Original article Cancer Biology 77

Phenotypic characteristics of CD133⁺EpCAM⁺ cancer stem-like cells derived from the human hepatoma HepG2 cell line

Hadeer A. Aglan, Nadia S. Mahmoud, Manar A. Elhinnawi, Ahmed A. Abd-Rabou, Hanaa H. Ahmed

Department of Hormones, Medicine and Clinical Studies Research Institute and Stem Cell Laboratory, Center of Excellence for Advanced Sciences, National Research Centre, Cairo, Egypt

Correspondence to Hadeer A. Aglan, PhD, Department of Hormones, Medicine and Clinical Studies Research Institute and Stem Cell Laboratory, Center of Excellence for Advanced Sciences, National Research Centre, 33 EL Bohouth Street (Former EL Tahrir Street), Dokki, Giza, P.O.Box 12622, Egypt. fax: +20 233 371 615:

Received: 22 February 2022 Revised: 16 March 2022 Accepted: 22 March 2022 Published: 4 July 2022

e-mail: ha_dero@yahoo.com

Journal of The Arab Society for Medical

Research 2022, 17:77-88

Background/aim

Cancer stem-like cells (CSCs) have been found to be a serious hurdle in the effective treatment of cancer. The rationale of this study was to isolate and characterize CD133+EpCAM+-enriched cells from the human hepatoma HepG2 cell line to prove their stemness phenotype.

Materials and methods

The CD133⁺EpCAM⁺ cells were sorted from the HepG2 cell line using magnetic cell sorting and specified by flow cytometry analysis of surface markers [CD13, CD24, CD34, CD44, CD90, CD133, and CD326 (EpCAM)] and transmission electron microscopy to confirm their identity as CSCs. Quantitative real-time PCR analysis was applied for determining the expression level of stemness marker genes: Oct4, Nanog, ALDH1A1, Notch receptors (NOTCH1, NOTCH2, and NOTCH3), and cytokeratins (CK8/18/19). The proliferative ability of the isolated cells was identified through MTT assay, and their sensitivity to chemotherapeutic drugs was measured by cell counting kit-8 assay.

Results

The isolated CD133⁺EpCAM⁺ cells from the HepG2 cell line characterized by flow cytometry were positive for CD13 (81.8%), CD24 (24.4%), CD34 (3.36%), CD44 (92.0%), CD90 (39.7%), CD133 (82.3%), and CD326 (2.79%). Moreover, our data clarified from transmission electron microscopy examination that the isolated CD133⁺EpCAM⁺ cells exhibited irregular cell morphology and integral cell membrane structure. The sorted CD133⁺EpCAM⁺ cells possessed considerable increase in the mRNA level of Oct4, Nanog, ALDH1A1, NOTCH1, NOTCH2, NOTCH3, and CK19 genes, whereas they showed significant decrease in the mRNA level of CK8 and CK18 genes versus CD133⁻EpCAM⁻ cells. Moreover, starting from day 4 to day 10, the CD133⁺EpCAM⁺ cells showed a significant increase in their proliferation rate and displayed high resistance to chemotherapy (doxorubicin) contrary to CD133⁻EpCAM⁻ cells.

Conclusion

On the basis of the aforementioned results, CD133⁺EpCAM⁺-enriched cells strictly represented CSC phenotype in the HepG2 cell line. These cells might be valuable for studying the mechanism of CSCs in hepatoma and screening novel targets for cancer therapy.

Keywords:

cancer stem-like cells, CD133, EpCAM, HepG2 cell line, stemness markers

J Arab Soc Med Res 17:77–88 © 2022 Journal of The Arab Society for Medical Research 1687-4293

Introduction

Liver cancer is a prime contributor to the world's cancer burden, and occurrence rates have increased in a great number of countries in recent decades. Hepatoma [hepatocellular carcinoma, (HCC)] is accountable for the great majority of liver cancer deaths [1]. It is the sixth and fourth most popular cancer globally and in Egypt, respectively. Egypt is the third and 15th most populous country for hepatoma in Africa and worldwide, respectively [2].

Various molecularly targeted drugs have been accepted by the FDA for the medication of patients with advanced hepatoma, including angiogenesis inhibitors, kinase inhibitors, and immune checkpoint inhibitors. Despite the fact that these therapies have been established to be beneficial as adjuvant therapy, their effectiveness is moderate, either because they only prolong the patient's survival for a few months or are only successful against a small number of patients [3]. This disease is assumed as a crucial public health concern owing to its high occurrence, persistent

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

recurrence, limitations of the present treatment systems, and high death rate [1].

Hepatoma is a strongly heterogeneous and biologically complex disease. The tumor includes a varied set of cells harboring several molecular signatures with different levels of sensitivity to therapy. Tumor heterogeneity has been classically explicated by the clonal emergence of tumor cells triggering from the cumulative accumulation of genetic and/or epigenetic alterations [4]. Additionally, persuasive clue at present demonstrates that the heterogeneity within a tumor is developed from a subpopulation of cells with progenitor or stem cell properties known as cancer stem-like cells (CSCs) [5].

The CSCs are identified as a rare tumor cell population, competent for generating and maintaining tumors. The three peculiar characteristics of these cells are (a) the capability to proliferate and generate tumors, (b) renewal, and (c) the potency to differentiate into different cells [6]. It has been elucidated that hepatic cancer progenitor cells (HPC) exist in precancerous regions comprising foci of altered hepatocytes that exhibit CSC-like features. These foci include various types of cells, including SOX9⁺, epithelial cell adhesion molecule (EpCAM⁺), and CD44⁺ cells, suggesting that these niches might serve as sites for CSC expansion [7].

The expression of surface markers like CD24, CD29, CD44, CD133, aldehyde dehydrogenase 1 (ALDH1), and epithelial-specific antigens was applied to derive and enrich populations of CSC from several tumors [8]. Recent investigations have clarified that the CSC surface marker expression is delicate for every type of tissue and particular for every tumor [9]. Increased protein expression levels of hepatic stem cell or HPC biomarkers, such as cytokeratin 19 (CK19), CD133, ATP-binding cassette super-family G member 2 (ABCG2), CD44, and nestin are closely correlated with tumor angiogenesis and with poor prognosis of hepatoma [10]. Moreover, gene signatures correlated with S2 and CK19, known by upregulation of MYC-AKT signaling and expression of EpCAM and alpha-fetoprotein, have been established to predict the outcomes of patients with hepatoma in relation to liver transplant indications [11].

Among CSC biomarkers, CD133 (prominin-1) is implicated in the promotion of epithelial-tomesenchymal transition (EMT)-activating signals, like nuclear factor kappa B and autocrine interleukin1 signaling [12,13]. It works as a marker for CSCs of particular cancers in humans [14], and presently, it has been applied to identify CSCs from hepatoma [15]. Many studies on sorting and enriching CSC populations depending on CD133 marker expression have shown favorable results with high purity [9]. The study of Fang et al. [16] proved the prosperous derivation of CD133+ cell population in primary colorectal tumors and demonstrated that these cells were competent to generate spheroids and preserve CD133 expression. Sheng et al. [17] registered that the sorted and enriched prostate CSCs by magnetic-activated cell sorting (MACS) and propagation in serum-free medium experienced high expression of CD133 and CD44. Additionally, Wang et al. [18] derived the subpopulations of cells CD133⁻CD44⁻, CD133⁻CD44⁺, that CD133⁺CD44⁻, and CD133⁺CD44⁺ from Hep2 and TU-177 cell lines through MACS technique and documented that the cells expressing CD133⁺CD44⁺ had a greater ability for survival, metastasis, invasion, and tumor formation versus the other populations. The differential expression of CD133 in various hepatoma cells is confused and consequently CD133 alone is not appropriate to disclose CSCs in hepatoma [19].

Lately, EpCAM (CD326) has been specified as a potential marker of CSCs in hepatoma [20]. It promptly controls the cell cycle and proliferation, operating as a transcription factor by motivating cyclin A, cyclin E, and c-myc [21]. EpCAM+ hepatoma cells isolated from tumor specimens and cell lines are strongly aggressive and tumorigenic [20].

The main goal of this attempt was to isolate CD133 and EpCAM-enriched cell population from the HepG2 cell line using MACS technique to establish their stemness properties.

Materials and methods

Cell culture

The HepG2 cell line was obtained from VACSERA (The Holding Company for Biological Products & Vaccines, Giza, Egypt), and was maintained in Dulbecco's modified Eagle's medium-high glucose (Biowest, Nuaillé France) containing 10% heatinactivated fetal bovine serum (Biowest) and 1% penicillin/streptomycin (Biowest). HepG2 cells were cultured in 5% CO₂ humidified atmosphere at 37°C. Cells were passaged at 80-90% confluence by 0.025% trypsin/EDTA (Biowest) [22].

Magnetic-activated cell sorting

The CD133⁺ and CD326 (EpCAM⁺) hepatic CSCs were fractionated from the HepG2 cell line using CD133 (Miltenyi Biotec, Bergisch Gladbach, Germany) and CD326 (EpCAM) MicroBeads kit (Miltenyi Biotec) according to the manufacturer's instructions. In brief, the CD133+ and CD326 (EpCAM)+ cells were magnetically labeled with CD133 MicroBeads - Tumor Tissue and CD326 (EpCAM) microbeads. Then, the cell suspension was loaded onto a MACS column (LS Columns; Miltenyi Biotec), which was placed in the magnetic field of a Midi MACS separator (Miltenyi Biotec). The magnetically labeled cells (CD133*EpCAM*) were retained within the column. The unlabeled cells (CD133-EpCAM-) were run through; this cell fraction was thus depleted of CD133⁺EpCAM⁺ cells. After removing the column from the magnetic field, the magnetically retained cells were eluted as the positively selected cell fraction. The cells were expanded in the same condition for the HepG2 cell line culture to obtain enough cells for further evaluation.

Flow cytometry analysis

To ensure that the isolated cells were CSCs, they were characterized by flow cytometry analysis for specific surface markers (CD13, CD24, CD34, CD44, CD90, CD133, and CD326). The FITC conjugated-CD13 antibody was procured from Beckman Coulter Co., California (USA). However, the PE-conjugated CD24 and CD133 antibodies as well as the FITC conjugated-CD34 and 326 antibodies were supplied by Miltenyi Biotec. The PE-conjugated CD44 and CD90 antibodies were purchased from R&D Systems, Abingdon (UK). The cells were incubated with the antibody against each of the surface markers for 20 min in dark at room temperature. Concentrations of antibodies were used according to the manufacturer's recommendations. The stained cells were analyzed by flow cytometry analysis using Beckman Coulter Elite XL, California (USA) instrument [23].

Transmission electron microscopy

The freshly isolated cells were fixed with 2.5% glutaraldehyde at 4°C for 4 h, then rinsed with cold phosphate-buffered saline and further fixed in 1% osmium tetroxide at room temperature for 2 h. The samples were first dehydrated using a gradient of ethanol and acetone, then embedded in Epon812 resin and acetone (v/v, 1:1) for 30 min, followed by 100% Epon812 resin for 1 h. The Epon812 resin was solidified at 37°C for 24 h and at 60°C for 48 h. Preparation of ultrathin sections was done using an

ultramicrotome, which were thereafter stained with uranyl acetate and lead citrate [24] for examination by transmission electron microscopy (TEM) (JEOL JEM – 1400, Tokyo, Japan).

Quantitative reverse transcription PCR

The RNA was extracted from the isolated cells using RNeasy mini kit for total RNA purification from cells (Qiagen, Hilden, Germany) according to the manufacturer's instruction. RNA concentration and purity were evaluated using Nano Drop 2000 (Thermo Fisher Scientific, Rockford, Illinois, USA) using 260/280 nm ratio. Then, cDNA synthesis was performed using Revert Aid first strand cDNA synthesis kit (Thermo Fisher Scientific Inc., Vilnius, Lithuania) according to the manufacturer's instruction. expression analysis of octamer-binding transcription factor 4 (Oct4), Nanog, ALDH1A1, homolog translocation-associated 1, (NOTCH1), NOTCH2, NOTCH3, CK8, CK18, and CK19 was carried out using DNA-Technology Real-Time PCR device (DT lite 4, Moscow, Russia). The reaction mixture (25 μ l volume) included 12.5 μ l of QuantiTect SYBR Green master mix (Qiagen), 0.75 µl of forward and reverse primer of target gene (Invitrogen, Carlsbad CA, USA), 1.5 µl cDNA template, and 9.5 μl RNase-free water. β-actin was used as a housekeeping gene. Relative mRNA expression versus control value (CD133-EpCAMcells) was assessed using the $2^{-\Delta\Delta Ct}$ comparative method after normalization with β -actin gene.

The PCR cycling was set as follows: initial denaturation step at 95°C for 15 min, followed by 40 cycles of denaturation at 94°C for 15 s, annealing at 60°C for Oct4, ALDH1A1, NOTCH3, CK8, CK18, and CK19 genes, 58°C for Nanog gene, 53°C for NOTCH1 gene, and 55°C for NOTCH2 gene for 30 s, and extension at 72°C for 30 s. The primer sequences of each target gene are delineated in Table 1.

Cell proliferation assay

The proliferative abilities of the isolated cells were determined using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide (MTT; Sigma, Missouri, USA) assay, as described in detail previously [31]. In brief, the isolated cells were cultured in 96-well plates at a density of 1×10³ cells/ well. At 2, 4, 6, 8, and 10 days of culture, MTT dissolved in phosphate-buffered saline was added to each well at a final concentration of 5 mg/ml, and the samples were incubated at 37°C for 4 h. Waterinsoluble dark blue formazan crystals that formed during MTT cleavage in actively metabolizing cells

Table 1. List of gene-specific primers in reverse transcription PCR

Gene	Forward	Reverse	References
Oct4	TCGCAAGCCCTCATTTCACC	GCCAGGTCCGAGGATCAAC	Asadi <i>et al.</i> [25]
Nanog	GCTGGTTGCCTCATGTTATTATGC	CCATGGAGGAAGAAGAGAGAGA	Ambady et al. [26]
ALDH1A1	TTACCTGTCCTACTCACGATT	GCCTTGTCAACATCCTCCTTAT	Gangavarapu et al. [27]
NOTCH1	CCCGCCAGAGTGGACAGGTCAGTA	TGTCGCAGTTGGAGCCCTCGTTA	Xiao et al. [28]
NOTCH2	CCCACAATGGACAGGACA	GAGGCGAAGGCACAATCA	
NOTCH3	TCTCAGACTGGTCCGAATCCAC	CCAAGATCTAAGAACTGACGAGCG	
CK8	TCATAGACAAGGTACGGTTCC	GCCTAAGGTTGTTGATGTAGC	Li et al. [29]
CK18	GAGCTGCTCCATCTGTAGGG	CACAGTCTGCTGAGGTTGGA	
CK19	CATGAAAGCTGCCTTGGAAGA	TGATTCTGCCGCTCACTATCAG	
β-actin	AGAGCTACGAGCTGCCTGAC	AGCACTGTGTTGGCGTACAG	Song et al. [30]

were then dissolved in dimethyl sulfoxide. Absorbance was measured at 492 nm, using a microplate reader (Model 500; BIORed Instrument Inc., California, USA). The cell proliferation (%) was calculated and compared with the control (CD133⁻EpCAM⁻ cells).

Chemotherapy sensitivity assay

The sensitivities of the isolated stem cells to chemotherapeutic drugs were measured by cell counting kit-8 assay using WST-8 (2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-

disulfophenyl)-2H tetrazolium (Sigma-Aldrich). In brief, 4000 cells/well were seeded in 96-well plates, and various concentrations (0.01, 0.1, 1, 10, and 100 µg/ml) of doxorubicin (Adricin, Doxorubicin Hcl; Hikma Specialized Pharmaceuticals, Cairo, Egypt) were added at the beginning [32]. After 72 h of incubation, viable cells were measured by cell counting kit-8 assay following the manufacturer's instruction at 450 nm, using a microplate reader (Model 500; BIORed Instrument Inc.).

Statistical analysis

The attained results were delineated as means ±standard deviations. Data were analyzed by one-way analysis of variance using the Statistical Package for the Social Sciences (SPSS, IBM, Hong Kong SAR, China) program, version 14, followed by least significant difference to compare the significance between groups. The level of significance was set at *P* value less than 0.05.

Results

Flow cytometry analysis of CD133⁺EpCAM⁺ cells

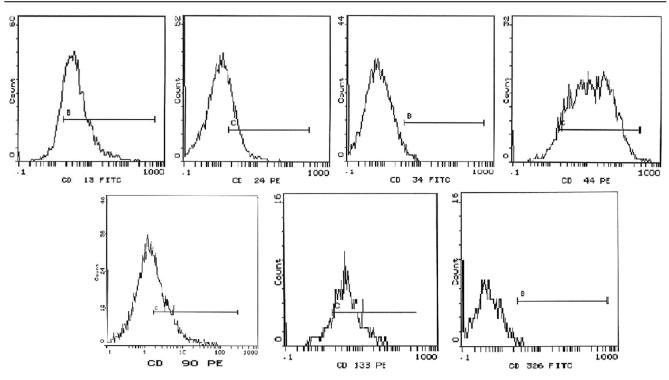
The isolated CD133⁺EpCAM⁺ cells from the HepG2 cell line characterized using flow cytometry were positive for CD13 (81.8%), CD24 (24.4%), CD34 (3.36%), CD44 (92.0%), CD90 (39.7%), CD133 (82.3%), and CD326 (2.79%) (Fig. 1).

Transmission electron microscopy analysis of CD133*EpCAM* cells

The structural details of isolated CD133⁺EpCAM⁺ cells from the HepG2 cell line were examined by TEM. Irregular cell morphology and integral cell membrane structure were visible. Furthermore, a small number of vacuoles were observed (Fig. 2).

Expression of cancer stem-like cells markers in isolated CD133*EpCAM* cells

To further characterize the isolated CD133+ and EpCAM⁺-enriched cell population, real-time PCR analysis was carried out to detect the expression level of different CSCs-related genes. The attained results revealed that the mRNA expression level of Oct4, Nanog, ALDH1A1, NOTCH1, NOTCH2, and NOTCH3 genes was significantly (P<0.05) upregulated in the isolated CD133+EpCAM+ cells when compared with CD133⁻EpCAM⁻ 3). However, they exhibited significant (P<0.05) down-regulation in the mRNA levels of CK8 and CK18 genes versus CD133⁻EpCAM⁻ cells. Moreover, CD133+EpCAM+ cells showed insignificant (P>0.05) up-regulation in the mRNA expression level of CK19 genes relative to CD133⁻EpCAM⁻ cells (Fig. 3).


Proliferative abilities of isolated CD133*EpCAM* cells

One of the key features of CSCs is fast proliferation. During 10 days of culture, the isolated CD133⁺EpCAM⁺ cells proliferated rapidly (Fig. 4). Starting from day 4 to day 10, the CD133⁺EpCAM⁺ cells showed significant (*P*<0.05) increase in their proliferation rate in comparison with CD133⁻EpCAM⁻ cells.

Resistance of isolated CD133 $^{+}$ EpCAM $^{+}$ cells to chemotherapy

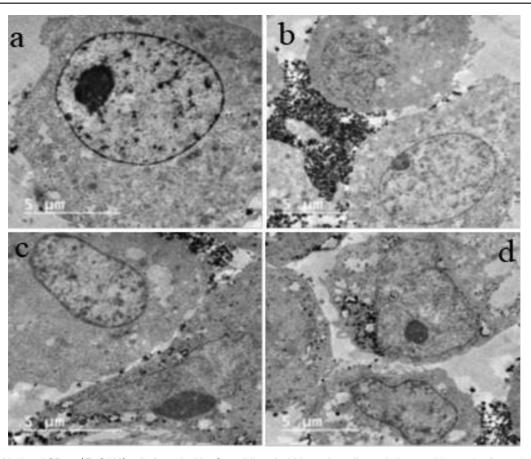
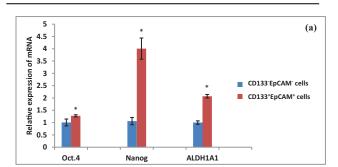
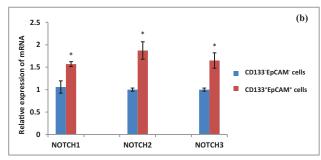
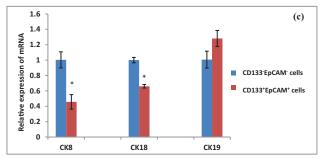

To explore whether the isolated CD133⁺EpCAM⁺ cells from the HepG2 cell line have increased chemoresistance, the sensitivity of CD133⁻EpCAM⁻

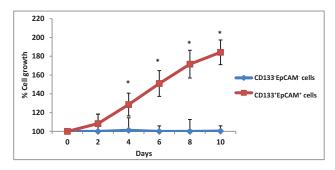
Figure 1.



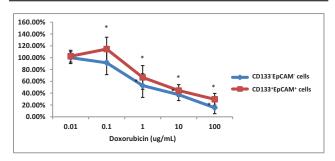

Flow cytometric analysis of isolated CD133*EpCAM* cells from the HepG2 cell line after staining with CD13, CD24, CD34, CD44, CD90, CD133, and CD326 antibodies.


Figure 2.

TEM images of isolated CD133⁺EpCAM⁺ cells from the HepG2 cell line. (a, b) Irregular cell morphology and integral cell membrane structure. (c, d) A small number of vacuoles. TEM, transmission electron microscopy.



Expression of CSC-related genes in isolated CD133*EpCAM* cells from the HepG2 cell line. (a) Oct4, Nanog, and ALDH1A1 genes; (b) NOTCH1, NOTCH2, and NOTCH3 genes; and (c) CK8, CK18, and CK19 genes. All experiments were repeated three times. Data are displayed as the mean±SD. *P value less than 0.05 compared with CD133*EpCAM* cells. CSC, cancer stem-like cells.


Figure 4.

Proliferative capacities of the isolated CD133*EpCAM* cells from the HepG2 cell line. Data are displayed as the mean±SD. *P value less than 0.05 compared with CD133*EpCAM* cells.

cells and isolated CD133⁺EpCAM⁺ cells toward different concentrations of doxorubicin was assessed. Compared with CD133⁻EpCAM⁻ cells, the isolated CD133⁺EpCAM⁺ cells were much more resistant to doxorubicin (Fig. 5).

Figure 5.

Resistance of the isolated CD133 $^+$ EpCAM $^+$ cells to doxorubicin. Data are displayed as the mean \pm SD. *P value less than 0.05 compared with CD133 $^+$ EpCAM $^-$ cells.

Discussion

CSCs have been specified in various tumors and theorized to have a role in tumorigenicity, angiogenesis, metastasis, invasion, chemoresistance, reiteration of malignant tumor, malignant transformation. The therapeutic approaches for cancers primarily target somatic tumor cells rather than CSCs. For developing effective treatments to curb CSCs, it is imperative to derive and identify CSCs from cell lines or tumor tissues and disclose their characteristics as well as study the mechanisms implicated in their [28]. stemness In the current CD133⁺EpCAM⁺ cells were successfully isolated and characterized from the HepG2 cell line using the MACS system.

According to the data of flow cytometry analysis, the proportion of CD133 and EpCAM marker expression in CD133⁺EpCAM⁺ HepG2 cell subpopulation was 82.3 and 2.79%, respectively. Furthermore, these cells exhibited positive expression for CD13 (81.8%), CD24 (24.4%), CD34 (3.36%), CD44 (92%), and CD90 (39.7%). These findings are in harmony with those of Chen et al. [33]. Feng et al. [34] registered that the enriched stem cell-like HepG2 spheres expressed elevated level of CD133 in comparison with parental HepG2 cells. Meanwhile, Suetsugu et al. [35] cited that CD133+ hepatic CSCs, derived from the Huh7 cell line, manifested greater proliferative and metastatic capacity relative to the CD133⁻ counterparts. Moreover, the research by Ma et al. [23] denoted that CD133+ cells exhibited a substantial colony-forming property, considerable tumorigenicity, and prospects to differentiate into angiomyogenic-like lineages. Moreover, investigators demonstrated that CD133⁺ population displayed greater tumorigenicity in vivo. Liu et al. [36] proved that CD133 was important to detect the

migratory competence of liver CSCs, tumororiginating features, and the EMT process. Additionally, Tang et al. [37] uncovered that CD133⁺ liver tumor-initiating cells showed angiogenic capacity and exhibited a fundamental role in controlling tumorigenesis of hepatic tumorthrough controlling network initiating cells identified neurotensin, interleukin-8, CXCL1, and MAPK signaling. Moreover, Li et al. [38] established that the hepatoma cells with positive expression for CD133 could avail autophagy to ensure their existence. Of note, hepatic CD133+ CSCs are known to exhibit great resistance to radiotherapy [39] and chemotherapy [40].

EpCAM has been identified as a cell surface antigen expressed in epithelial tumors [41]. Mu et al. [42] disputed that EpCAM expression in hepatoma tissues was as low as 30% and could serve as a biomarker for CSCs in hepatoma. It has been cited that the EpCAM⁺ hepatoma cells possessed CSC-like features comprising an increased self-renewal potential and differentiation ability and were competent to generate extremely tumorigenic cancers in NOD/ Moreover, EpCAM has been mice. recognized as one of the target genes in Wntβ-catenin signaling pathway [20]. A set of microRNAs such as miR-155, miR-18,1 and miR-216a/217 have been evinced to be implicated in controlling stemness of EpCAM+ hepatoma cells [43,44] and be responsible for chemoresistance and tumor metastasis. Ji and Wang [45] mentioned that a majority of EpCAM+ HCC cells expressed CD133.

CD13 (aminopeptidase N) is a membranous glycoprotein that has a primary role in cancer progression [46]. It serves as an indicator of dormant or semi-quiescent CSCs in hepatoma cell lines. Haraguchi et al. [47] documented that CD13 is mainly distributed during the G1/G0 phase in hepatoma cells and generally enriched in a side population derived from hepatoma cell lines. Moreover, CD13⁺ hepatoma cells exhibit a great tumorigenic capacity in NOD/SCID mice. The data proved that CD13⁺CD90⁻ fractions in PLC/PRF/5 and CD13+CD133+ cells in Huh7 could generate tumor successfully. Additionally, it has been demonstrated that CD13⁺ cells are highly chemoresistant, proposing CD13⁺ cells that exemplify the dormant hepatic CSCs in hepatoma as they decreased ROS-induced DNA damage after genotoxic chemo/radiation stress and protected cells from apoptosis [47].

CD24 is mainly expressed in stem/progenitor cells and CSCs originated from pancreatic, colon, breast, and ovarian cancers as well as squamous cell head-neck cancer. Lee et al. [48] clarified that CD24+ hepatoma cells are competent for self-renewal and tumor emergence as well as chemoresistance to cisplatin. It has been cited that CD24⁺ hepatoma cells could form larger and more hepatospheres versus CD24⁻ hepatoma cells, which means that these cells are capable of generating tumors. As few as 500 CD24+ cells from hepatoma cell lines are adequate for tumor formation in NOD/SCID mice. Moreover, CD24 expression has been documented to be needed for maintaining self-renewal, differentiation, metastasis of tumors and to considerably affect patients' clinical outcome. Furthermore, most of CD24⁺ hepatoma cells expressed EpCAM and CD133, as it has been registered that CD24 expression was found to overlap with that of CD133 and EpCAM, proposing that these three indicators share comparable self-renewal properties [45].

Our data also revealed that the isolated CD133⁺EpCAM⁺ cells exhibited positive expression for CD34. It has been reported that CD34 plays a key role during liver development and regeneration [49]. Zeng et al. [50] recorded that a population of CD34⁺ stem cells served as liver CSCs by forming three kinds of human liver carcinoma (combined cholangiohepatocellular carcinoma, HCC, cholangiocarcinoma), demonstrating that this liver CSCs evince bipotency, to differentiate into hepatic and cholangiocytic lineages. Moreover, CD34⁺OV6⁺ cells and their derivatives, OV6+ cells, generated human liver carcinoma xenografts; accordingly, it has been proposed that these liver CSCs might be acquired from liver progenitor cells [51].

CD44 is implicated in cell-cell adhesion and migration and has been demonstrated to be accompanied with migration of tumor cell in hepatic cancer [52]. CD44 has been specified as a CSC indicator in pancreatic, gastric, colorectal, and breast cancers. In hepatoma, CD44 is a substantial indicator that is applied together with other indicators for CSC to identify hepatic CSCs. Cells co-expressing CD90 and CD44, or CD133 and CD44, display a great invasive phenotype than the cells expressing CD133 or CD90 alone. In agreement with these findings, our data showed that the isolated cells exhibited positive expression for CD44. Yang et al. [53] presented that cells generate tumor nodules immunodeficient mice faster than CD44 cells, whereas lung metastases are only detected in

immunodeficient mice implanted with CD90⁺CD44⁺ cell population. Moreover, CD44 was evinced to be favorably expressed in a CD133⁺ subpopulation sorted from four hepatoma cell lines: SMMC7721, MHCC-LM3, MHCC97L, and Huh7. In comparison with CD133⁺CD44⁻ cells, CD133⁺CD44⁺ hepatoma cells are highly tumorigenic, exhibiting chemoresistance and expressing an elevated level of stemness-associated genes [52].

CD90 (Thy-1) has been theorized as an indicator for several types of stem cells, including murine breast CSCs and hematopoietic stem cells [54]. Some investigations have proposed CD90 as an additional indicator for CSCs and hepatic stem cells [53]. Yang et al. [53,55] proved a considerable positive correlation of CD90 expression with tumorigenicity and metastatic capabilities in hepatoma cell lines. Moreover, some researchers used CD90 with CD45, to sort CD90+ cells from tumor samples and blood of patients with hepatoma. It has been recorded that CD90+ cells derived from hepatoma cell lines and CD90⁺CD45⁻ cells sorted from primary tumor and blood samples of patients with hepatoma are able to generate hepatoma nodules upon intrahepatic injection into SCID/Beige mice [53,55], and this explains the relation between CD90 expression and tumorigenicity in hepatoma cell lines.

details of the The morphological isolated CD133⁺EpCAM⁺ HepG2 population by TEM examination revealed that these cells exhibited morphology with integral irregular cell membrane structure, and also, a small number of vacuoles were observed. Our findings mirror prior a study by Nguyen et al. [9], who demonstrated that the isolated CD133⁺ HepG2 cells by magnetic cell sorting method were larger in size and had a nonspecific shape compared with the CD133⁻ populations.

A growing body of evidence has denoted that CSCs could express stem cell-associated genes [56]. To ensure the stem cell-like identities of the isolated CD133⁺EpCAM⁺ cells from the HepG2 cell line, the mRNA expression levels of Oct4, Nanog, ALDH1A1, NOTCH1, NOTCH2, NOTCH3, CK8, CK18, and CK19 genes were analyzed. Our data clarified that CD133⁺EpCAM⁺ cells expressed higher mRNA levels of Oct4, Nanog, ALDH1A1, NOTCH1, NOTCH2, NOTCH3, and CK19 genes, whereas they expressed lower mRNA levels of CK8 and CK18 genes versus CD133⁻EpCAM⁻ cells.

Oct4 is considered as a substantial stem cell factor and master regulator in the maintenance of stem cell potency. Robust Oct4 can promptly control two downstream stem cell regulator genes, Nanog and SOX2, motivating liver CSC phenotypes. Diverse studies have determined the correlation between Oct4 and liver CSCs. Nanog has been suggested as a paramount regulator influencing the phenotype of CSCs in several cancer types [57]. It has been recorded that these stem cell-related genes are dominant for proliferation, self-renewal, and differentiation of stem cells [58]. the present investigation, In CD133⁺EpCAM⁺ cells expressed greater mRNA level of Oct4 and Nanog versus CD133-EpCAMcells. These results are supported by those of Lee-Theilen et al. [59] who cited that the HepG2 CSCs had elevated mRNA levels of Oct4 and Nanog. Moreover, the study by Li et al. [32] clarified that hepatoma stem cells exhibited significant upregulation of Oct4 and Nanog gene expression levels as compared with their parental cells. Moreover, Jia et al. [60] recorded a considerable overexpression of Oct4 and ABCG2 in CD90+CD133+-enriched liver CSCs sorted from the HepG2 cell line versus parental cells. Furthermore, Yin et al. [61] concluded that the coexpression of Oct4 and Nanog initiated stem cell features in hepatoma and motivated EMT, contributing to tumor migration, invasion, and metastasis in vitro and in vivo. This accomplished via the promotion of Stat3/Snail signaling. Specifically, coexpression of Oct4 and Nanog stimulated the expression of stem cell markers CD133, ALDH1, and BMi-1. Moreover, Oct4 and Nanog expression ultimately induced the expression of ABCG2 and MDR1, two major ABC transporters that contribute to drug resistance [61].

ALDH1 is a crucial regulator for the retinoic acid signaling pathway, which modulates a wide variety of biological processes like cell proliferation, differentiation, cell cycle arrest, and apoptosis [62,63]. Based on these stemness properties, the ALDH1 family is theorized to be a stem cell indicator [64].Our data clarified CD133⁺EpCAM⁺ cells showed elevated mRNA level of ALDH1A1 versus CD133⁻EpCAM⁻ cells. This observation comes in line with that of Ma [65], which indicated the preferential et al. of ALDH1A1 the expression in CD133⁺ subpopulation isolated from hepatic cancer cell lines. It has been demonstrated that ALDH⁺ cells possessed enhanced metastatic capacity and chemotherapeutic drug resistance relative to ALDH counterparts [66]. Chen et al. [67] denoted that FOXM1 stimulates ALDH2 expression via binding to its promoter region and hence affect the expression of Nanog, Oct4, and Sox2 in liver CSCs and lead to the conclusion that silencing FOXM1 suppresses the stemness of hepatic CSCs and stimulate their apoptosis through reducing the expression of ALDH2.

Many studies indicated that Notch pathway may stimulate the survival, proliferation, self-renewal, differentiation, angiogenesis, and migration of CSCs in various malignant tumors [68]. The abnormal motivation of Notch signaling may lead to the generation of many tumors such as glioma and melanoma as well as breast, colon, and cervical cancers [69]. On the contrary, it has been registered that Notch signaling may act as an inhibitor in some tumors, such as forebrain tumor subtypes [70]. The results of the present study demonstrated that CD133⁺EpCAM⁺ cells exhibited greater mRNA levels of NOTCH1, NOTCH2, and NOTCH3 versus CD133 EpCAM cells. Lee and Hong [71] cited that aberrantly elevated Notch signaling was observed in CD133+ cells when compared with CD133⁻ compartments in the HepG2 cell line. Furthermore, Wu and Pan [72] stated that the Notch signaling cascade is implicated in CD133 signaling.

CK is an essential cytoskeletal component responsible for nucleus fixation and maintenance of cell morphology. CK8 and CK18 are substantial protein components of the cytoskeleton [73] that take part in cell movement and division as well as cytoplasmic transport [74]. CK18 is known as an epithelialspecific indicator of the EMT process [75]. A growing body of evidence has suggested their implication in the invasion or expansion of tumors [76] and drug resistance through stimulation of EMT [77]. It has been registered that CK8 and CK18 expression levels may not directly associate with malignant transformation, but they may be altered accompanying with other malignant signals, for example, EMT [78]. Decrease of CK18 has been detected to stimulate EMT and motivate metastasis [79]. Our findings revealed that the isolated CD133⁺EpCAM⁺ cells expressed lower mRNA levels of CK8 and CK18 genes versus CD133⁻EpCAM⁻ cells. Lai et al. [80] registered that of 83 patients with hepatoma, 72.3 and 59.0% had down-regulated expression of CK8 and CK18, respectively.

CYFRA 21-1 is a fragment of CK19 that is typically associated with epithelial cell cancers and is a novel CSC surface marker correlated with EMT and TGFB/

Smad signaling cascade [81]. Furthermore, the PDGFRα-laminin B1-CK19 pathway leads to tumor generation at the invasive front of hepatoma [82]. Rhee et al. [83] denoted that CK19 expression in hepatoma is regulated by fibroblast-derived hepatocyte growth factor via a MET-ERK1/2-AP1 and SP1 axis. CK19⁺ cells exhibited great proliferative capacity and chemotherapy resistance [81,84]. It has been reported that CK19 expression exhibited a great relation with high tumorigenicity, low tumor differentiation capacity, metastasis, and invasion in hepatoma [84,85]. The profiling study of Govaere et al. [84] showed that CK19⁺ hepatoma highly expresses invasion or metastasis-related genes, biliary/HPC markers, and members of the miRNA-200 family. Our data indicated that CD133*EpCAM* cells expressed higher mRNA level of CK19 than CD133⁻EpCAM⁻ cells. This result is in contrary to that of Yoshikawa et al. [86] who mentioned that most CD133+ cells were CK19+. In human hepatoma and CD133⁺ cholangiocarcinoma cell lines, coexpressed CK19 and alpha-fetoprotein. Yamashita et al. [87] denoted that EpCAM-positive hepatoma exhibited an exclusive molecular signature with properties of hepatic progenitor cells and expressed stem/progenitor markers, such as CK19 and c-Kit, whereas EpCAM-negative hepatoma expressed genes associated with features of mature hepatocytes.

It has been reported in a former work that CSC selfrenewal and proliferation are involved in HCC tumorigenesis [88]. Our data clarified that during 10 days of culture the isolated CD133+EpCAM+ cells proliferated rapidly than CD133⁻EpCAM⁻ cells. This finding is on par with that of Nguyen et al. enhanced proliferation The CD133⁺EpCAM⁺ cells than CD133⁻EpCAM⁻ cells could be attributed to the activation of the Notch pathway, which is known to have a substantial role in stem cell proliferation [89].

One of the prime properties of CSCs is a great resistance to chemotherapeutic drugs [90]. In the current study, the sensitivity of CD133-EpCAMcells and isolated CD133+EpCAM+ cells toward different concentrations of doxorubicin was assessed. In accordance with the previous study by Chen et al. [33], our data demonstrated that the isolated CD133*EpCAM* cells were much more resistant to doxorubicin than CD133⁻EpCAM⁻ cells, and this could be related to that CSCs are greatly competent to express drug-resistant proteins, including the ABC transporter. Furthermore, CSCs exhibited greater efficiency for repairing the damage of DNA than normal cancer cells [91]. Chartrain et al. [92] demonstrated that melanoma cells enriched with CSCs after temozolomide treatment displayed elevated expression of ABCB5 channels, which enhanced their anticytotoxic characteristics and stem-like features. Furthermore, in the investigation of Cox and Weinman [93], it has been noted that there are subpopulation of cancer cells able to pump drugs through the ABC transporter Consequently, elevated expression of these transport channels in hepatoma cells is a reason of drug resistance. Moreover, Peetla et al. [94] have proved that membranes of drug-resistant cancer cells have various lipid components versus other cancer cells in the population. This variation makes the resistant cell membrane very flexible by modulating their fluidity, structure, and lipid density. In turn, the combination with different protein components can decrease the drug permeability via the membrane. Moreover, Wang et al. [95] explored the multidrug resistance of side population cells in prostate cancer and registered that the survival rate of side population cells considerably elevated relative to non-side population cells.

Conclusion

Based on the aforementioned data, the current study provides a meaningful evidence for the stemness characteristics of CD133⁺EpCAM⁺-enriched cells as they exemplified the phenotypic features of CSCs in the HepG2 cell line, including self-renewal, proliferation, and tumorigenicity (they exhibited elevated expression of Oct4, Nanog, NOTCH1, NOTCH2, NOTCH3, and CK19 genes) as well as chemoresistance (they experienced higher expression of ALDH1A1 and lower expression of CK8 and CK18 genes). This attempt represents the basic research in the field of CSCs and drug screening.

Acknowledgements

The authors acknowledge the financial support of the Science, Technology, and Innovation Funding Authority (STIFA), formally known as Science and Technology Development Fund (STDF), Egypt [Special targeted call (Health), Grant number 22930].

Financial support and sponsorship

This work is financially supported from the Science, Technology, and Innovation Funding Authority (STIFA), formally known Science as Technology Development Fund (STDF), Egypt [Special targeted call (Health), Grant number 22930].

Conflicts of interest

None declared.

References

- 1. McGlynn KA, Petrick JL, El-Serag HB. Epidemiology of hepatocellular carcinoma. Hepatology 2021; 73(Suppl 1):4-13.
- 2. Rashed WM, Kandeil MAM, Mahmoud MO, Ezzat S. Hepatocellular carcinoma (HCC) in Egypt: a comprehensive overview. J Egypt Natl Canc Inst 2020; 32:5.
- 3. Huang A, Yang XR, Chung WY, Dennison AR, Zhou J. Targeted therapy for hepatocellular carcinoma. Signal Transduct Target Ther 2020; 5:146.
- 4. Craig AJ, von Felden J, Garcia-Lezana T, Sarcognato S, Villanueva A. Tumour evolution in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2020; 17:139-152.
- 5. Yamashita T, Wang XW. Cancer stem cells in the development of liver cancer. J Clin Invest 2013; 123:1911-1918.
- 6. Schatton T, Frank N, Frank M. Identification and targeting of cancer stem cells. Bioessays 2009; 31:1038-1049.
- 7. He G, Dhar D, Nakagawa H, Font-Burgada J, Ogata H, Jiang Y, et al. Identification of liver cancer progenitors whose malignant progression depends on autocrine IL-6 signaling. Cell 2013; 155:384-396.
- 8. Al-Hajj M, Wicha M, Benito-Hernandez A, Morrison S, Clarke M. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci. USA 2003; 100:3983-3988.
- 9. Nguyen S, Nguyen L, Nguyen T, Vo P, Do N, Truong K, et al. Isolation of cancer stem-like cells from hepatocellular carcinoma cell line HepG2 by methods of magnetic-activated cell sorting, spheroid culture, and antitumor drug-resistant selection: a primary evaluation. Progress. Stem Cell 2020: 7:279-289.
- 10. Yang XR, Xu Y, Yu B, Zhou J, Qiu SJ, Shi GM., et al. High expression levels of putative hepatic stem/progenitor cell biomarkers related to tumour angiogenesis and poor prognosis of hepatocellular carcinoma. Gut 2010; 59:953–962.
- 11. Miltiadous O, Sia D, Hoshida Y, Fiel MI, Harrington AN, Thung SN, et al. Progenitor cell markers predict outcome of patients with hepatocellular carcinoma beyond Milan criteria undergoing liver transplantation. J Hepatol 2015; 63:1368-1377.
- 12. Huber MA, Azoitei N, Baumann B, Grunert S, Sommer A, Pehamberger H, et al. NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Investig 2004;
- 13. Nomura A, Gupta VK, Dauer P, Sharma NS, Dudeja V, Merchant N, et al. NFkappaB-mediated invasiveness in CD133(+) pancreatic TICs is regulated by autocrine and paracrine activation of IL1 signaling. Mol Cancer Res 2018; 16:162-172.
- 14. Mizrak D, Brittan M, Alison M. CD133: molecule of the moment. J Pathol
- 15. Zhang J, Luo N, Luo Y, Peng Z, Zhang T, Li S. MicroRNA-150 inhibits human CD133-positive liver cancer stem cells through negative regulation of the transcription factor c-Myb. Int J Oncol 2012; 40:747-756.
- 16. Fang D, Kim Y, Lee C, Aggarwal S, McKinnon K, Mesmer D, et al. Expansion of CD133+ colon cancer cultures retaining stem cell properties to enable cancer stem cell target discovery. Br J Cancer 2010: 102:1265-1275.
- 17. Sheng X, Li Z, Wang DL, Li WB, Luo Z, Chen KH, et al. Isolation and enrichment of PC-3 prostate cancer stem-like cells using MACS and serum-free medium. Oncol Lett 2013; 5:787-792.
- 18. Wang J, Wu Y, Gao W, Li F, Bo Y, Zhu M, et al. Identification and characterization of CD133+ CD44+ cancer stem cells from human laryngeal squamous cell carcinoma cell lines. J Cancer 2017; 8:497.
- 19. Salnikov AV, Kusumawidjaja G, Rausch V, Bruns H, Gross W, Khamidjanov A, et al. Cancer stem cell marker expression in hepatocellular carcinoma and liver metastases is not sufficient as single prognostic parameter. Cancer Lett 2009; 275:185-193.
- 20. Yamashita T, Ji J, Budhu A, Forgues M, Yang W, Wang HY, et al. EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells stem/progenitor cell features. Gastroenterology 136:1012-1024.
- 21. Li Y, Farmer RW, Yang Y, Martin RC. Epithelial cell adhesion molecule in human hepatocellular carcinoma cell lines: a target of chemoresistence. BMC Cancer 2016; 16:228.

- 22. Xia H, Cao J, Li Q, Lv Y, Jia W, Ren W, et al. Hepatocellular carcinomapropagating cells are detectable by side population analysis and possess an expression profile reflective of a primitive origin. Sci Rep 2016; 6:34856.
- 23. Ma S, Chan KW, Hu L, Lee TK, Wo JY, Ng IO, et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 2007; 132:2542-2556.
- 24. Wang YF, Li T, Tang ZH, Chang LL, Zhu H, Chen XP, et al. Baicalein triggers autophagy and inhibits the protein kinase b/mammalian target of rapamycin pathway in hepatocellular carcinoma HepG2 Cells. Phytother Res 2015; 29:674-679.
- 25. Asadi MH, Khalifeh K, Mowla SJ. OCT4 spliced variants are highly expressed in brain cancer tissues and inhibition of OCT4B1 causes G2/ M arrest in brain cancer cells. J Neurooncol 2016: 130:455-463.
- 26. Ambady S. Malcuit C. Kashpur O. Kole D. Holmes WF. Hedblom E. et al. Expression of NANOG and NANOGP8 in a variety of undifferentiated and differentiated human cells. Int J Dev Biol 2010; 54:1743-1754.
- 27. Gangavarapu KJ, Miller A, Huss WJ. Gene expression in single cells isolated from the CWR-R1 prostate cancer cell line and human prostate tissue based on the side population phenotype. Single Cell Biol 2016;
- 28. Xiao W, Gao Z, Duan Y, Yuan W, Ke Y. Notch signaling plays a crucial role in cancer stem-like cells maintaining stemness and mediating chemotaxis in renal cell carcinoma. J Exp Clin Cancer Res 2017; 36:41.
- 29. Li J, Xin J, Zhang L, Wu J, Jiang L, Zhou Q, et al. Human hepatic progenitor cells express hematopoietic cell markers CD45 and CD109. Int J Med Sci 2013: 11:65-79.
- 30. Song Y, Tian Y, Zuo Y, Tu JC, Feng YF, Qu CJ. Altered expression of PTCH and HHIP in gastric cancer through their gene promoter methylation: Novel targets for gastric cancer. Mol Med Rep 2013; 7:1159-1168.
- 31. vanMeerloo J, Kaspers GJ, Cloos J. Cell sensitivity assays: the MTT assay. Methods Mol Biol 2011; 731:237-245.
- 32. Li J, Yu Y, Wang J, Yan Z, Liu H, Wang Y, et al. Establishment of a novel system for the culture and expansion of hepatic stem-like cancer cells. Cancer Lett 2015; 360:177-186.
- 33. Chen Y, Yu D, Zhang H, He H, Zhang C, Zhao W, et al. CD133⁺EpCAM⁺ phenotype possesses more characteristics of tumor initiating cells in hepatocellular carcinoma Huh7 cells. Int J Biol Sci 2012; 8:992-1004.
- 34. Feng Y, Guo X, Huang X, Wu M, Li X, Wu S, et al. Metformin reverses stem cell-like HepG2 sphere formation and resistance to sorafenib by attenuating epithelial-mesenchymal transformation. Mol Med Rep 2018; 18:3866-3872.
- 35. Suetsugu A, Nagaki M, Aoki H, Motohashi T, Kunisada T, Moriwaki H. Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun 2006; 351.820-824
- 36. Liu YM, Li XF, Liu H, Wu XL. Ultrasound-targeted microbubble destructionmediated downregulation of CD133 inhibits epithelial-mesenchymal transition, stemness and migratory ability of liver cancer stem cells. Oncol Rep 2015; 34:2977-2986.
- 37. Tang KH, Ma S, Lee TK, Chan YP, Kwan PS, Tong CM, et al. CD133(+) liver tumor-initiating cells promote tumor angiogenesis, growth, and selfrenewal through neurotensin/interleukin-8/CXCL1 signaling. Hepatology 2012; 55:807-820.
- 38. Li J, Chen JN, Zeng TT, He F, Chen SP, Ma S, et al. CD133⁺ liver cancer stem cells resist interferon-gamma-induced autophagy. BMC Cancer
- 39. Piao LS, Hur W, Kim TK, Hong SW, Kim SW, Choi JE, et al. CD133+ liver cancer stem cells modulate radioresistance in human hepatocellular carcinoma. Cancer Lett 2012; 315:129-137.
- 40. Rountree CB, Ding W, He L, Stiles B. Expansion of CD133-expressing liver cancer stem cells in liver-specific phosphatase and tensin homolog deleted on chromosome 10-deleted mice. Stem Cells 2009; 27:290-299.
- 41. Schmelzer E, Reid LM. EpCAM expression in normal, non-pathological tissues. Front Biosci 2008: 13:3096-3100.
- 42. Mu H, Lin KX, Zhao H, Xing S, Li C, Liu F, et al. Identification of biomarkers for hepatocellular carcinoma by semiquantitative immunocytochemistry. World J Gastroenterol 2014; 20:5826-5838.
- 43. Ji J, Zheng X, Forgues M, Yamashita T, Wauthier EL, Reid LM, et al. Identification of microRNAs specific for epithelial cell adhesion moleculepositive tumor cells in hepatocellular carcinoma. Hepatology 2015; 62:829-840.
- 44. Xia H, Ooi LL, Hui KM. MicroRNA-216a/217-induced epithelialmesenchymal transition targets PTEN and SMAD7 to promote drug resistance and recurrence of liver cancer. Hepatology 2013; 58:629-641.

- 45. Ji J, Wang XW. Clinical implications of cancer stem cell biology in hepatocellular carcinoma. Semin Oncol 2012; 39:461-472.
- 46. Hashida H, Takabayashi A, Kanai M, Adachi M, Kondo K, Kohno N, et al. Aminopeptidase N is involved in cell motility and angiogenesis: its clinical significance in human colon cancer. Gastroenterology 2002; 122:376-386.
- 47. Haraguchi N, Ishii H, Mimori K, Tanaka F, Ohkuma M, Kim HM., et al. CD13 is a therapeutic target in human liver cancer stem cells. J Clin Invest 2010; 120:3326-3339
- 48. Lee TK, Castilho A, Cheung VC, Tang KH, Ma S, Ng IO. CD24(+) liver tumor-initiating cells drive self-renewal and tumor initiation through STAT3mediated NANOG regulation. Cell Stem Cell. 2011; 9:50-63.
- 49. Duncan AW, Dorrell C, Grompe M. Stem cells and liver regeneration. Gastroenterology 2009; 137:466-481.
- 50. Zeng C, Zhang Y, Park SC, Eun JR, Nguyen NT, Tschudy-Seney B, et al. CD34(+) liver cancer stem cells were formed by fusion of hepatobiliary stem/progenitor cells with hematopoietic precursor-derived myeloid intermediates. Stem Cells Dev 2015; 24:2467-2478.
- 51. Park SC, Nguyen NT, Eun JR, Zhang Y, Jung YJ, Tschudy-Seney B, et al. Identification of cancer stem cell subpopulations of CD34⁺ PLC/PRF/5 that result in three types of human liver carcinomas. Stem Cells Dev 2015; 24:1008-1021.
- 52. Zhu Z, Hao X, Yan M, Yao M, Ge C, Gu J, et al. Cancer stem/progenitor cells are highly enriched in CD133+CD44+ population in hepatocellular carcinoma. Int J Cancer 2010; 126:2067-2078.
- 53. Yang ZF, Ho DW, Ng MN, Lau CK, Yu WC, Ngai P, et al. Significance of CD90(+) cancer stem cells in human liver cancer. Cancer Cell 2008; 13:153-166.
- 54. Cho RW, Wang X, Diehn M, Shedden K, Chen GY, Sherlock G, et al. Isolation and molecular characterization of cancer stem cells in MMTV-Wnt-1 murine breast tumors. Stem Cells 2008; 26:364-371.
- 55. Yang ZF, Ngai P, Ho DW, Yu WC, Ng MN, Lau CK, et al. Identification of local and circulating cancer stem cells in human liver cancer. Hepatology 2008; 47:919-928.
- 56. Wang XQ, Ongkeko WM, Chen L, Yang ZF, Lu P, Chen KK, et al. Octamer 4 (Oct4) mediates chemotherapeutic drug resistance in liver cancer cells through a potential Oct4-AKT-ATP-binding cassette G2 pathway. Hepatology 2010; 52:528-539.
- 57. Li J. Zhu Y. Recent advances in liver cancer stem cells; non-coding RNAs. oncogenes and oncoproteins. Front Cell Dev Biol 2020; 8:548335.
- 58. Kashyap V, Rezende NC, Scotland KB, Shaffer SM, Persson JL, Gudas LJ, et al. Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the NANOG, OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell microRNAs. Stem Cells Dev 2009: 18:1093-1108.
- **59.** Lee-Theilen M, Hadhoud JR, Volante G, Fadini DD, Eichhorn J, Rolle U, et al. Co-Expression of CD34, CD90, OV-6 and cell-surface vimentin defines cancer stem cells of hepatoblastoma, which are affected by Hsp90 inhibitor 17-AAG. Cells 2021; 10:2598.
- 60. Jia Q, Zhang X, Deng T, Gao J. Positive correlation of Oct4 and ABCG2 to chemotherapeutic resistance in CD90(+)CD133(+) liver cancer stem cells. Cell Reprogram 2013; 15:143-150.
- 61. Yin X, Zhang BH, Zheng SS, Gao DM, Qiu SJ, Wu WZ, et al. Coexpression of gene Oct4 and Nanog initiates stem cell characteristics in hepatocellular carcinoma and promotes epithelial-mesenchymal transition through activation of Stat3/Snail signaling. J Hematol Oncol 2015: 8:23.
- 62. Marcato P, Dean CA, Giacomantonio CA, Lee PW. Aldehyde dehydrogenase: its role as a cancer stem cell marker comes down to the specific isoform. Cell Cycle 2011; 10:1378-1384.
- 63. Koppaka V, Thompson DC, Chen Y, Ellermann M, Nicolaou KC, Juvonen RO, et al. Aldehyde dehydrogenase inhibitors: a comprehensive review of the pharmacology, mechanism of action, substrate specificity, and clinical application. Pharmacol Rev 2012; 64:520-539.
- 64. Marchitti SA, Brocker C, Stagos D, Vasiliou V. Non-P450 aldehyde oxidizing enzymes: the aldehyde dehydrogenase superfamily. Expert Opin Drug Metab Toxicol 2008; 4:697-720.
- 65. Ma S, Chan KW, Lee TK, Tang KH, Wo JY, Zheng BJ, et al. Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations. Mol Cancer Res 2008; 6:1146-1153.
- 66. Moreb JS. Aldehyde dehydrogenase as a marker for stem cells. Curr Stem Cell Res Ther 2008; 3:237-246.
- 67. Chen L, Wu M, Ji C, Yuan M, Liu C, Yin Q. Silencing transcription factor FOXM1 represses proliferation, migration, and invasion while inducing

- 88
- apoptosis of liver cancer stem cells by regulating the expression of ALDH2. IUBMB Life 2020; 72:285-295.
- Wang J, Sullenger BA, Rich JN. Notch signaling in cancer stem cells. Adv Exp Med Biol 2012; 727:174–185.
- Sjolund J, Manetopoulos C, Stockhausen MT, Axelson H. The notch pathway in cancer: differentiation gone away. Eur J Cancer 2005; 41:2620–2629.
- Giachino C, Boulay JL, Ivanek R, Alvarado A, Tostado C, Lugert S, et al. A tumor suppressor function for notch signaling in forebrain tumor subtypes. Cancer Cell 2015; 28:730–742.
- Lee HY, Hong IS. Targeting liver cancer stem cells: an alternative therapeutic approach for liver cancer. Cancers (Basel) 2020; 12:2746.
- Wu D, Pan W. GSK3: a multifaceted kinase in Wnt signaling. Trends Biochem Sci 2010: 35:161168.
- Omary MB, Coulombe PA, McLean WH. Intermediate filament proteins and their associated diseases. N Engl J Med 2004; 351:20872100.
- 74. Fukunaga Y, Bandoh S, Fujita J, Yang Y, Ueda Y, Hojo S, et al. Expression of cytokeratin 8 in lung cancer cell lines and measurement of serum cytokeratin 8 in lung cancer patients. Lung Cancer 2002; 38:31–38.
- Jung H, Kim B, Moon BI, Oh ES. Cytokeratin 18 is necessary for initiation of TGF-β1-induced epithelial-mesenchymal transition in breast epithelial cells. Mol Cell Biochem 2016; 423:21–28.
- Raul U, Sawant S, Dange P, Kalraiya R, Ingle A, Vaidya M. Implications of cytokeratin 8/18 filament formation in stratified epithelial cells: induction of transformed phenotype. Int J Cancer 2004; 111:662–668.
- Ma Y, Ding Z, Qian Y, Wan YW, Tosun K, Shi X, et al. An integrative genomic and proteomic approach to chemosensitivity prediction. Int J Oncol 2009; 34:107–115.
- Knosel T, Emde V, Schluns K, Schlag PM, Dietel M, Petersen I. Cytokeratin profiles identify diagnostic signatures in colorectal cancer using multiplex analysis of tissue microarrays. Cell Oncol 2006; 28:167–175.
- Luan Y, Chao S, Ju ZY, Wang J, Xue X, Qi TG, et al. Therapeutic effects of baicalin on monocrotaline-induced pulmonary arterial hypertension by inhibiting inflammatoryresponse. Int Immunopharmacol 2015; 26:188–193.
- 80. Lai YS, Cheng CC, Lee MT, Chao WT, Lai YC, Hsu YH, et al. The prognostic value of cytokeratin and sal-like protein 4 expression in hepatocellular carcinoma and intra-hepatic cholangiocarcinoma in Taiwan, Int J Med Sci 2018: 15:1746–1756.
- 81. Kawai T, Yasuchika K, Ishii T, Katayama H, Yoshitoshi EY, Ogiso S, et al. Keratin 19, a cancer stem cell marker in human hepatocellular carcinoma. Clin Cancer Res 2015; 21:3081–3091.

- 82. Govaere O, Petz M, Wouters J, Vandewynckel YP, Scott EJ, Topal B, et al. The PDGFRα-laminin B1-keratin 19 cascade drives tumor progression at the invasive front of human hepatocellular carcinoma. Oncogene 2017; 36:6605–6616.
- 83. Rhee H, Kim HY, Choi JH, Woo HG, Yoo JE, Nahm JH, et al. Keratin 19 expression in hepatocellular carcinoma is regulated by fibroblast-derived HGF via a MET-ERK1/2-AP1 and SP1 axis. Cancer Res 2018; 78:1619–1631.
- 84. Govaere O, Komuta M, Berkers J, Spee B, Janssen C, de Luca F, et al. Keratin 19: a key role player in the invasion of human hepatocellular carcinomas. Gut 2014; 63:674–685.
- **85.** Fatourou E, Koskinas J, Karandrea D, Palaiologou M, Syminelaki T, Karanikolas M, *et al.* Keratin 19 protein expression is an independent predictor of survival in human hepatocellular carcinoma. Eur J Gastroenterol Hepatol 2015; 27:1094–1102.
- 86. Yoshikawa S, Zen Y, Fujii T, Sato Y, Ohta T, Aoyagi Y, et al. Characterization of CD133* parenchymal cells in the liver: histology and culture. World J Gastroenterol 2009; 15:4896–4906.
- **87.** Yamashita T, Forgues M, Wang W, Kim JW, Ye Q, Jia H, *et al.* EpCAM and alpha-fetoprotein expression defines novel prognostic subtypes of hepatocellular carcinoma. Cancer Res 2008; 68:1451–1461.
- 88. Wu Y, Zhang J, Zhang X, Zhou H, Liu G, Li Q. Cancer stem cells: a potential breakthrough in HCC-targeted therapy. Front Pharmacol 2020; 11:198.
- Hassan KA, Wang L, Korkaya H, Chen G, Maillard I, Beer DG, et al. Notch pathway activity identifies cells with cancer stem cell-like properties and correlates with worse survival in lung adenocarcinoma. Clin Cancer Res 2013; 19:1972–1980.
- 90. Yi H, Cho HJ, Cho SM, Jo K, Park JA, Lee SH, et al. Effect of 5-FU and MTX on the expression of drug-resistance related cancer stem cell markers in non-small cell lung cancer cells. Korean J Physiol Pharmacol 2012; 16:11–16.
- **91.** Singh A, Settleman J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 2010; 29:4741–4751.
- 92. Chartrain M, Riond J, Stennevin A, Vandenberghe I, Gomes B, Lamant L, et al. Melanoma chemotherapy leads to the selection of ABCB5-expressing cells. PLoS ONE 2012; 7:e36762.
- **93.** Cox J, Weinman S. Mechanisms of doxorubicin resistance in hepatocellular carcinoma. Hepat Oncol 2016: 3:57–59.
- 94. Peetla C, Vijayaraghavalu S, Labhasetwar V. Biophysics of cell membrane lipids in cancer drug resistance: implications for drug transport and drug delivery with nanoparticles. Adv Drug Deliv Rev 2013; 65:1686–1698.
- Wang Y, Tian H, Yang T, Liu L. Isolation and characterization of multidrugresistant side population cells in prostate carcinoma. Trop J Pharm Res 2016: 15:2357–2363.