Original article Child Health 89

Estimated glomerular filtration rate and blood pressure in a sample of obese Egyptian adolescents

Azza Abd El-Shaheed^a, Rehab S.I. Moustafa^a, Sara F. Sallam^a, Nermine N. Mahfouz^a, Salwa R. El-Zayat^b, Hiba Sibaii^b, Mahitab I. El-Kassaby^b, Hagar H. Mourad^b

Departments of ^aChild Health, ^bMedical Physiology, Medical Research and Clinical Studies Institute, Medical Research Centre of Excellence (MRCE), National Research Centre, Cairo, Egypt

Correspondence to Rehab S.I. Moustafa, PhD, Department of Child Health, National Research Centre, Dokki, Cairo 12622, Egypt. e-mail: rehabselim2005@hotmail.com

Received: 29 January 2022 Revised: 31 March 2022 Accepted: 13 April 2022 Published: 4 July 2022

Journal of The Arab Society for Medical

Research 2022, 17:89-95

Background/aim

Obesity is a major risk factor for some comorbid conditions. Our goal was to study the relationship between obesity and kidney function in adolescents using estimated glomerular filtration rate (eGFR) as well as to study blood pressure (BP) in obese adolescents.

Patients and methods

This study included 45 male and female adolescents who visited the Child Health Clinic at the NRC, Egypt, with BMI more than or equal to 85th centile and aged 10–18 years old, and 45 age-matched and sex-matched healthy controls with BMI less than 85th centile. Serum creatinine as determined by the spectrophotometric method, the estimated glomerular filtration calculated using the revised Schwartz formula, and BP were compared between the studied groups.

Results

The results indicated that serum creatinine and BP were significantly higher in obese patients than healthy control group (P<0.05). In contrast, the eGFR was lower in the obese patients than in the control group (P<0.05). In obese adolescents, there were negative correlations between eGFR and systolic BP, diastolic BP, creatinine, and BMI (P<0.05). In addition, there were positive correlations between BMI and each of systolic and diastolic BP (P<0.01).

Conclusions

Obese adolescents exhibited lower eGFR estimations, slightly increased serum creatinine, and elevated BP results, being compatible with some degree of renal impairment. Therefore, BP and renal function should be routinely checked in obese adolescents.

Keywords:

blood pressure, creatinine, estimated glomerular filtration rate, obesity

J Arab Soc Med Res 17:89–95 © 2022 Journal of The Arab Society for Medical Research 1687-4293

Introduction

Obesity and chronic kidney disease (CKD) are two public health problems that have been increasing worldwide. In the United States, it is estimated that one-third of adults are overweight and one-third are obese [1]. In Egypt, the percentage of overweight children aged 5–19 years old was 35% in males and 36.4% in females, whereas that of obesity was 10.5 and 9.5%, respectively, according to the Egypt Demographic and Health Survey in 2014 [2].

It has been pointed out that obesity may be a potential cause or even a risk factor for the development of renal disease in elderly as well as pediatric age group [3].

Obesity-induced derangements that are nephrotoxic may be an explanation in trying to link these two health problems. One of these derangements is adipose tissue producing some adipokines such as leptin, adiponectin, tumor necrosis factor- α , angiotensin-II, transforming growth factor- β , and monocyte chemoattractant protein-1 [4].

Furthermore, obesity can promote renal dysfunction and end-stage renal disease by triggering processes such as insulin resistance, glucose intolerance, hyperlipidemia, atherosclerosis, and hypertension [5].

CKD is an increasing global public health problem that may affect people's quality of life negatively, especially in their early productive years [6]. Studies in general pediatrics and findings regarding differences in glomerular filtration rate (GFR) in normal weight and obese children have been somewhat

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

contradictory, where some found high GFR in obese caused by hyperfiltration whereas other studies reported opposite results or no differences at all [7,8].

It is difficult to assess kidney function in children in general and to what degree the kidneys contribute in the metabolic group of disorders that arise with the advent of obesity at these young ages. On the contrary, as external, precise, but invasive, methods cannot be applied to healthy children, we can count on estimated glomerular filtration rate (eGFR) formulas. This study aimed to compare kidney function, assessed by serum creatinine and eGFR, and blood pressure (BP) between the studied obese and control groups.

Patients and methods

Patients and study design

The present study enrolled 45 adolescents who visited the Child Health Clinic at Medical Research Center of Excellence (MRCE), National Research Center, Dokki, Cairo, Egypt. All cases had BMI above or equal to 85th centile (obese group). In addition, 45 adolescents, age and sex matched, with BMI below 85th centile, served as the control group (nonobese group). Inclusion criteria were adolescents of both sexes aged 10–18 years old. The exclusion criteria were chronic illnesses and endocrine problems to avoid secondary causes of hypertension and obesity.

Ethical considerations

The present study was conducted with the Code of Ethics of the World Medical Association, according to the principles expressed in the Declaration of Helsinki. This study was approved by the local Medical Ethical Committee of the National Research Center with approval number 16/130. A written informed consent was provided by all children and their parents before their inclusion in the study.

Methods

An anonymous self-administered questionnaire meeting the objective of the study was used to collect the data. After the questionnaire was completed, sociodemographic characteristics, height, weight, and BP were assessed by a trained medical professional. Height and weight were taken to the nearest 0.1 cm and 100 g using the Holtain portable measuring device and a digital Seca scale while the participants were barefooted and wearing minimal clothing. Before the examination, the scale was calibrated. At least two physicians conducted each of these measurements; one took the measurements and the other documented the results. It was decided to

take the average of the two measurements. BMI calculation was done using the following formula: weight (kg)/height (m)², and values were compared with the WHO growth charts through the software AnthroCalc v1.66 Home, where normal represented 5–84th percentile and overweight and obese represented more than or equal to 95th percentile [9].

The studied groups were classified with the same cutoff point used by Mahfouz Nermine *et al.* [10] in their study about body weight concern into a case group with a BMI more than or equal to 85th centile and a control group with a BMI less than 85th centile.

BPs were taken using a mercury sphygmomanometer of Diamond Mercurial BP apparatus. The BPs were taken at a regular state of health after excluding factors that may affect the readings, such as fear and anxiety, by giving a 10-min rest while talking with the child. BP was measured on the right arm with support at heart level for consistency and compared with standard tables with the child in sitting posture with back supported chair and foot touching the ground. An appropriately sized bladder cuff was used, with a width of 10 cm and a length of 24 cm for adolescents with an arm circumference less than or equal to 26 cm, whereas 13-cm width and 30cm length for adolescents over 26 cm in arm circumference. The cuff should span two-thirds of the arm's circumference, with the lower edge 2.5 cm above the cubital fossa, as per the WHO guidelines, and according to Flynn et al. [11].

Laboratory procedures

Venous blood samples were collected, and serum was separated and kept at -20°C till analyzed. The compensated Jaffé calibrated to an isotope dilution mass spectrometry technique was used to determine serum creatinine levels using an Olympus AU 5400 analyzer (Beckman-Coulter, Brea, California, USA) [12]. The following formulae were used to calculate eGFR:

eGFR [ml/min/1.73 m²=k×height (cm)÷serum creatinine (mg/dl)], with a k constant of 0.413 in the revised Schwartz formula (Schwartz-R) [13].

Statistical analysis

The Statistical Package for the Social Sciences (SPSS Statistics for Windows, Version 21, Chicago: SPSS Inc.), version 21.0 was used. The normally distributed data were represented as mean and SD, and variables were subjected to the independent t test. Pearson

correlation was used for exhibited the different correlation between the estimated parameters. Statistical significance was defined at P value less than 0.05.

Results

Detailed anthropometric data are shown as mean and SD in Table 1. The average age of the participants was 13.05±2.61 and 12.62±2.6 years for obese and nonobese groups, respectively. Obese children showed a significant increase in weight (73.41±18.26 vs. 37.39±10.68), weight centile (96.26±4.80 vs. 27.43 ±25.05), height centile (51.50±28.89 vs. 32.60±28.74), BMI (30.55±5.61 vs. 17.22±2.71), and BMI centile (98.30±2.68 vs. 34.40±28.16) as compared with their control counterparts, whereas no difference in height was observed.

BP levels were significantly higher in the obese group, where systolic BP was 107.56±11.13 in cases versus 97.63 ± 7.84 in controls, with P value of 0.001, and diastolic was 68.66±9.88 in cases versus 62.88±5.98 in controls, with P value of 0.002, as shown in Table 2.

The data shown in Table 3 reported a significant increase in serum creatinine levels in obese adolescents (0.94±0.23) than control healthy group (0.79 ± 0.21) , with P value of 0.007, whereas a significant decrease in eGFR was reported when estimated by the Schwartz-R formula (73.10±22.33 vs. 85.30±32.25, with *P*=0.048).

The present study showed statistically significant negative correlations between eGFR and each of

Table 1. Anthropometric data of obese and nonobese groups of adolescents

Parameters	Obese group BMI ≥85th percentile	Nonobese group BMI <85th percentile	P value
Age (years)	13.05±2.61	12.62±2.60	0.100
Weight (kg)	73.41±18.26	37.39±10.68	0.001*
Weight centile	96.26±4.80	27.43±25.05	0.0001*
Height (cm)	154.16±10.65	146.05±13.04	0.160
Height centile	51.50±28.89	32.60±28.74	0.001*
BMI	30.55±5.61	17.22±2.71	0.01*
BMI centile	98.30±2.68	34.40±28.16	0.002*

All data are expressed as mean±SD.

systolic BP, diastolic BP, creatinine, and BMI, where r=-0.317, -0.378, -0.127, and -0.868, respectively, at P value less than 0.05 in obese adolescents, as shown in Table 4.

The data reported in Table 5 showed highly significant positive correlations between BMI and each of systolic BP and diastolic BP (r=0.45 and 0.41, respectively, at P<0.01) in obese adolescents.

Discussion

Obesity-related renal impairment in children and adolescents is still a controversial topic, and contradictory results continue to emerge. Some researchers discovered that hyperfiltration develops as a result of the kidneys' physiological adaptation to increased body mass [14].

Table 2. Comparisons of blood pressure in obese and nonobese groups of adolescents

	Obese group	Nonobese group	P value
Systolic BP (mmHg)	107.56±11.13	97.63±7.84	0.001*
Diastolic BP (mmHg)	68.66±9.88	62.88±5.98	0.002*

All data are expressed as mean±SD.

BP, blood pressure.

*Significant difference between two groups at P value less than 0.05 using t test.

Table 3. Comparison between renal function markers in obese and nonobese groups of adolescents

	Obese group	Nonobese group	P value
Serum creatinine (mg/dl)	0.94±0.23	0.79±0.21	0.007*
eGFR Schwartz-R (ml/min/ 1.73 m ²)	73.10 ±22.33	85.30±32.25	0.048*

All data are expressed as Mean±SD.

eGFR, estimated glomerular filtration rate.

Table 4. Correlation coefficient between estimated glomerular filtration rate and different parameters in obese and nonobese

	Obese group		Nonobese group	
	r	P	r	Р
Systolic BP (mmHg)	-0.317*	0.043	-0.132	503
Diastolic BP (mmHg)	-0.378*	0.015	-0.103	602
Serum creatinine(mg/dl)	-0.127	0.447	0.439^{*}	0.012
BMI	-0.868**	0.000	-0.191	0.295

BP, blood pressure.

^{*}Significant difference between two groups at P value less than 0.05 using t test.

^{*}Significant difference between two groups at P value less than 0.05 using t test.

^{*}Significant correlation at P value less than 0.05.

^{**}Highly significant correlation at P value less than 0.01.

92

Table 5. Correlation coefficient between BMI and different parameters in obese and nonobese groups

	Obese group		Nonobese	
	r	Р	group r	Р
Systolic BP (mmHg)	0.456**	0.003	0.229	0.166
Diastolic BP (mmHg)	0.415**	0.007	0.053	0.752
Serum creatinine (mg/dl)	-0.047	0.78	0.302	0.093
eGFR Schwartz-R (ml/min/ 1.73 m2)	-0.868**	0.000	-0.191	0.295

BP, blood pressure; eGFR, estimated glomerular filtration rate. **Highly significant correlation at *P* value less than 0.01.

Significant positive correlations were found in this study between kidney function presented by serum creatinine and BMI, where obese adolescents showed significantly higher values of serum creatinine and lower levels of eGFR.

Some authors have reported that pre-pubertal children who are overweight or obese do indeed show a significant decrease in eGFR [15].

Some researchers consistently found substantial positive associations between obesity measurements and renal eGFR [16]. On the contrary, others found no significant differences in variations in levels of GFR between obese and nonobese children [17].

In this study, we found that obesity was associated with decreased kidney function presented by serum creatinine. Likewise, in some studies, authors have found decreased renal function in obese children [18]. In a study done in the United States, although levels of eGFR were found to be significantly lower in obese group, they concluded that obesity had no significant role in altering the eGFR [19].

In this study, we found a statistically significant inverse relationship between eGFR and BMI, implying that those with a high BMI had renal affection. This goes along with two studies reported by He *et al.* [20] and Dada *et al.* [21]. On the contrary, other studies demonstrated a lack of association between BMI and GFR [22].

Several studies in the pediatric age have demonstrated that eGFR formulas are trustworthy methods for assessing renal function, but the accuracy of creatinine clearance is rarely reported and also due to the lengthy and inaccuracy of the 24-h urine collection method that may affect creatinine clearance together with tubular secretion of creatinine, which may rise

eGFR. A valid alternative is the revised Schwartz formula (Schwartz-R) using serum creatinine to estimate eGFR in nonoverweight and overweight/ obese adolescents [23].

There are various possible mechanisms through which obesity can lead to kidney injury in pediatric age, one of which is that obesity leads to a series of structural, dynamic, and biochemical changes that contribute to kidney injury and which is believed to start with a state of excessive filtration, which later strengthens the progressive damage, with increased protein loss and final stage of glomerular hyperplasia and fibrous scarring [24].

Obesity is also associated with low-grade chronic inflammation, which is typically different in the presentation from normal inflammation but is much the same in that it shares disruptions resulting from typical inflammatory mediators [25]. In inflammatory conditions associated with obesity, the increased size of adipocytes plays a crucial role, because the more adipose tissue increases, the adipocyte production increases, and this leads to a spectrum of pathophysiological processes associated with inflammation [26].

Adipose tissue is more than just a fat reservoir; it is also a dynamic tissue that contributes in the production of 'adipokines' such as adiponectin, leptin, angiotensin-II, and tumor necrosis factor- α , which is also called inflammatory cytokines [4].

Obesity also triggers a cascade of events that include insulin resistance, glucose intolerance, hyperlipidemia, and atherosclerosis and high BP, all of which are associated with an increased risk of developing cardiovascular disease. The relationship between CKD and dyslipidemia may be due to insulin resistance to action which reduces the activity of lipoprotein lipase [5].

In our study, we reported that BP is higher in the obese group and that both systolic and diastolic values were elevated which is consistent with some studies such as Koebnick *et al.* [27] who found 2.1% higher prevalence of hypertension in overweight adolescents than those with normal body weight aged 12–19 years. Other studies also showed that the chances of developing high BP are lower in overweight adolescents compared with obese adolescents and significantly much higher when compared with normal-weight individuals [28–31].

It is worth to say that the attribution of high BP caused by excess weight is greater during adolescence than in childhood as a study reported overweight and obesity account for only 5 and 9% of hypertension, respectively, in females and males children aged 5-6 years of age [32]. Chiolero et al. [33] reported that the attributable fraction of hypertension for both overweight and obesity was highest among adolescents aged 12-13 years (attributable fraction=39%).

It is estimated that BP increases by 10 mmHg in systole and by 3 mmHg in diastole with every decimal point increase in BMI. These fundamental differences would have a significant effect on CVD risk if it persisted into adulthood [34].

In the past few decades, the prevalence of systemic hypertension among adolescents has been well documented at ~3.5%. Obese adolescent males had a prevalence of more than 30%, whereas obese adolescent females had a prevalence of 23-30% [35].

In a study done on 1618 children aged 12-16 years, systolic hypertension and diastolic hypertension were found to be prevalent in 12 and 13.7%, respectively, with a higher prevalence of obesity (45.5%) among them than the estimated prevalence among all of the studied children (18%) [36].

In children and adolescents with normal body weight, there is a consistent positive relationship of weight with BP during children's growth and development [37]. Studies showed that elevated BMI is associated with higher BP in the future and the risk increased with severity of obesity where severe obesity (BMI >99th percentile) is associated with a fourfold rise in the prevalence of elevated BP, compared with merely a twofold increase in individuals with obesity (BMI 95th-98th percentiles) [38].

Obesity results in increased renal tubular sodium absorption, which impairs internal pressure and leads to volume expansion as a result of sympathetic nervous system and renin-angiotensin-aldosterone system activation [39].

A crucial event in the development of systemic hypertension in obesity is an increase in sodium reabsorption and the resulting rise in extracellular volume. Furthermore, if glomerular hyperfiltration, insulin resistance, diabetes mellitus, and systemic hypertension coexist, there is an increase in renal blood flow and GFR, which eventually lead to renal damage and a decrease in GFR [40]. Sympathetic

nervous system activation in obesity may be caused by different factors such as increased levels of fatty acid, increased levels of angiotensin-II, hyperinsulinemia, and hyperleptinemia. This sympathetic nervous system activation together with increase in leptin levels increases systemic BP through nitric oxide synthesis inhibition (potent vasodilator) [41].

Visceral obesity with increased visceral fat and accumulation of visceral adipose tissue leads to renal compression that increases the hydrostatic pressure of the interstitial fluid and increases intrarenal pressure. Increased intrarenal pressure compresses loop of Henle reducing fluids flow through renal tubules, which consequently leads to sodium reabsorption [42].

In cases of 'overnutrition,' the supply of fatty acid to the tissues exceeds the metabolic demands resulting in a compensatory increase in oxidation. Increased fatty acid metabolism results in the production of harmful substances such as lipid peroxidation products, which promote apoptosis and fibrosis in nonadipose tissues such as myocardium, pancreatic islets, skeletal muscle, and the kidneys, and this is called 'lipotoxicity' [40].

There is evidence that the type of glomerulonephritis associated with obesity is focal and segmental glomerulosclerosis, presenting firstly with increase in albumin excretion, which gradually increases with the severity of obesity and can lead to nephrotic syndrome and progressive loss of kidney function [43].

Conclusion

To sum up, we reported that overweight and obese adolescents at the age of 12–18 years already present significantly higher values of serum creatinine and lower levels of eGFR, indicating a certain degree of renal involvement in the complex network of obesityrelated adverse effects. Our results also showed that BP was higher in obese group and that both systolic and diastolic values were elevated. This means that the association of obesity with renal involvement presented by lower eGFR levels and increased kidney function together with cardiovascular risk factors showed by hypertension warns us that overweight and obese youngsters are more likely to develop cardiovascular and chronic renal diseases.

Recommendation

We recommend follow-up of overweight and/or obese children to understand the effect of obesity on renal function as well as BP monitoring at every clinical visit, and secondarily, we recommend initiation of weight loss prevention programs through combined regimens of dietary caloric restriction and/or increased physical activity.

Acknowledgments

This work is a part from the project titled, 'Early renal injury markers in obese adolescents,' funded by the National Research Center, Cairo, Egypt, from 2016 to 2019, under number of 11010142.

Authors' contributions: Azza Abd El-Shaheed put forward the design of this study. Rehab S.I. Moustafa, Nermine N. Mahfouz, and Sara F. Sallam carried out the practical parts. Azza Abd El-Shaheed and Rehab S.I. Moustafa did the interpretation of data. Salwa R. El-Zayat, Hiba Sibaii, Mahitab I. El-Kassaby, and Hagar H. Mourad carried out the biochemical analysis. All participated in manuscript writing and revision.

Financial support and sponsorship Nil.

Conflicts of interest

There are no conflicts of interest.

References

- World Health Organization. Obesity and overweight. Key Facts. Published 2020. Updated April 1, 2020. Available at: https://www.who.int/news-room/ fact-sheets/detail/obesity-and-overweight#. [Accessed March 29, 2021].
- Egypt Demographic and Health Survey in 2014. Ministry of Health and Population Cairo, Egypt. El-Zanaty and Associates Cairo, Egypt. The DHS Progam ICF International Rockville. Maryland, USA: Egypt Demographic and Health Survey; 2015.
- Yim HE, Yoo KH. Obesity and chronic kidney disease: prevalence, mechanism, and management. Clin Exp Pediatr 2021; 64:511–518.
- Declèves AE, Sharma K. Obesity and kidney disease: differential effects of obesity on adipose tissue and kidney inflammation and fibrosis. Curr Opin Nephrol Hypertens 2015; 24:28–36.
- Avesani CM, Pereira AML, Cuppari L. Doença renal crônica. In: Cuppari L, editor. Nutrição nas doenças crônicas não-transmissíveis. Barueri: Manole; 2009. p. 267–330.
- Gansevoort RT, Correa-Rotter R, Hemmelgarn BR, Jafar TH, Heerspink HJ, Mann JF, et al. Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet 2013; 382:339–352.
- Sawamura LS, Gomes de Souza G, Dos Santos JDG, Suano-Souza FI, Del Vecchio Gessullo A, Saccardo Sarni RO. Albuminuria and glomerular filtration rate in obese children and adolescents. J Bras Nefrol 2019; 41:193–199.
- Kotsis V, Martinez F, Trakatelli C, Redon J. Impact of obesity in kidney diseases. Nutrients 2021; 13:4482.
- Kuczmarski RJ, Ogden CL, Guo SS, Grummer-Strawn LM, Flegal KM, Mei Z, et al. 2000 CDC growth charts for the United States: methods and development. Vital Health Stat 11 2002; 246:1–190.
- Mahfouz Nermine N, Fahmy Reham F, Nassar Maysa S, Wahba Saneya A. Body weight concern and belief among adolescent Egyptian girls. Open Access Maced J Med Sci 2018; 6:582–587.
- Flynn JT, Kaelber DC, Baker-Smith CM, Blowey D, Carroll AE, Daniels SR, Falkner B. Clinical practice guideline for screening and management of high blood pressure in children and adolescents. Pediatrics 2017; 140: e20171904.
- Myers GL, Miller WG, Coresh J, Fleming J, Greenberg N, Greene T, Hostetter T. Recommendations for improving serum creatinine

- measurement: a report from the Laboratory Working Group of the National Kidney Disease Education Program. Clin Chem 2006; 52:5-18.
- Schwartz GJ, Muñoz A, Schneider MF, Mak RH, Kaske F, Warady BA, Furth SL. New equations to estimate GFR in children with CKD. J Am Soc Nephrol 2009; 20:629–637.
- Tomaszewski M, Charchar FJ, Maric C, McClure J, Crawford L, Grzeszczak W, et al. Glomerular hyperfiltration: a new marker of metabolic risk. Kidney Int 2007; 71:816–821.
- Correia-Costa L, Afonso AC, Schaefer F, Guimarães JT, Bustorff M, Guerra A, et al. Decreased renal function in overweight and obese prepubertal children. Pediatr Res 2015; 78:436–444.
- Koulouridis E, Georgalidis K, Kostimpa I, Koulouridis I, Krokida A, Houliara D. Metabolic syndrome risk factors and estimated glomerular filtration rate among children and adolescents. Pediatr Nephrol 2010: 25:491–498.
- Goknar N, Oktem F, Ozgen IT, Torun E, Kuçukkoc M, Demir AD, Cesur Y. Determination of early urinary renal injury markers in obese children. Pediatr Nephrol 2015; 30:139–144.
- Soylemezoglu O, Duzova A, Yalçinkaya F, Arinsoy T, Süleymanlar G. Chronic renal disease in children aged 5–18 years: a population-based survey in Turkey, the CREDIT-C study. Nephrol Dial Transplant 2012; 27 (Suppl 3):iii146–iii151.
- Fadrowski JJ, Neu AM, Schwartz GJ, Furth SL. Pediatric GFR estimating equations applied to adolescents in the general population. Clin J Am Soc Nephrol 2011; 6:1427–1435.
- 20. He Y, Liu D, Tan W, Ma X, Lian F, Xu X. Association between body mass index and mildly decreased estimated glomerular filtration rate in Chinese adults with early chronic kidney disease. J Ren Nutr 2016; 26:367–372.
- Dada SA, Raimi TH, Aremu AO. Association between body mass index as a measure of excess weight and glomerular filtration rate among healthy Nigerian population. J Nephrol Res 2018; 4:153–158.
- 22. Hobbs H, Farmer C, Irving J, Klebe B, Stevens P. Is high body mass index independently associated with diminished glomerular filtration rate? An epidemiological study. J Ren Care 2011; 37:148–154.
- Bacchetta J, Cochat P, Rognant N, Ranchin B, Hadj-Aissa A, Dubourg L. Which creatinine and cystatin C equations can be reliably used in children? Clin J Am Soc Nephrol 2011; 6:552–560.
- Mathew AV, Okada S, Sharma K. Obesity related kidney disease. Curr Diabetes Rev 2011: 7:41–49.
- Castro AM, Toledo Rojas A, Macedo de la Concha LE, Inclán-Rubio V. Childhood obesity, a multisystemic health problem. Rev Med Hosp. Gene Mex 2001; 75:37–40.6.
- 26. Castro AM, Macedo-de la Concha LE, Pantoja-Meléndez CA. Low-grade inflammation and its relation to obesity and chronic degenerative diseases. Rev Méd Hosp Gen México 2017; 80:101–105.
- 27. Koebnick C, Black MH, Wu J, Martinez MP, Smith N, Kuizon B, et al. High blood pressure in overweight and obese youth: implications for screening. J Clin Hypertens (Greenwich) 2013; 15:793–805.
- Chiolero A, Cachat F, Burnier M, Paccaud F, Bovet P. Prevalence of hypertension in schoolchildren based on repeated measurements and association with overweight. J Hypertens 2007; 25:2209–2217.
- 29. Stray-Pedersen M, Helsing RM, Gibbons L, Cormick G, Holmen TL, Vik T, Belizán JM. Weight status and hypertension among adolescent girls in Argentina and Norway: data from the ENNyS and HUNT studies. BMC Public Health 2009; 9:398.
- Lin FH, Chu NF, Hsieh AT. The trend of hypertension and its relationship to the weight status among Taiwanese young adolescents. J Hum Hypertens 2012: 26:48–55.
- 31. Kim NY, Hong YM, Jung JW, Kim NS, Noh CI, Song YH. The relationships of body mass index, waist-to-height ratio, and body fat percentage with blood pressure and its hemodynamic determinants in Korean adolescents: a school-based study. Korean J Pediatr 2013; 56:526–533.
- **32.** Geleijnse JM, Kok FJ, Grobbee DE. Impact of dietary and lifestyle factors on the prevalence of hypertension in Western populations. Eur J Public Health 2004; 14:235–239.
- Chiolero A, Madeleine G, Gabriel A, Burnier M, Paccaud F, Bovet P. Prevalence of elevated blood pressure and association with overweight in children of a rapidly developing country. J Hum Hypertens 2007; 21:120–127.
- 34. Chorin E, Hassidim A, Hartal M, Havakuk O, Flint N, Ziv-Baran T, Arbel Y. Trends in adolescents obesity and the association between bmi and blood pressure: a cross-sectional study in 714,922 healthy teenagers. Am J Hypertens 2015; 28:1157–1163.
- Falkner B. Monitoring and management of hypertension with obesity in adolescents. Integr Blood Press Control 2017; 10:33–39.

- 36. Azza Abd El-Shaheed A. Blood pressure measurements in adolescents of different socioeconomic status. ScJ Az Med Fac (Girls) 2001;
- $\textbf{37.} \ \ \mathsf{Perng}\,\mathsf{W}, \mathsf{Rifas}\text{-}\mathsf{Shiman}\,\mathsf{SL}, \mathsf{Kramer}\,\mathsf{MS}, \mathsf{Haugaard}\,\mathsf{LK}, \mathsf{Oken}\,\mathsf{E}, \mathsf{Gillman}\,\mathsf{MW},$ ${\tt BelfortMB.} \ Early weight gain, linear growth and mid-childhood blood pressure:$ a prospective study in project viva. Hypertension 2016; 67:301–308.
- 38. Parker ED, Sinaiko AR, Kharbanda EO, Margolis KL, Daley MF, Trower NK, et al. Change in weight status and development of hypertension. Pediatrics 2016; 137:e20151662.
- ${\bf 39.}\;$ Tanaka M, Itoh H. Hypertension as a metabolic disorder and the novel role of the gut. Curr Hypertens Rep 2019; 21:63.
- 40. Hall JE, Henegar JR, Dwyer TM, Liu J, Silva AA, Kuo JJ, Tallam L. Is obesity a major cause of chronic kidney disease?. Adv Ren Replace Ther
- 41. Becerril S, Rodríguez A, Catalán V, Ramírez B, Unamuno X, Portincasa P, et al. Functional relationship between leptin and nitric oxide in metabolism. Nutrients 2019; 11:2129.
- 42. Da Silva Junior GB, Bentes ACSN, Daher EDF, de Matos SMA. Obesity and kidney disease. J Bras Nefrol 2017; 39:65-69.
- 43. Darouich S, Goucha R, Jaafoura MH, Zekri S, Ben Maiz H, Kheder A. Clinicopathological characteristics of obesity-associated focal segmental glomerulosclerosis. Ultrastruct Pathol 2011; 35:176-182.