Laboratory-acquired blood-borne parasites from accidental exposure

Elmeya H. Safar

Department of Parasitology, Research Institute of Ophthalmology, Giza, Egypt

Correspondence to Elmeya H. Safar, PhD, Department of Parasitology, Research Institute of Ophthalmology, Giza 12511, Egypt; Tel: 35718305; fax: 35733033; e-mail: e.hassan43@outlook.com

Received 28 November 2016 Accepted 4 February 2017

Journal of The Arab Society for Medical Research

2017, 12:1-5

Background

Infection caused by blood protozoa is becoming very common, especially in developed countries because of immunosuppressed persons and travelers. Therefore, this review aimed to illustrate the dangers of blood protozoa exposure among persons working in medical laboratories, especially when dealing with samples containing blood protozoa such as Babesia, Leishmania, Plasmodium, and Trypanosoma spp.

Conclusion

As protozoa multiply rapidly in humans even with a small inoculum, they can cause illness, in contrast to helminths. Diagnoses of infection can be confirmed through dermal scraping, examination of the stained slides by light microscopy, obtaining biopsy specimens for thin, stained smear, and needle aspiration for cultures of Leishmania spp. In addition, protocols should be provided for handling specimens that could carry viable organisms, using protective laboratory equipment.

Keywords:

african trypanosomiasis, babesiosis, chagas disease, laboratory infections, leishmaniasis,

J Arab Soc Med Res 12:1-5 © 2017 Journal of The Arab Society for Medical Research 1687-4293

Introduction

Blood-borne parasites are found worldwide, and usually spend a certain part of their life cycle in the blood of the host. Blood-borne parasites may be transmitted in two ways according to the Centers for Disease Control and Prevention: parasites may be spread through infected blood during needle prick or blood transfusion, or they may also be transmitted by a vector such as an infected insect that bites a host and injects the parasites into the blood stream. Although rare in the USA, blood-borne parasites are responsible for thousands of deaths annually in developing countries [1].

Because of the renewed interest in parasitic diseases, increasing number of persons working in medical and laboratory studies are exposed to parasites. People working in laboratories are exposed to the dangers of acquiring parasitic infections [2]. The dangers of such infections are not defined [3]. A common survey of infections reported in 1976 [4] showed that 4079 laboratory-acquired infections due to 159 agents occurred. At least 173 deaths have resulted from laboratory-acquired infections from 1965 to 1979 [5,6].

According to this review, parasitic diseases that are frequently reported are babesiosis, leishmaniasis, malaria, and trypanosomiasis. Most of the laboratory workers who acquired blood-borne protozoan diseases felt that they were accidentally exposed to these parasites through their work in the laboratory.

Babesiosis

Babesia spp. infection is caused by bite of an infected tick, Ixodes dammini (I. scapularis), or by blood transfusion [7,8]. In the USA, human infection with Babesia is caused by B. microti. Other species of Babesia have been detected occasionally to cause infection in humans [9,10]. Babesia parasite causes destruction of red blood cells, and may cause hemolytic anemia. Diagnosis of babesiosis is based on medical history, exposure to endemic areas for babesiosis or ticks which carry the pathogen, and observation of clinical signs and symptoms [9].

The disease is most commonly diagnosed by examining a blood smear under a microscope for evidence of Babesia organisms in red blood cells [10,11]. Diagnosis can be confirmed accurately and rapidly by PCR [11]. Babesia spp. may be detected indirectly by serological methods, which provide supporting evidence of exposure to organisms and immune response through production of antibodies [12]. Most of the reported cases are due to tick bites in Europe, and have been caused by Babesia divergence. Cases of *Babesia* infection could be acquired through contact with infected ticks or blood from infected

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work noncommercially, as long as the author is credited and the new creations are licensed under the identical terms.

persons or animals [1]. The risk of becoming infected by ticks is relatively low because they can be controlled easily than mosquitoes in the laboratory.

Humans can also be accidentally infected with *Babesia* spp. [10,13]. The Food and Drug Administration [10,14,15] has reported that blood transfusion from an infected donor with *B. microti* is common. Moreover, *Babesia* can be transmitted congenitally [16]. Infection with *B. microti* can be prevented and treated with a combination of atovaquone and azithromycin or clindamycin and quinin.

Leishmaniasis

Leishmania spp. cause leishmaniasis. These organisms are transmitted through infected female phlebotomine sand flies [17]. Transmission can occur congenitally or by blood transfusion as well [7]. In the sand fly's midgut, the parasites differentiate into promastigotes, which multiply and migrate to the proboscis, and amastigotes multiply in infected cells (macrophages) and affect different tissues, depending in part on the Leishmania spp. Visceral leishmaniasis affects internal organs (spleen, bone marrow, and lymph nodes). Cutaneous leishmaniasis causes skin lesions that can persist for months or years and mucocutaneous lesions that involve the nasopharyngeal mucosa and can result in morbidity. Leishmaniasis can be acquired through direct contact with infected sand flies, contact with cultured parasites, or from infected persons or animals (accidental needle-stick injuries or through skin abrasions).

Laboratory technicians should handle blood specimens carefully, and guidelines for this have been reported in 1931 and 1950 [18–26]. Most of the infected persons develop lesions on the skin, and rarely visceral leishmaniasis. Infected cases are diagnosed by leishmanin skin test, Indirect Fluorescent Antibody Technique, Western blot analysis, and other tests.

Therapy for leishmaniasis

The concept of whether to treat primarily depends on the exposure of the technician to a species that can cause visceral leishmaniasis, and is complicated by the factor that the most effective therapy for leishmaniasis is given intravenously. Oral therapy available is miltefosine, as reported by Sundar *et al.* [27] for Indian visceral leishmaniasis. The authors reported that this drug is the most potent antileishmania agent currently in use.

Postaccidental management

Laboratorians who have been accidentally exposed to *Leishmania* spp. could be informed about the evidence

of infection. Skin lesions that develop near the site of exposure could be detected [17]. Serological examination periodically should be performed, especially when the organisms to which the person is exposed can cause visceral infection.

Malaria

Plasmodium spp. are transmitted through infected Anopheles mosquitos, as well as congenitally and through blood transfusion [7]. Human infection is caused by Plasmodium vivax, Plasmodium ovale, Plasmodium falciparum, and Plasmodium malaria. Laboratorians can be infected accidentally through unexpected contact with an escaped mosquito from its colony. Laboratorians who dissect mosquitoes could be infected through subcutaneous injection of sporozoites or through contact with infected blood, from infected persons or animals, or from cultured parasites. Acquired malaria infection has been reported by Tarantala [28] following laboratory needle-stick injury. About 34 cases of Plasmodium spp. in laboratorian and workers in medical centers have been reported [29-42].

Most of the cases of *P. vivax* and *P. falciparum* infections occurred among healthcare and laboratory workers rather than among researchers, and resulted from needle-stick injuries that occurred when obtaining blood or preparing blood smears from patients [1].

Postaccidental management

Malaria infection should be expected in persons with unexplained febrile illness who might have been exposed to malaria parasites. A stained blood smear should be examined for the presence of parasites in the red blood cells. PCR and serological tests by Indirect Fluorescent Antibody Technique can be useful [1]. When prescribing treatment for confirmed cases, the identity of the infecting species and its drug susceptibilities should be considered. Generally, treatment is given when infection is confirmed. However, preliminary treatment may be indicated in special cases – for example, persons who cannot tolerate fever.

Treatment of malaria [43]

Artemisinin and its derivatives are prescribed for their potent antimalarial activity. They have found their way for clinical use in many cases where malaria is endemic. The in-vitro concentration at which artemisinin can inhibit 50% of the growth of *P. falciparum* ranges from 3 to $30\,\mu\text{g}/1\,\text{ppm}$. The general approach for malaria

treatment is reported by Centers for Disease Control and Prevention [44].

Trypanosomiasis [45,46]

Trypanosoma cruzi [17] is the causative organism of Chagas disease. American trypanosomiasis is endemic in Latin America, and is transmitted by the triatomine bug belonging to the genera Triatoma, Rhodinius, and Panstrongylus. Infection occurs when feces of the triatomine bug containing infected metacyclic trypanosomes come in contact with wounds or the mucous membrane. Congenital transmission [47] and blood transfusion can also occur [7]. The parasite replicates in the mastigotes stage and differentiates into a trypomastigote, which is released when infected host cells are taken by the vector. The acute phase is asymptomatic and lasts for weeks to months. It can be associated with mild or nonspecific clinical manifestations. Laboratorians can become infected through exposure to the feces of infected Triatomine bug, by holding cultures or specimens from blood, infected individuals or animals, and sometimes by inhaling aerosolized organisms [48]. Although the more common stage of the parasite is in axenic cultures, the epimastigote stage is found as well. T. cruzi can infect persons through needle-stick injuries or pre-existing microabrasions in the skin. Clinical and epidemiological aspects of Chagas are reported in the study by Prata [49]. Laboratoryacquired infections have also been reported by Allain and colleagues [50-59].

A xenodiagnosis-confirmed case resulting from ocular mucosal contact with triatomine feces has been reported [60]. Thirteen days after exposure, the investigator reported pain and redness in the internal angle of the exposed eye. The next day, the patient developed ipsilateral palpebral edema, dacryocystitis, and increased tearing, malaise, and fever. Other manifestations included myalgia and edema of the ipsilateral cheek. A case report of accidental infection by T. cruzi followed-up by PCR was reported in 2009 [61].

Treatment of Chagas disease

Benznidazol and nifurtimox have been used with promising results in the acute stage of the disease; however, their side-effects limit their prolonged use in chronic cases [62]. The drugs are administered two to three times daily for 60 days.

African trypanosomiasis [63]

Sleeping sickness is a disease caused by African trypanosomes and transmitted by the vector Glossina. It occurs in 36 sub-Saharan African countries where there are tsetse flies that transmit the disease. The disease is widespread in rural areas and it depends on cultivation, fishing, and hunting of animals.

Cases of laboratory-acquired infection have been reported previously [64-66]. Human African trypanosomiasis occurs in two forms depending on the parasite involved. Trypanosoma brucei gambiense is involved in more than 98% of reported cases. Diagnosis of the disease is complex and requires professionally trained staff.

There are three ways of transmission:

- (1) Mother to child infection: the trypanosomes can cross the placenta and infect the fetus.
- (2) Transmission mechanically through other bloodsucking insects.
- (3) Accidentally infection in laboratorians due to prick with contaminated needles.

In the first stage, the trypanosomes multiply in the subcutaneous tissues, blood, and lymph. This is called the hemolymphatic stage, which consists of bouts of fever, joint pain, headaches, and itching.

In the second stage, the parasites cross the blood-brain barrier to infect the brain. This is called the neurological stage. Clinical manifestations include changes of behavior, confusion, poor coordination, and sensory disturbances. Without treatment, sleeping sickness is considered fatal, although cases of healthy carriers have been reported.

Treatment of African trypanosomiasis [63]

Pentamidine (suramin) is used for the treatment of the first stage of T. brucei gambiense. Melarsopole is used for both gambiense and rhodeciense infections.

Control, prevention, and biosafety measures in relation to acquired parasitic infections

Studies on pathogenic agents, viruses, parasites, fungi, and genetically modified organisms have generated concern because of their potential biological risks not only for people but also for the environment. Because of unexpected behavior, biosafety is associated with the emergence of new diseases or re-emergence of diseases that were already under control [67]. Parasitic diseases have decreased in occurrence in recent years. They have increased again because of globalization of trade and travel [68]. Because of the increased interest in parasitic diseases, studies in both human and veterinary medicine are mainly directed

towards human health [69]. The potential exposure to parasites in the laboratory probably increases the danger for acquired parasitic infections. Parasitic laboratory-acquired infections such as malaria, leishmaniasis, trypanosomiasis, and diseases caused by other parasites have been reported [1]

Education and training of people working in laboratories are important for preventing laboratory accidents. As some parasitic diseases are characterized by a long asymptomatic period, laboratorians who work with parasites should be tested periodically [1]

Reports of accidental infections in both biotechnology and bioengineering laboratories are scarce compared with traditional microbiology and clinical laboratories [70–72].

Precautions to be taken include the following:

- (1) Cover any cuts or abrasions on the skin with impervious dressing.
- (2) Pipetting by mouth should be forbidden.
- (3) If blood spills occur, the surface should be soaked with hydrochloride solution and wiped with a cloth soaked with hydrochloride solution.
- (4) Handling of glassware should be carried out carefully.
- (5) Used microscope slides should be discarded.

Conclusion

laboratory-acquired Prevention of blood-borne infections is preferable to manage their consequences, especially when they are symptomatic and can be diagnosed by periodic serological testing or nonspecific clinical manifestations that are primarily overlooked. Congenital transmission is a potential risk factor. Laboratorians working with parasites should be aware that they may simultaneously be at risk for infections with viruses and bacteria. Although parasitic diseases are treatable generally, some infections are difficult to treat because of antimicrobial resistance and drug toxicity or advanced diseases example, mucosal leishmaniasis, chronic Chagas, cerebral malaria, and neurological complications of trypanosomiasis or immunosuppression of the host. One fatal case of laboratory-acquired parasitic infections was reported in a person with myocardsitis caused by acute Chagas' disease. To decrease accidental exposures, persons who are at risk for exposure to pathogenic parasites must be instructed about safe precautionary measures. Protocols should be provided for handling specimens that could carry viable organisms, using protective laboratory equipment.

Financial support and sponsorship Nil.

Conflicts of interest

There is no conflicts of interest.

References

- 1 Herwaldt BL. Laboratory-acquired parasitic infections from accidental exposure. Clin Microbiol Rev 2001: 14:659–688.
- 2 Herwaldt BL, Dennis DT. Laboratory acquired malaria, leishmaniasis, trypanosomiasis and toxoplasmosis. Am J Trop Med Hyg 1993; 48:313–323.
- 3 Weinstein RA. Laboratory acquired infection. Clin Infect Dis 2009; 49:142–147.
- 4 Pike RM. Laboratory-associated infections: summary and analysis of 3921 cases. Health Lab Sci 1976; 13:105–114.
- 5 Pike RM, Sulkin SF, Sohiulze MI. Continuing importance of laboratory-acquired infection. Am J Public Nations Health 1965; 55:190–199.
- 6 Pike RM. Laboratory-associated infections: incidence, fatalities, causes and prevention. Ann Rev Microbiol 1979; 33:41–66.
- 7 Shulman IA. Parasitic infections and their impact on blood donor selection and testing. Arch Pathol Lab Med 1994; 118:366–370.
- 8 Dobroszck JBL, Herwaldt FF, Boctor JR, Miller J, Lindan ML, Eberhard JJ, et al. A cluster of transfusion-associated babesiosis cases traced to a single asymptomatic donor. JAMA 1999; 281:927–930.
- 9 Herwaldt BL, Montgomery S, Woodhall D, Bosserman EA. Babesiosis surveillance-18 states. Morb Mortal Wkly Rep 2001; 61:505–509.
- 10 Vannier E, Krause PJ. Human babesiosis. New Engl Med 2012; 366: 2397–2467
- 11 Teal AE, Habura A, Ennis J, Keilhly JS, Mdison-Antenucci S. A new real-time PCR assay for improved detection of the parasite *Babesia microti*. J Clin Microbiol 2012; 50:903–908.
- 12 Warmser GP, Dattwyler RJ, Shapiro ED, Halperin JJ, Steere AC, Klempner MS, et al. The clinical assessment, treatment and prevention of lyme disease, human granulocytic anaplasmosis and babesiosis: clinical practice guide line by the infectious Diseases Society of America. Clin Infect Dis 2006; 43:089–134.
- 13 Stainer FE, Pinger RR, Vann CN, Grindele N, Civitello D, Clay K, Fugua C. Infection and co-infection rates of *Anaploasma phagocytophylum* variants *Babesia spp.*, Borrelia burgdorfeir and the rikettsial endosymbiont in *Ixodes scapularis* (Acari: Ixodidae) from sites in Indiana, Maine, Pennsylvania, and Wisconsin. J Med Entomol 2008; 45:289–297.
- 14 Herwardt BL, Linder JV, Bossermen E, Young C, Olkoweska D, Wilson M. Transfusion-associated babesiosis in the United States: a description of case. Ann Intern Med 2011; 55:509–519.
- 15 Leiby DA. Transfusion-transmitted Babesia spp.: bull-eye on Babesia microti. Clin Microbiol Rev 2011; 24:14–028.
- 16 Fox LM, Wingerter S, Ahmed A, Arnold A, Chou J, Rhein L, Lew O. Neonatal babesiosis case report and review of literature. Pediatr Infect Dis J 2006; 25:169–173.
- 17 Herwaldt BL. Laeishmaniasis. Lancet 1999; 354:119-129.
- 18 Chung HL. An early case of Kala-Azar, possibly an oral infection in the laboratory. Nat Med J China 1931; 17:617–621.
- 19 Dolgado OP, Guevara S, Silva E, Belfort E, Ramirez JL. Follow-up of a human accidental infection by Leishmania (viannina) braziliensi using conventional immunologic techniques and polymerase chain reaction. Am J Trop Med Hyg 1996; 55:267–272.
- 20 Dillon NL, Stolf HO, Yoshida ELA, Marques NEA. Leishmaniose cutanes accidental. Rev Inst Med Trop Sao Polo 1993; 35:385–387.
- 21 Evans TG, Pearson RD. Clinical and immunological responses following accidental inoculation of *Leishmania donovani*. Trans R Soc Trop Med Hyg 1988: 82:854–856.
- 22 Freedman DO, Maclean JD, Vilaria JB. A case of laboratory acquired Leishmania donovani infection: evidence for primary lymphatic dissemination. Trans R Soc Trop Med Hyg 1987; 81:118–119.

- 23 Herwaldt BL, Juranek DD, Protozoa and helminths, In: Tulis JI, Vesllev D. editors. Laboratory safety: principles and practice 2nd ed. Washington, DC: ASM Press; 1995. pp. 77-91
- 24 Knobloch J, Demar M. Accidental Leishmania mexicana infection in an immunisuppressed laboratory technician. Trop Med Int Health 1997;
- 25 Sadick MD, Locksley RM, Ralf HV. Development of cellular immunity in cutaneous leishmaniasis due to Leishmania tropica. J Infect Dis 1984; 150:135-138
- 26 Terry LL, Lewis JL, Sessoms SM. Laboratory infection with Leishmania donovani: a case report. Am J Trop Med Hyg 1950; 30:643-649.
- Sundar S, Jina TK, Thakur CP, Juagen CP, Engel J, Sindermann H, Chrestina NE. Oral melfosine for Indian visceral leishmaniasis. J Med 2002: 347:1739-1746.
- 28 Tarantala AP, Rachline AC, Konto C, Houz's S, Larven S, Fishella A, et al. Occupational malaria following needle stick injury. Emerg Infect Dis 2004;
- Bending MR, Maurice PDL. Malaria: a laboratory risk. Postgrad Med J 1980; 56:344-345.
- Bouree P, Fouquet E. Paludisme. Contamination directer humaine. Press Ed 1978; Vol. 7: p. 1865.
- Bruce-Chwatt LJ. Imported malaria: an uninvited guest. Br Med Bull 1982;
- 32 Center for Disease Control. Centers for Disease Control and preventions: malaria surveillance. Annual report. Atlanta: DHEW publication (HSM); 1971. Pp. 72-8152.
- 33 Center for Disease Control. Centers for Disease Control and preventions: malaria surveillance. Annual summary. Atlanta: Center for Disease Control;
- 34 Coatney GR, Collins WE, Warren M, Contacos PG. The primate malarias. Washington, DC: US Government Printing Office 1971
- Cross JH, Hsu-Kuo MY, Lien JC. Accidental human infection with Plasmodium cynomolgi basteanelli. Southeast Asian J Trop Med Public Health 1973: 4:481-483.
- 36 Eyles DE, Coatney GR, Getz ME. Vi9vax-type malaria parasite of macaques transmissible to man. Science 1960; 131:1812-1813.
- Garnham PCC. Malaria in mammals excluding man. Adv Parasitol 1967;
- Holm K. Ueber einen Fall von Infektin mit Malaria tropica an der Leiche. Klin Wochenschr 1924; 3:1633-1634.
- 39 Jensen JB, Capps TC, Carlin JM. Clinical drug resistant falciparum malaria acquires from cultured parasites. Am J Trop Med Hyg 1981; 30:523-525.
- 40 Lewis J. Latrogenic malaria. N Z Med J 1971; 71:88-89.
- Petithory J, Lebeau G. Contamination probable de laboratoire par Plasmodium falciparum. Bull Soc Pathol Exot Fil 1977; 70:371–375.
- Williams JL, Innis BT, Burkatt TR, Hayes DE, Schnideir I. Falciparum malaria accidental transmission to man by mosquitoes after infection with culture derived gametocytes. Am J Trop Med Hyg 1983; 32:657-659.
- 43 White NJ. Treatment of malaria. N Engl Med 1996; 335:800-806.
- Centers for Disease Control and Prevention CDC: general approach for malaria treatment; 2013. Available at: http://www.cdc.gov/malaria/ resources/pdf/treatmenttable.pdf. [Last accessed 2016 Oct 20].
- 45 Marsden PD. American trypanosomiasis. In: Strickland GT, editor. Hunter's tropical medicine. 6th edn. Philadelphia: Saunders; 1984. pp. 565-573.
- Schmidt GD, Roberts LS. TKinetoplasta: Trypanosomes and their kin. In Foundations of parasitology. 6th ed. 2000. Boston: McGraw-Hill; pp. 64-68.
- 47 Riera C, Guabo A, ElKassab H, Jobra JM, Castro M, Angrill R, et al. Congenital transmission of Trypanosoma cruzi in Europe (Spain): a case report. Am J Trop Med Hyg 2006; 75:1078-1081.
- Zeledon R. Epidemiology modes of transmission and reservoir hosts of Chagas disease. Ciba Found Symp 1974; 20:51-85.
- 49 Prata A. Clinical and epidemiological aspects of Chagas disease. Lancet Infect Dis 2001: 1:92-100.

- 50 Allain DS, Kagan IG. Isolation of Trypanosoma cruzi in an acutely infected patient. J Parasitol 1974; 60:526-527.
- 51 Aronson PR. Septicemia from concomitant infection with Trypanosoma cruzi and Neisseria parflava. First case of laboratory-acquired Chagas disease in the United States. Ann Int Med 1962; 57:994-1000.
- 52 Brener Z. Laboratory-acquired Chagas disease: an endemic disease among parasitoogists. In: Marel CM. editor. Genes and antigens of parasites: a laboratory manual. 2nd ed. Rio de Janero, Brazil: Fundocao Oswaldo ceuz; 1984. pp. 3-9.
- 53 CDC. Follow-up on toxic-shock syndrome. MMWR 1980; 29:441-445.
- 54 Coudert J, Despei gens J, Ballesti MR, Michel-Bun J. Un cas de maladie de Chgaspor contamination accidentelle avec T. cruzi. Soc Pathol Exot 1964;
- 55 Hanson WL, Devlin RF, Roberson EL. Immunoglobulin levels in a laboratory-acquired case of human Chagas' disease. J Parasitol 1974; 60:532-533.
- 56 Herr A, Brumpt L. Un cas aigu de maladie de Chagas contractee accidentellement ou contactde triatomes Mexicaine: Observation et courbe febrile. Bull Soc Pathol Exot 1939; 32:565-571.
- 57 Hofflin JM, Sadler RH, Araujo FG, Page WE, Remington JS. Laboratoryacquired Chagas' disease. Trans R Soc Trop Med Hyg 1987; 81:437–440.
- 58 de zitto EH, Araujo FG. Serum neuraminidose activity and hematological alteration in acute human Chagas' disease. Clin Immunol Immunopathol
- Western KA, Schultz MG, Farrar WE, Kagan IG. Laboratory-acquired Chagas' disease treated with Bay (sic) 2502. Bol Chil Parasitol 1969; 24:94.
- 60 Kinoshito-Yanaga AT, Toledo MJ, Araujo SM, Vier BP, Gomes ML. Accidental infection by Trypanosoma cruzi follow up by polymerase chain reaction: case report. Rev Inst Med Trop Sao Paulo 2009; 51:295-298.
- 61 Davanco MG, Campos ML, Rosa TA, Padilha EC, Alzate AH, Rolem L, et al. Benznidazole extended-release tablets for improved treatment of Chagas' disease: preclinical pharmacokinetic study. Antimicrob Agents Chemother 2016; 60:2492-2498.
- 62 Media center: trypanosomiasis, human African (sleeping sickness): 2017. Available at: http://www.who.int/mediacentre/factsheets/fs259/en/
- 63 Herbert WID, Parratt NV, Meirvenns AN, Lennox R. An accidental laboratory infection with trypanosomes of a defined stock. 11 studies on the serological response of the patient and the identity of the infecting organism. J Infect 1980: 2:113-124.
- 64 Receveur MC, Vincendeau P. Laboratory-acquired Gambian trypanosomiasis. N Engl J Med 1993; 329:209-210.
- 65 Robertson DH, Pickens S, Lawson JH, Lennox B. An accidental laboratoryinfection with African trypanosomes of a defined stock 1. The clinical course of infection. J Infect 1980; 2:105-112.
- 66 Claudia CA, Diez JC. Biological risks and laboratory-acquired infection: a reality that cannot be ignored in health biotechnology. Front Bioeng Biotechnol 2015; 3:56.
- 67 Jenkins EJ, Castreodale LJ, deRosemond SJ, Dixon BR, Elmare SA, Gesv KM, et al. Tradition and transition: parasitic zoonosis of people and animals in Alaska, Northen Canada and Greenland. Adv Parasitol 2012; 82:33-204.
- 68 Doura C. One health approach to the control of zoonotic vectorborne pathogen. Vet Rec 2014; 174:398-402.
- 69 Kimman TG, Smit E, Klein MR. Evidence-based biosafety: a review of the principles and effectiveness of microbiological containment measures. Clin Microbiol Rev 2008; 21:403-425. https://www.ncbi.nlm.nih.gov/pubmed/
- 70 Kozoida A. Szadkowska-Sanzv Kl. Protection of medical diagnostic laboratory workers against biohazards. Med Pr 2010; 62:291-295
- 71 Kozoida A, Brodkak S, Szadkowske-Sanzy KI. Factors influencing biosafety level and LAI among the staff of medical laboratories. Med pr 2013: 64:47-486
- 72 Karbeg S. Dual use research on microbes: biosafety biosecurity, responsibility. Herrenhousen symposium. Report HS, Dual use Res Microbes. Hanover, Germany; 2014.