groups (granulocyte
source)

No
stimulus

LPS (100 ng/
ml)

SEA (1 ng/ml) SEA+IL-17 (125 pg/
ml)

SEA+IL-22 (300 pg/
ml)

SEA+IL-17+IL-
22

Controls participants 156.9±1.8 157.5±2.1
(0.38)

156.4±1.7
(−0.32)

155.4±1.5 (−0.95) 155.5±0.6 (−0.89) 155.3±0.7 (−1)

Schistosoma-infected
patients

156.4±0.5 156.8±0.6
(0.26)

156.8±0.7
(0.25)

160.4±1.4 (2.5)* 156.5±0.8 (0.1) 155.9±0.8
(−0.32)

All data are represented as mean±SD and percentage change from nonactivated granulocytes are given in parentheses. IL, interleukin;
LPS, lipopolysaccharide; SEA, soluble egg antigen. *Significantly different from control participants at P<0.05.
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TNF-α primes the neutrophil respiratory burst;
upregulates the expression of adhesion molecules,
cytokines, and chemokines; and at high local
concentrations, can stimulate reactive oxygen species
production in adherent granulocytes [37,40]. The
oxidative pathway involves the release of NO, which
is generated either by the constitutively expressed
enzymes nitric oxide synthase (NOS)-1 and NOS-3
or the induced enzyme NOS-2. NOS-2 is not
expressed in naive cells, but is induced by
immunological stimuli such as bacterial LPS or
cytokines such as TNF-α [41].

In the current study, SEA induced the release of
significant levels of H2O2 from granulocytes isolated
from control participants more than that produced by
granulocytes isolated from Schistosoma-infected
patients, which suggested a potential defect of
granulocytes isolated from Schistosoma-infected
patients compared with controls. However, this
defect is unique to H2O2 because a significant
increase in NO production by Schistosoma-infected
granulocytes was observed compared with that
produced by control granulocytes.

Limited studies have investigated the role of different
cytokines in NO production from granulocytes. In the
present study, both cytokines IL-17 with IL-22 did not
induce NO production, which may possibly indicate
that IL-17/IL-22 cytokines play no role in NO
production in contrast to the findings reported in
previous studies [42].

It is well known that neutrophil azurophilic granules
contain a rich supply of the green heme enzyme
MPO, which, in combination with H2O2 and
chloride, constitutes a potent antimicrobial system
[43]. The current results showed that nonsignificant
levels of MPO were produced by granulocytes
isolated from either controls or Schistosoma-
infected patients in response to SEA. In contrast
to our results, a recent study reported the production
of high levels of MPO in Schistosoma japonicum-
infected mice [44].

However, in the presence of IL-17 alone, significant
levels of MPO were observed in Schistosoma-infected
granulocytes compared with those produced by control
granulocytes. Many studies have reported the
antibacterial role of MPO, but few studies have
investigated the effect of Th17 cytokines on MPO
secretion by granulocytes [45]. Previous studies have
reported that IL-17 plays a central role in pulmonary
host defense by recruiting and inducing the activity of

granulocytes in the bronchoalveolar space. Other
studies showed that IL-17 increases potentially in
association with neutrophilic inflammation and
mucus excess, as well as dysregulation of acquired
immunity [46–48].

Similar to its effect on TNF-α production in the
present study, the presence of IL-17 significantly
inhibited the release of H2O2 or NO by
Schistosoma-infected granulocytes compared with
those produced by control granulocytes. However, a
marked increase in the H2O2 level and no significant
changes in the levels of NO were observed in the
presence of both IL-17 and IL-22. However, in the
presence of IL-22 alone, no significant changes in the
levels of H2O2 or NO were produced by granulocytes
isolated from either controls or Schistosoma-infected
patients. Previous studies reported that IL-17 exerts
no effect on peroxide production by granulocytes
activated with formyl-methionyl-leucyl
phenylalanine for up to 2 h of activation [49]. In
terms of IL-22, some studies [50,51] indicated its
involvement in the response against bacterial
infections by inducing the release of innate immune
mediators.

Therefore, the current results clearly showed a potential
defect of granulocytes isolated fromSchistosoma-infected
patients. It also showed that Th17 cytokines, IL-17 and
IL-22, might modulate the response of granulocytes to
Schistosoma SEA and not just the recruitment of
granulocytes as reported by several studies [52,53]. In
agreement with our results, a previous study reported
that Th17 cytokines modulate the inflammatory
response of keratinocyte pathways [54].

Previous studies indicated that both cytokines,
although secreted from the same cell, might exert
differential effects on other cells [52]. S. japonicum
products promote Th17 proliferation and
differentiation through their effect on granulocyte
functions [55].

In conclusion, as observed from the current results, the
presence of IL-17 in contrast to IL-22 inhibited the
functional activity of granulocytes isolated from either
control participants or S. mansoni-infected patients.
Therefore, blocking of the IL-17 effect will leave
the microenvironment to IL-22 to stimulate the
release of granulocytes mediators that will work on
the destruction of Schistosoma eggs and the
accompanying granuloma. Therefore, anti-IL-17
antibodies may be used as a therapeutic agent for
Schistosoma-infected patients.
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