10.21608/avmj.2025.365981.1611

Assiut University web-site: www.aun.edu.eg

PARVOVIRUS INFECTION: A THREAT TO DOMESTIC WATERFOWL INDUSTRY

WAFAA A. ABD EL-GHANY

Poultry Diseases Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt. ORCID: 0000-0003-1686-3831

Received: 29 April 2025; Accepted: 30 June 2025

ABSTRACT

Parvovirus infection affects geese and ducks, causing an acute, contagious, and fatal disease known as gosling plague or Derzsy's disease and Muscovy duck parvovirus infection. Moreover, a novel goose parvovirus was first characterized in mule ducks and Cherry Valley ducks and causes a disease termed short beak and dwarfism syndrome. Parvovirus infection in waterfowl has gained worldwide attention due to the substantial economic losses in commercial production. The virus is a member of the genus *Dependoparvovirus* of the family Parvoviridae. It infects mainly goslings and ducklings during the first 3 weeks of life, causing high morbidity and mortality rates, and belongs to locomotor disturbance, growth retardation, and diarrhea. Transmission of parvovirus in geese and duck flocks occurs either through the horizontal or vertical route. The most common findings of parvovirus in affected birds are myocardial degeneration, intestinal necrosis, myocarditis, perihepatitis, ascites, and sometimes nervous system affection. Diagnosis of parvovirus depends mostly on isolation and identification of the virus using conventional methods, detection of the virus using recent molecular techniques, and seroconversion. Protection of ducklings or goslings in the early life via passive maternal immunity is regarded as the most suitable method for the prevention of parvovirus infection. Vaccination of breeder flocks and their offspring is required to decrease the disease impact. Live, inactivated, and recombinant vaccines have been used against such infection. In conclusion, this article discussed parvovirus infection in waterfowl regarding the virus characteristics, susceptibility, transmission, clinical picture, laboratory diagnosis, and prevention and control of such infection.

Keywords: Goose parvovirus, Derzsy's disease, Muscovy duck parvovirus, short beak and dwarfism syndrome

INTRODUCTION

Raising domestic waterfowl requires the presence of water bodies, which may enhance the mixing with free-living waterfowl species and promote disease

Corresponding author: Wafaa A. Abd El-Ghany E-mail address: wafaa.soliman@cu.edu.eg Present address: Poultry Diseases Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt

transmission. Therefore, they are susceptible to many serious viruses that have adverse effects on production (Abd El-Ghany, 2021).

Goose breeding is done in some countries, such as Egypt, China, Turkey, Romania, Ukraine, Poland, Hungary, and Madagascar (Tilki & Saatci, 2016). Parvovirus (PV) of waterfowl causes a dreadful disease in rearing farms of goslings (*Anser anser*

domestica) and Muscovy ducklings (Palya, (Cairina moschata) 2013). Infections with parvovirus have been reported in Asia, Europe, and America, where goose and duck production is common (Jansson et al., 2007; Wan et al., 2016a; Liu et al., 2017; Soliman et al., 2020; Kardoğan et al., 2021). Despite vaccination against PV since the last 30 years, it still regarded as the most common infection with striking losses in goose farms (Tarasiuk et al., 2019). The virus caused high morbidity and mortality in goslings and Muscovy ducklings in 1960, which was reported as Derzsy's disease or gosling plague (Derzsy, 1967). This disease was termed as goose PV (GPV) in 1978. However, in China, in 1989, Muscovy ducks showed signs like those of GPV (Lin et al., 1991; Le Gall-Recule & Jestin, 1994) and the infection was then termed as Muscovy duck PV (MDPV) or (three-week disease) based on 85% protein sequence homology to GPV. Then, MDPV infection was distributed in different countries (Jestin et al., 1991; Takehara et al., 1994; Woolcock et al., 2000; Glávits et al., 2005; Poonia et al., 2006). In south-western France in the 1970s (Villatte, 1989), a novel goose parvovirus (NGPV) was firstly detected in Mulard (mule) (crossbreed of Pekin duck and Muscovy duck) and Cherry Valley ducks with retarded growth, atrophied beak, protruded tongue, and 15-25% morbidity rate and the disease was termed as short beak and dwarfism syndrome (SBDS) or beak atrophy and dwarfism syndrome (BADS) (Palya et al., 2009; Li et al., 2016; Bian et al., 2019). The GPV isolated from SBDS shares a partial antigenic relationship with the classical GPV strain and it can be considered as a variant GPV (Li et al., 2016; Ning et al., 2017). Repeated outbreaks of SBDS were then detected in Taiwan (Lu et al., 1993), Poland (Samorek-Salamonowicz et al., 1995; Wozniakowski et al., 2009a), Hungary (Palya et al., 2009), mainland China (Chen et al., 2015, 2016b; Yu et al., 2016), and Egypt (Soliman et al., 2020). Cherry Valley ducks, mule ducks, Muscovy

ducks, Pekin ducks, and partridge ducks are susceptible to SBDS caused by NGPV (Huang *et al.*, 2015; Wan *et al.*, 2019a; Saleh & Khodier, 2020; Soliman *et al.*, 2020). Moreover, goslings have been found to be infected with NGPV, but appear as asymptomatic carriers of (Xiao *et al.*, 2017).

Both GPV and MDPV are members of the species Anseriform dependoparvovirus 1 in the genus *Dependoparvovirus* subfamily Parvovirinae and family Parvoviridae (Wan et al., 2018; Cotmore et al., 2019). PV is a single-strand DNA genome of about 5 kb in length. Despite there is approximately 85% identity in protein sequences of GPV and MDPV, limited cross-protection between both viruses has been observed. Transmission of PV is relied either on the direct or indirect contact with infected waterfowl or on the vertical transmission (Gough, 2008; Palya, 2013). Infection with PV is chiefly age dependent and poses a constant threat to waterfowl production as represented by decreasing performance, retardation of growth, and increasing mortality (Chen et al., 2015; Soliman et al., 2020). Muscovy ducklings infected with MDPV between 2 and 4 weeks old usually show locomotor dvsfunction, ataxia, wheezing, watery diarrhea, growth retardation, and stunting, along with a morbidity rate of 27-62% and a mortality rate of 20-55% (Lin et al., 1991; Chen et al., 1993; Glávits et al., 2005). Skeletal muscle myopathy, myocarditis, hepatitis, neuritis, polioencephalomyelitis, and atrophy of lymphoid organs are the most characteristic lesions in geese and ducks (Glávits et al., 2005). Diagnosis of PV is based on isolation in goose or ducks eggs and propagation on embryonic fibroblast cell cultures. Rapid detection of the virus using molecular techniques has been effectively applied as sensitive and specific tests (Bulut et al., 2021; Isidan et al., 2021). Protection against infections caused by PV is important to prevent serious economic losses in geese and duck flocks. Therefore, many types of living attenuated vaccines have been used to protect goslings from GPV infection (Fang *et al.*, 1987; Wang *et al.*, 2014a).

In the present review article, PV infection in waterfowl has been discussed regarding the virus characteristics, susceptibility, transmission, clinical picture, laboratory diagnosis, and prevention and control of such infection.

The virus

According to the virus neutralization tests and genetic analysis, waterfowl PV can be divided into GPV and the MDPV (Poonia et al., 2006). They belong to Dependoparvovirus genus of the Parvoviridae family, and all of them are members of the same Anseriform dependoparvovirus 1 species (Walker et al., 2019). Within the GPV-related group, 4 subgroups are investigated: the Hungarian virulent strains, the vaccine and low pathogenic strains, the West-European strains, and the Asian strains (Tatár-Kis et al., 2004; Chen et al., 2015; Yu et al., 2016; Ning et al., 2017). PV is a single-stranded and non-enveloped DNA virus of approximately 5-5.1 k nucleotides in length and 20-22 nm diameter (Wang et al., 2016). The inverted terminal repeats (ITRs) at each end of GPV and MDPV genomes have lengths of approximately 442 and 456 nucleotides, respectively (Wang et al., 2016). The ITRs act as start sites for genome replication.

Complete genomic sequence of GPV strains isolated from different parts of the world revealed high identities with each other (93% or more) (Shien et al., 2008; Wang et al., 2015). However, the complete genomic analysis of MDPV strains is still very limited. Genetic analysis of new strains of GPV could be gained via sequencing of viral protein (VP) genes, which are essential for pathogenicity, antigenicity, attachment, infectivity, and production neutralizing antibodies (Tullis et al., 1993; Zadori et al., 1995; Chen et al., 2016b; Yu et al., 2016; Fan et al., 2017). For instance, the sequences of VP1 and VP3 showed that

GPV strains that isolated from Pekin and mule ducks with SBDS belonged to the West-European lineage of GPV (Palya et al., 2009; Ning et al., 2017). Besides, the NS protein plays a role in viral DNA replication, expression, and regulation (Naeger et al., 1990; Christensen & Tattersall, 2002). Both right and left open reading frames (ORFs) are separated by 18 nt (Poonia et al., 2006). The receptor binding sites of structural protein play a key role in host range and pathogenicity of the virus (Shien et al., 2008; Kailasan et al., 2015; Ning et al., 2017). The genome of GPV and MDPV possess ORFs; the right ORF encodes for structural viral capsid (Cap) proteins (VP1, VP2, and VP3), while the left one encodes for non-structural gene 1 (NS1 and NS2) (Rep) proteins (Zadori et al., 1995). VP2 and VP3 contain similar Cterminal to VP1 (Zadori et al., 1995). It has been found that VP3 is the most variable protein and is important to produce neutralizing protective antibodies (Ju et al., 2011; Shao et al., 2015; Chen et al., 2021). Though GPV and MDPV have different host and antigenic features (Brown et al., 1995; Zhang et al., 2008), the comparison of both using southern hybridization revealed similar genomic nucleotide and amino acid sequences (Le Gall-Recule & Jestin, 1994; Zadori et al., 1994). This identity is due to the presence of at least one NS1 epitope and three VP1 epitopes that induced cross-reactivity immunization between both viruses (Li & Yu, 2013).

Some antigenic epitopes are shared between GPV and MDPV (Ju et al., 2011; Li and Yu, 2013). There is immunogenic cross-reactivity between GPV and MDPV as they share 76% to 80% nucleotide similarity at the VP1 level and 88% similarity at the amino acid level (Chu et al., 2001; Yu et al., 2012; Li & Yu, 2013). It has been reported that 7 antigenic regions of VP1 could react with serum from PV infected geese (Yu et al., 2012). There are epitopes of the non-structure protein and 3 epitopes on the structure protein between GPV and MDPV that may react to each other. Moreover, the

four epitopes might react with GPV and MDPV antisera after expression in *Escherichia coli* (Li & Yu, 2013).

The sequence analysis of GPV, MDPV, and SBDS virus genes showed that the VP1 of GPV and MDPV shares a nucleotide identity of 79.6-85.5% (Chu et al., 2001), but SBDS virus had 95.1-98.2% similarity with GPV and 88-92.6% similarity with MDPV, which may indicate immunogenic cross-reactivity of SBDS virus with GPV than with MDPV (Bian et al., 2019; Chen et al., 2021). However, Palya et al. (2022) proved that the antigenic relationship between GPV and MDPV is inadequate to stimulate the cross-immunity between them.

In China, the fragment of DNA of the classical MDPV and is replaced by a homologous region from GPV, resulting in a recombination in the VP3 gene and formation of a new recombinant MDPV strain (Wang et al., 2017). These new strains caused outbreaks with high mortality rates among 19-days-old Muscovy duck (Zhu et al., 2014). Other flocks recombination processes in MDPV strains have also been detected in China (Wang et al., 2013; Wan et al., 2016b). Moreover, the sequence alignments of ITRs showed that the new MDPV strains shared higher similarities (96.0% to 97.2%) with the classical MDPV strains than with GPV (Wang et al., 2019). Emergence of new MDPV strains results in vaccination failure after using some living attenuated vaccines from the classical MDPV strains (Chen et al., 2002; Zhu et al., 2014).

Susceptibility

Host

The host range of PV is very limited. Its natural hosts are geese and Muscovy ducks. The Classical GPV principally infects geese and Muscovy ducks, while MDPV only infects Muscovy ducks and some crossbreed duck species. Geese are completely resistant to MDPV infection, while Muscovy ducks are susceptible to

GPV and MDPV (Glávits et al., 2005). Mule ducks and Cherry Valley ducks are resistant to classical GPV infection. Besides, SBDS/BADS causes significant growth retardation in mule ducks and Cherry Valley ducks (Yu et al., 2016). All breeds of ducks including Muscovy ducks, Pekin ducks, and mule ducks, could be affected by PV. For the first time, the nucleotide sequence of GPV revealed a close similarity ranging from 95.6%-97.9% with European and Asian pathogenic GPV 2-8-week-old ornamental (mandarin, wood, falcated, and silver teal ducks) (Shehata et al., 2016). Muscovy ducks have played a critical role in the evolution of GPV to NGPV (Zhu et al., 2022).

The susceptibility of chickens and turkeys to PV infection has been documented. The virus was isolated from turkeys with enteritis, stunting, and high mortality (Trampel *et al.*, 1983). Moreover, PV particles were detected in the droppings of chickens using electron microscopy and genome sequence (Kisary *et al.*, 1985). Later, PV was isolated from chickens and turkeys with enteric infections in many countries of the world (Zsak *et al.*, 2009; Bidin *et al.*, 2011; Palade *et al.*, 2011; Domanska-Blicharz *et al.*, 2012; Murgia *et al.*, 2012; Sharafeldin *et al.*, 2017).

Age

Susceptibility of waterfowl to PV is highly age dependent. The virus affects goslings and ducklings less than 1-week-old with up to a 100% mortality rate, but the losses decrease to 10-60% in birds 1-3 weeks of age (Fang, 1962; Derzsy, 1967; Schettler, 1971; Hoekstra et al., 1973; Fang et al., 1981; Jestin et al., 1991; Glávits et al., 2005). Infection with MDPV "three-week disease", mainly affects 3-week-old ducklings. Derzsy's disease Muscovy outbreaks have been reported in 1-monthold goslings, with the mortality rate up to 90% (Fang et al., 1987).

PV infects rapidly the dividing cells, and this explains why clinical forms of infection occur approximately in birds up to 6 weeks of age. After this age, PV usually induces a late form of infection with rare signs. Nevertheless, the synergistic effect of PV with other immunosuppressive viral or bacterial infections tends to aggravate the clinical infection and prolongs sensitivity period to the clinical signs up to 9 weeks of age (Palya, 2013; Ting et al., 2021). It is important to note that, following the susceptible age, PV infected birds show serological response without clinical manifestations.

Transmission

PV can be shed through the droppings of the infected waterfowl. Accordingly, the virus can rapidly be transmitted both directly and indirectly within the flock outbreaks (Yu et al., 2016). Both GPV and MDPV showed possibility of vertical transmission and eggshell contamination resulting in hatchery infection in diseasefree birds (Irvine & Holmes, 2010; Palya, 2013; Fan et al., 2017). Besides, NGPVinfected breeder Pekin ducks and mule ducks showed vertical infection to their offspring (Chen et al., 2016a; Ning et al., 2017; Wan et al., 2019b).

Signs and Lesions

The severity of clinical signs of PV infection depends on the age and the immune status of infected goslings and ducklings (Palya et al., 2009). Susceptible age waterfowl between 1-3 weeks show an acute, subacute, or chronic form of the disease, with morbidity and mortality rates reaching 100% and 10-60%, respectively. An acute PV infection may develop in ages less than one week and the affected birds show off-food, polydipsia, prostration, and weakness, leading to up to 100% deaths within a few days. However, 4-week-old birds rarely show clinical manifestations, though a later form of infection may occur older waterfowl (Gough, 2008). Waterfowl usually displays anorexia, growth retardation, stunting, loss of feathers

on the back and neck, ocular and nasal discharge, palpebral swelling, diarrhea, drowsiness, ataxia, locomotor dysfunction, polydipsia, and drastic mortalities (Gough, 2008; Wozniakowski et al., 2012; Palya, 2013). It has been reported that NGPV may cause up to 60% dwarfism of ducks in China (Cao, 2019). The clinical signs of SBDS in mule and Tsaiya ducks were growth retardation, short, atrophied beak or bills, protruded swollen tongue, and short tibia bone with a low morbidity rate (Palya, 2013).

Experimental infections of susceptible 6 to 8-week-old Muscovy ducks with PV resulted in a chronic disease with significant growth retardation (Fournier & Gaudry, 1992; Yu *et al.*, 2016). In China, Cherry Valley ducks showed feather shedding following a single NGPV infection or mixed infection with duck circovirus hepatitis (Yang *et al.*, 2020).

The recorded mortality of GP is usually related to peak atrophy and the inability of birds to eat or drink (Yu et al., 2016). Death usually occurs within 2-5 days after the onset of the signs. The mortality rate differs according to the age and immune status of the bird (Palya et al., 2009). For instance, 3-4-week-old PV vertically transmitted birds exhibited a 70-100% mortality rate (Glávits et al., 2005; Jansson et al., 2007). During 1989 and 1990, SBDS was reported in ducklings with an 86-100% mortality rate (Lu et al., 1993). It has been shown that NGPV infection demonstrated an overall morbidity rate of 10-30% to classical PV infections (Chen et al., 2016b; Kapgate et al., 2018).

The characteristic post-mortem lesions of the classical and variant PV strains in waterfowl are usually thin wall sloughed intestinal mucosa with fibrinous exudates, fibrinous hepatitis, congested liver, degenerative skeletal muscle, myopathy, myocarditis, dilatation of the heart, hydropericardium, ascites, neuritis, polioencephalomyelitis, and atrophy of

lymphoid organs (thymus glands, bursa of Fabricius, and spleen) (Gough, 1991; Glávits *et al.*, 2005; Palya, 2013; Ning *et al.*, 2018).

Microscopically, experimental infection of a day-old gosling and 3-week-old Muscovy ducklings revealed severe enteritis with necrosis of enterocytes in the mucous membrane and the crypts of Lieberkühn, as well as formation of intranuclear inclusion bodies (Glávits et al., 2005). Other lesions, including hepatitis, myocarditis, degeneration of muscle fibers, lymphoid depletion of bursa of Fabricius, thymus, and spleen, mild sciatic neuritis, polioencephalomyelitis were also reported (Glávits et al., 2005).

Laboratory diagnosis

Samples including liver, spleen, kidney, thymus glands, bursa of Fabricius, and brain can be selected for isolation of PV (Limn et al., 1996; Yang et al., 2009). The conventional laboratory diagnosis of PV is based on isolation in embryonated goose or duck eggs and requires 3- or 4-blind serial passages to cause death of embryos with hemorrhages (Saleh & Khodier, 2020). Moreover, 4 blind adaptation passages of PV cause a cytopathic effect on duck embryo fibroblasts which is characterized by rounding and shrinking of cells (Palya et al., 2009; Chen et al., 2015; Saleh & Khodier, 2020). Some strains of PV, such as H-1 replicate showed apoptosis in the infected cells (Poonia et al., 2006). The NGPV is distinguished from other types of PV by its ability to replicate autonomously in vitro, causing death of cells without helper-viruses (Brown et al., 1995; Zhang et al., 2019).

Molecular techniques such as polymerase chain reaction (PCR) (Sirivan et al., 1998; Wozniakowski et al., 2009b; Bulut et al., 2021; Isidan et al., 2021) and a loop-mediated isothermal amplification assay (LAMP) (Ji et al., 2010; Yang et al., 2010), as well as electron microscopy (Ning et al., 2018), immunofluorescent test (Cheng et

al., 1997; Takehara et al., 1999; Zhu et al., 2012), and hemagglutination test (Chen et al., 2016b) have been used for detection of PV. Recent PCR techniques show many advantages over serological tests in the diagnosis of GPV (Yu et al., 2016; Ning et al., 2018). It is a highly sensitive and specific method for quantitatively detecting GPV DNA. The VP3 is a highly protected protein of the GPV gene and it is very appropriate for PCR (Yang et al., 2009). Real-time PCR is faster, less laborious, and more reliable than the classical PCR and LAMP technique. Moreover, it provides quantitative data for the pathogenesis and the epidemiological studies than other tests (Bi et al., 2008; Yang et al., 2009; Wan et al., 2011; Wozniakowski et al., 2012).

Chicken can be used as a model to produce humoral antibodies against PV (Ramadan et al., 2019). Serological tests, including neutralization test, western blot assay (Wang et al., 2005; Tarasiuk et al., 2019), agar gel precipitation test (Gough, 1984), indirect immunofluorescent assay (Chen et al., 2016b), indirect latex agglutination assay (Chen et al., 2016b), and enzymelinked immunosorbent assay (ELISA) (Kardi & Szegletes, 1996) have been used to detect antibodies to PV infection in waterfowl. Indirect ELISA based on VP3 protein has been used for the detection of GPV and MDPV antibodies, as well as analysis of the immune status of vaccinated flocks (Zhang et al., 2010). A competitive ELISA using a monoclonal antibody has been used to detect GPV-like particles and vaccine titers in goose sera (Wang et al., 2014b). A high sero-conversion to PV infection in 5- and 9-week-old Muscovy ducks has been detected when using MDPV antigen ELISA. Despite in neutralization test is considered a sensitive assay for the detection of antibodies against GPV or MDPV in ducks or geese, it is very laborious, requires at least a week to complete, and the technique requires experienced technicians for the detection of the cytopathic effect. It is important to note that GPV can agglutinate cattle sperm cells,

and this feature can be used for virus identification (Brown *et al.*, 1995; Saleh & Khodier, 2020).

Prevention and control

Biosecurity measures are a must due to the severe resistance of PV to physical and chemical inactivation, which creates difficulties in the virus elimination (Palya, 2013).

Vaccination of breeder flocks and their progenies against PV is required to reduce the impact of infection. Naturally infected or vaccinated breeder geese and Muscovy ducks can transfer maternal antibodies to progeny through the egg yolk. The acquired passive antibodies can persist in the offspring until 2 to 6 weeks of age, depending on the level of antibodies at dayold (Palya, 2013). Birds can acquire antibodies through receiving passive convalescent or hyper-immune serum or active immunization with vaccines (Kisary et al., 1978; Takehara et al., 1995, 1998; Maurin-Bernaud et al., 2013).

The levels of maternal-derived antibodies play a minor role in the induction of a primary immune response to particularly when the vaccine is given very early at day-old. Goslings and ducklings with no or very low titers of maternal antibodies showed a fast and strong protection following administration of living attenuated PV vaccines (Kisary, 1977; Kisary et al., 1978). Hatchery vaccination may be beneficial for ducklings with a low-level passive immunity, as the birds remain protected even after the decline of the maternal-derived antibodies (Maurin-Bernaud et al., 2014). Maurin-Bernaud et al. (2014) compared the efficacy of ducklings' vaccination with a new live attenuated MDPV vaccine as a single shot at 17 days of age or double shots at 1 and 17 days of age. The results indicated that the protection rate against the viral challenge, the body weight, and the immune response were significantly higher in the groups vaccinated once and twice than control nonvaccinated ones. Besides, the highest weight gain was detected in birds vaccinated twice, which indicated that an early vaccination at hatchery, followed by a second vaccination at 17 days of age, is a practical protocol for the prevention of PV infection.

An active immune response against PV infection should be induced by early immunization using inactivated vaccines. Inactivated PV vaccines are available against MDPV (Kisary et al., 1978; Fournier & Gaudry, 1992; Takehara et al., 1995). Though these vaccines are less sensitive to maternal antibodies than living vaccines, they induce a slow immune response in vaccinated birds (Le Gall-Reule et al., 1999). Moreover, these types of vaccines may be either monovalent (GPV) or bivalent (GPV and MDPV) (Palya, 2011). A monovalent inactivated GPV vaccine has been used to control GPV infection in Muscovy ducks (Takehara et al., 1995). Recently, vaccination with a bivalent vaccine containing both GPV and MDPV antigens provided an adequate clinical protection against both viruses and a reasonable, rapid immune response even in the presence of maternal antibodies (Palya et al., 2022). It has been found that vaccination of day-old birds with an inactivated PV vaccine followed by a booster dose induced an immune response that lasted until the end of the age susceptibility (Palya et al., 2022).

It has been reported that recombinant PV antigens could be expressed and induce immunity in Muscovy ducks (Le Gall-Reule *et al.*, 1999; Takehara *et al.*, 1999). Immunization of ducks with VP2 and VP3 recombinant proteins induced neutralizing antibody titers which were consistent with the titers observed in ducks immunized with inactivated commercial vaccine (Le Gall-Reule *et al.*, 1999). The immune response against the recombinant VP2 (rVP2) vaccine containing aluminum adjuvant and CpG oligodeoxynucleotides with three copies of the GACGTT motif was evaluated

in ducks (Lee *et al.*, 2010). A significant increase in the rVP2-specific antibodies, expression of cytokines in peripheral blood mononuclear cells, and the percentage of CD4 +/ CD8 + cells were observed in vaccinated ducks when compared with the non-vaccinated control group (Lee *et al.*, 2010). Moreover, Lee *et al.* (2016) observed similar results, along with an increase in the egg yolk maternal antibodies for the protection of the ducklings from PV infection. Wu *et al.* (2019) evaluated the effect of immunization of Pekin ducks with DNA PV vaccine on day 14 of age, followed by a booster dose with either the

same DNA vaccine or rVP2 vaccine. The results declared that both immunization protocols increased the titers of antibodies, lymphocyte proliferation index, percentage of CD4+ and CD8+ cells in peripheral blood mononuclear cells, and mRNA expression of interferon -a and c, and interleukin-6 and 12. Moreover, using of DNA and rVP2 vaccine protocol induced a increase in lymphocyte proliferation, percentage of CD4+ and CD8+ cells, and upregulation of mRNA expression of cytokines when compared with using of primary and booster DNA vaccine.

Table 1: Parvovirus infection in different countries worldwide (1984-2024).

Country	Findings	Methods of detection	Reference
China	The new strain of SBDS (M15) was a GPV-related parvovirus causing mule duck and Cherry Valley duck SBDS disease.	SPF embryonated duck eggs, DEF, electron microscopy, latex agglutination assay, indirect immunofluorescence assay, ducklings, and PCR genomic sequencing	Chen <i>et al</i> . (2016b)
	A recombinant Lactobacillus plantarum strain was used as a mucosal vaccine vector to express GPV viral protein 2 (VP2) against infection in goslings.	PCR genomic sequencing, BALB/c mice, Western blotting analysis, and ELISA	Liu <i>et al</i> . (2017)
	The variant GPV from SBDS of Pekin ducks caused high mortalities and severe lesions similar to the classical GPV in SPF goose embryos. It induced Derzsy's disease in 2-day-old goslings with 80% mortality.	SPF embryonating goose eggs, goslings, agar gel precipitin test, PCR genomic sequencing, and histopathology	Ning et al. (2018)
	3 GPV strains were detected in 11 molt cases of 40-day-old Pekin ducks. They have 52 nucleotide variance relative to GPV associated SBDS.	PCR genomic sequencing	Jin et al. (2019)
	The 6 rMDPV strains shared 96.0%-97.2% identities with classical MDPV strains than with GPV and contained typical one-nucleotide-pair deletions in the palindromic stems of their ITRs.	PCR genomic sequencing and Muscovy ducklings	Wang et al. (2019)

Country	Findings	Methods of detection	Reference
China	CV21 strain displayed stronger cytopathic effect on cell culture and higher lethality to ducks embryos than MD17 strain. The mortality rates of CVD21 and MD17 infected Cherry Valley ducklings were 100% and 80%, respectively. MD17 showed higher homology to GPV, while CVD21 showed stronger similarity with NGPV. Both strains shared 95.8% homology. CVD21 severely affected duckling's growth.	DEF, embryonated Muscovy and Cherry Valley duck eggs, ducklings, electron microscopy, indirect immunofluorescence assay, and PCR genomic sequencing	Zhu <i>et al</i> . (2022)
Taiwan	15 parvovirus isolates in more than 500 ducklings had inappetence, ataxia, watery diarrhea, lameness, opisthotonos, and high mortality. Tolerant maturing ducklings displayed atrophic upper bills with a protruding tongue and stunting before maturity. Bill atrophy syndrome were reproduced in ducklings by inoculating the parvovirus isolates.	Embryonated duck eggs and histopathology	Lu <i>et al</i> . (1993)
Japan	GPV in Muscovy ducks had abnormal feathering, weakness of legs, and high mortality.	Embryonating Muscovy duck eggs, electron microscopy, agar gel precipitation test, and DEF	Takehara <i>et al</i> . (1994)
	Out of 38 duck farms, 14 (36.84%) were positive. The Vietnamese novel GPV group was closely related to the Chinese group.	PCR genomic sequencing	Dong <i>et al</i> . (2022)
Vietnam	94.35% mortalities in duck embryos. Specific signs (80% and 66.67%) following intramuscular and neck intravenous administration of ducks, respectively. The virus belonged to NGPV and was closely related to previous Vietnamese and Chinese strains.	Embryonated ducks eggs, inoculation in ducklings, and PCR genomic sequencing	Huong et al. (2024)
Poland	5% genetic variance (VP2 and VP3) of the Polish GPV strains with other strains. Besides, differences in amino acid sequence in Polish GPV and MDPV FM strains.	Goose embryo fibroblast cells and PCR genomic sequencing	Wozniakowski et al. (2009a)
	A significant correlation between age of the infected birds, signs, and DNA copy number of GPV and MDPV in 13 geese and 3 Muscovy ducks flocks.	Real-time PCR	Wozniakowski et al. (2012)

Country	Findings	Methods of detection	Reference
Poland	The incidence of TuPV and ChPV were 29.4% and 22.2%, respectively from 10 faecal swabs/flock (197, 1-19-week-old turkey and 45, 3-17-week-old chicken flocks). A clear division into ChPV-like, TuPV-like and unrecognized TuPV-LUB strains. The novel group showed 50.6-64.5% identity to the prototype chicken and turkey parvovirus.	PCR genomic sequencing	Domanska-Blicharz <i>et al</i> . (2012)
	Parvovirus was morphologically identified in the intestine of young turkeys with stunting, diarrhea, and increased mortality.	Histopathology and electron microscopy	Trampel <i>et al</i> . (1983)
United States of America	MDPV and its specific antibodies were detected in 1-4-week-old Muscovy ducks had inability to walk, high mortality rate, pale muscles and myocardium, fibrinous perihepatitis, and ascites. The virus showed 82.3% homologous with Derzsy's disease virus.	Embryonated Muscovy duck eggs, electron microscopy, PCR, immuno-electron microscopy, ELISA, immunofluorescence, and PCR genomic sequencing	Woolcock et al. (2000)
	Parvo virus was isolated from the spleen, liver, heart, skeletal muscle, and intestine of ducks showing locomotor dysfunction, 40-60% morbidity, and 10-40% mortality. The fragment of MDPV showed 84.5% sequence identity with similar and 84.6% identity with the GPV isolates.	Embryonated Muscovy duck eggs, MDEF, electron microscopy, and PCR genomic sequencing	Poonia <i>et al</i> . (2006)
	Out of 80 fecal samples, 41 were positive for parvovirus and 20 of 35 from non-light turkey syndrome (LTS) flocks were also positive. 98-100% identity between LTS and non-LTS samples except for one divergent TuPV strain.	PCR genomic sequencing	Sharafeldin <i>et</i> al. (2017)
Hungary	The amino acid sequence of fragment A (GPV-VP3 gene) was identical and represented Hungarian, West-European, and Asian strains. However, fragment B (upstream of the VP3 gene) showed a different clustering pattern among the Hungarian strains.	PCR genomic sequencing	Tatár-Kis <i>et al.</i> (2004)
	Parvovirus from SBDS of mule duck belonged to GPV-related group of waterfowl. Infections of 1-day-old mule ducks with a strain D176/02 from SBDS of mule ducks was reproduced.	Embryonated Muscovy duck eggs, conventional and PCR genomic sequencing, and ELISA	Palya <i>et al</i> . (2009)

Country	Findings	Methods of detection	Reference
Hungary	ChPV and TuPV in intestines of 15 and 2 chicken and 2 turkey flocks, respectively showed enteritis, lymphoid organs atrophy, and virus replication in the intestine, bursa of Fabricius, liver, and pancreas.	Histopathology, indirect immunohistochemistry, and PCR genomic sequencing	Palade <i>et al</i> . (2011)
France	A single-stranded DNA of about 5-300 bases with terminal palindromic hairpins (91, 78, and 58 kDa). The complementary DNA strands were encapsidated.	SDS-PAGE and partial analysis of DNA	Le Gall- Recule & Jestin (1994)
Sweden	GPV in a goose flock had increased mortality (more than 90%). Isolated virus was closely related to strains of Poland and the United Kingdom, but less homology with those of Hungary and Asia.	Embryonated eggs, serology, and PCR	Jansson <i>et al</i> . (2007)
Turkey	GPV in the liver, spleen, and intestine of 9 goslings showed dysphagia, bilateral ocular swelling and discharge, and diarrhea.	Conventional and real-time PCR	Bulut <i>et al</i> . (2021)
	GPV in geese flocks with decreased feed intake, increased water consumption, whitish diarrhea, feather disorder, retardation of growth, nasalocular discharge, death up to 50%, ascites, and swelling of the liver and spleen. The VP3 showed similarity (98.90%) with Polish and Taiwan strains.	Real-time PCR	Kardoğan <i>et al.</i> (2021)
	Increasing the antibody titers 4 weeks post vaccination with GPV/MDPV in Muscovy ducks and SPF chicks.	Muscovy ducklings, SPF chicks, SPF ECEs, and ELISA	Ramadan <i>et al.</i> (2019)
Egypt	GPV in mule ducks with retardation of growth, atrophy of the beak, diarrhea, and paralysis with mortality and morbidity rates of 2-8% and 20-50%, respectively.	Embryonated Muscovy duck eggs, DEF, ELISA, and bovine sperm agglutination test	Saleh & Khodier (2020)
	Mortality rate (20%), morbidity rate (70%), growth retardation, and decreasing performance in 3-4 weeks-old mule and Pekin duckling. A NGPV was identified.	Duck liver cells and PCR genomic sequencing	Soliman <i>et al</i> . (2020)

Country	Findings	Methods of detection	Reference
	6 out of 12 duck flocks were positive GPV. 5 isolates were NGPV and clustered with Chinese and Egyptian NGPV strains and 1 strain clustered with the Australian duck adeno-		Eid <i>et al.</i> (2023)
Egypt	associated virus DA. GPV was 100% identical to the strains isolated in 2023 in Egypt, but 98.1% identical with the isolated strain in 2018.	Embryonated duck eggs, DEF, ELISA, and PCR genomic sequencing	Abd Elaziz, et al. (2024)
	Out of 42 samples, 4 were positive MDPV (9.5%).		Hussein <i>et al</i> . (2024)

GPV= Goose parvo virus NGPV= Novel goose parvo virus

ChPV= chicken parvovirus

TuPV= Turkey parvovirus MD= Muscovy duck

rMDPV= Recombinant Muscovy duck parvovirus

CV= Cherry Valley MDEs= Muscovy duck embryos SPF= Specific pathogen free DEF= Duck embryo fibroblast

PCR= Polymerase Chain Reaction ELISA= Enzyme-Linked Immunosorbent assay ITRs= Inverted terminal repeats SBDS= Short beak and dwarfism syndrome

SDS-PAGE= Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

CONCLUSIONS

Infection with PV is regarded as an important threat for goose and ducks especially young ages. The virus can cause economic losses in the form of growth retardation and mortalities. Accordingly, more attention should be gained to focus on this infection regarding the disease diagnosis and prevention strategies. Trial studies to produce hyperimmune protective serum or novel recombinant PV vaccines for prevention of waterfowl should be given in consideration.

CONFLICT OF INTEREST

The author declared that there is no conflict of interest.

REFERENCES

Abd Elaziz, N.; Ali, N.; Maarouf, M.; Saleh, A.; Eltarabili, M. and Elsayed, E.

(2024): Molecular identification of parvovirus in ducks in Egypt. Suez Canal Veterinary Medical Journal, SCVMJ, 2, 333-340. https://dx.doi.org/10.21608/scvmj.202 4.319467.1178

Abd El-Ghany, W.A. (2021): A comprehensive review on the common emerging viral diseases

affecting ducks with special emphasis on Egyptian situation. *Slovenian Veterinary Research*, 58, 259-570. https://doi.org/10.26873/SVR-1445-2021

Bi, J.M..; Tian, F.L.; Li, Y.P. and Zhu, R.L. (2008): Detection of goose parvovirus distribution in geese by fluorescence quantitative PCR assay. Chinese Journal of Preventive Veterinary Medicine, 30, 64-67.

Bian, G.; Ma, H.; Luo, M.; Gong, F.; Li, B.; Wang, G.; Mohiuddin, M.; Liao, M. and Yuan, J. (2019): Identification and genomic analysis of two novel duck

- origin GPV-related parvovirus in China. *BMC Veterinary Research*, 15, 88. https://doi.org/10.1186/s12917-019-1833-9
- Bidin, M.; Lojkić, I.; Bidin, Z.; Tiljar, M. and Majnarić, D. (2011): Identification and phylogenetic diversity of parvovirus circulating in commercial chicken and turkey flocks in Croatia. Avian Diseases, 55, 693-696. https://doi.org/10.1637/9746-032811-reg.1
- Brown, K.E.; Green, S.W. and Young, N.S. (1995): Goose parvovirus-an autonomous member of the dependovirus genus? Virology, 210, 283-291.
 - https://doi.org/10.1006/viro.1995.1345
- Bulut, O.; Dik, I.; Aslim, H.P.; Avci, C.; Palanci, H.S.; Akbaba, S.; Çivril, V. and Hadimli, H.H. (2021): Molecular characterization of goose parvovirus in geese of Turkey. Pesquisa Veterinária Brasileira, 41, e06903. https://doi.org/10.1590/1678-5150-PVB-6903
- Cao, X. (2019): Prokaryotic expression of novel goose parvovirus VP3 protein and development of fluorescent quantitative PCR detection method. Master's thesis, Inner Mongolia: Inner Mongolia Normal University.
- Chen, Y.; Lin, T.; Hu, Q.; Li, Y.; Zhou, W. and Wu, Z. (1993): Isolation and identification of a Muscovy duckling parvovirus. Chinese Journal of Virology, 9, 228-234.
- Chen, S.; Hu, Q.; Cheng, X.; Li, Y. and Cheng, Y. (2002): Selection of attenuated vaccine strain of goose parvovirus. Chinese Journal of Preventive Veterinary Medicine, 24, 286-288.
- Chen, H.; Dou, Y.; Tang, Y.; Zhang, Z.; Zheng, X.; Niu, X. and Diao, Y. (2015): Isolation and genomic characterization of a duck-origin GPV related parvovirus from Cherry Valley ducklings in China. PLoS One, 10, e0140284. https://doi.org/10.1371/journal.pone.0 140284

- Chen, H.; Tang, Y.; Dou, Y.; Zheng, X. and Diao, Y. (2016a): Evidence for vertical transmission of novel duck-origin goose parvovirus-related parvovirus. Transboundary and Emerging Diseases, 63, 243-247. https://doi.org/10.1111/tbed.12487
- Chen, S.; Wang, S.; Cheng, X.; Xiao, S.; Zhu, X.; Lin, F.; Wu, N.; Wang, J.; Huang, M.; Zheng,
- M.; Chen, S. and Yu, F. (2016b): Isolation and characterization of a distinct duckorigin goose parvovirus causing an outbreak of duckling short beak and dwarfism syndrome in China. Archives of Virology, 161, 2407-2416. https://doi.org/10.1007/s00705-016-2926-4
- Chen, Y.; Afumba, R.; Pang, F.; Yuan, R. and Dong, H. (2021): Advances in research on genetic relationships of waterfowl parvoviruses. Journal of Veterinary Research, 65, 391-399. https://doi.org/10.2478%2Fjvetres-2021-0063
- Cheng, Y.Q.; Hu, Q.L.; Li, Y.Y.; Chen, S.Y. and Lin, T.L. (1997): Studies on diagnostic techniques and reagents of Muscovy Duckling parvovirus. Chinese Journal of Veterinary Science, 5:434-436.
- Chu, C.Y.; Pan, M.J. and Cheng, J.T. (2001): Genetic variation of the nucleocapsid genes of
- waterfowl parvovirus. *Journal of Veterinary Medical Science*, 63, 1165-1170. https://doi.org/10.1292/jvms.63.1165
- Christensen, J. and Tattersall, P. (2002):
 Parvovirus initiator protein NS1 and RPA coordinate replication fork progression in a reconstituted DNA replication system. Journal of Virology, 76, 6518-6531. https://doi.org/10.1128/JVI.76.13.6518 -6531.2002
- Cotmore, S.F.; Agbandje-McKenna, M.; Canuti, M.; Chiorini, J.A.; Eis-Hubinger, A.M.; Hughes, J.; Mietzsch, M.; Modha, S.; Ogliastro, M.; Pénzes, J.J.; Pintel, D.J.; Qiu, J.; Soderlund-Venermo, M.; Tattersall, P. and Tijssen, P. (2019): Ictv Report Consortium. 2019. ICTV virus

- taxonomy profile: Parvoviridae. *Journal of General Virology*, 100, 367-368.
- https://doi.org/10.1099/jgv.0.001212
- Derzsy, D.A. (1967): Viral disease of goslings. I. Epidemiological, clinical, pathological and aetiological studies. Acta Veterinaria Academiae Scientiarum Hungaricae, 17, 443-448. https://doi.org/10.1111/tbed.12487
- Domanska-Blicharz, K.; Jacukowicz, A.; Lisowska, A. and Minta, Z.G. (2012): Genetic characterization of parvoviruses circulating in turkey and chicken flocks in Poland. Archives of Virology, 157, 2425-2430. https://doi.org/10.1007%2Fs00705-012-1446-0
- Dong, H.V.; Tran, G.T.H.; Nguyen, H.T.T.; Nguyen, T.M.; Trinh, D.Q.; Le, V.P.; Choowongkomon, K. and Rattanasrisomporn, J. (2022): Epidemiological analysis and genetic characterization of parvovirus in ducks in Northern Vietnam reveal evidence of recombination. Animals (Basel), 12, 2846.
 - https://doi.org/10.3390/ani12202846
- Eid G.S.H.; Hossam Sh. E.; Ahlam E.Y.; Gomaa Y. E.; Marwa A. A.; Moataz M. E. and Ayman H. A. (2023): Detection and characterization of parvovirus associated with retarded growth in ducks in Al-Beheira Governorate, Egypt. Egyptian Journal of Animal Health, 3, 84-98.
- Fan, W.; Sun, Z.; Shen, T.; Xu, D.; Huang, K.; Zhou, J.; Song, S. and Yan, L. (2017):
 Analysis of evolutionary processes of species jump in waterfowl parvovirus.
 Frontiers in Microbiology, 8, 1-9. https://doi.org/10.3389/fmicb.2017.00 421
- Fang, D. (1962): Recommendation of gosling plague. China Animal Husbandry and Veterinary Medicine, 8, 19-20. (In Chinese).
- Fang, D.; Wang, Y.; Zheng, Y.; Zhou, Y.; Jiang, M. and Dong, G. (1981): Studies on the aetiology and specific control of gosling plague. Scientia Agricultura Sinica, 4, 1-8.

- Fang, D.; Wang, Y.; Zhen, Y.; Zhou, Y.; Jiang, M. and Dong, G. (1987): Studies on the aetiology and specific control of gosling plaque. Scientia Agricultura Sinica, 4, 1-9.
- Fournier, D. and Gaudry, D. (1992): Recent discoveries on waterfowl pathology: A new parvovirus of Muscovy ducks in France-Field vaccination trials. In Proceedings of the EEC Meeting Virus Diseases of Poultry, New and Evolving Pathogens; Brussels, Belgium, European Commission: Brussels, Belgium, 1992; pp. 183–194.
- Glávits, R.; Zolnai, A.; Szabó, E.; Ivanics, E.; Zarka, P.; Mató, T. and Palya, V. (2005): Comparative pathological studies on domestic geese (Anseranser domestica) and Muscovy ducks (Cairina moschata) experimentally infected with parvovirus strains of goose and Muscovy duck origin. Acta Veterinaria Hungarica, 53, 73-89. http://doi.org/10.1556/avet.53.2005.1.
- Gough. R.E. (1984): Application of the agar gel precipitation and virus neutralization tests to the serological study of goose parvovirus. Avian Pathology, 13, 501-509. https://doi.org/10.1080/030794584084 18551
- Gough, R.E. (1991): Goose parvovirus infection. Diseases of Poultry, 9th edn, In Calnek, B.W.; Barnes Beard, C.W.; Reid, W.M.; Yoder, Jr H.W. Ames: Iowa State University Press, pp. 684-690.
- Gough, R.E. (2008): Parvovirus infections. In Diseases of Poultry, 12th edn. In Saif, Y.M.; Fadly, A.M.; Glissen, J.R.; Mcdougald, L.R.; Nolan, L.K.; Swayne, D.E. Wiley Blackwell. Pp. 397-404.
- Gough, D.; Ceeraz, V. and Cox, B. (2005):
 Isolation and identification of goose parvovirus in the UK. Veterinary Record, 156, 424. https://doi.org/10.1136/vr.156.13.424
- Hoekstra, J.; Smit, T. and van Brakel, C. (1973): Observations on the host range and control of

- goose virus hepatitis. *Avian Pathology*, 2, 169-178. https://doi.org/10.1080/030794573093 53794
- Huang, Y.; Wan, C.; Fu, Q.; Chen, H.; Fu, G.; Chen, C.; Cheng, L.; Cheng, X.; Shi, S. and Lin, J. (2015): The identity and clinic symptoms of new genotype Muscovy duck parvovirus.
- Fujian Journal of Agricultural Sciences, 30, 442-445. https://doi.org/10.19303/j.issn.1008-0384.2015.05.004
- Huong, N.T.; Hieu, D.V.; Bich, N.T.; Khanh, T.V.; Ba, N.T.; Xuan, C.T.N.; Hien, Q.T.M.; Thai, T.H. and Huong, C.T.T. (2024). Isolation and genetic characterization of waterfowl parvovirus in ducks in Northern Vietnam. Veterinary World, 17, 981-987. https://doi.org/10.14202/vetworld.202
- Hussein, A.H.; Eid, A.A.; Hassaan, M.N.; Orabi, A. and Shawki, M.M. (2024): Investigation of four enteric viruses in diarrheic ducks in Egypt during 2021-2022. Journal of Advanced Veterinary Research, 14, 491-495.

4.981-987

- Irvine, R. and Holmes, P. (2010): Diagnosis and control of goose parvovirus.

 Practice, 32, 382-386. https://doi.org/10.1136/inpract.32.8.38
- Isidan, H.; Turan, T.; Atasoy, M.O. and Coskun, A. (2021): Molecular analysis of goose parvovirus field strains from a Derzsy's disease outbreak reveals local European-associated variants. Archives of Virology, 166, 1931-1942. https://doi.org/10.1007/s00705-021-05086-y
- Jansson, D.S.; Feinstein, R.; Kardi, V.; Mató, T. and Palya, V. (2007): Epidemiologic investigation of an outbreak of goose parvovirus infection in Sweden. Avian Diseases, 51, 609-613. https://doi.org/10.1637/0005-2086(2007)51[609:EIOAOO]2.0.CO;2
- Jestin, V.; Le Bras, M.; Cherbonnel, M.; Le Gall-Recule, G. and Bennejean, G. (1991): Demonstration of very pathogenic parvoviruses (Derzsy

- disease virus) in Muscovy duck farm. Recueil de Medecine Veterinaire (France), 167, 849-857.
- Ji, J.; Xie, Q.; Chen, C.; Bai, S.; Zou, L.; Zuo, K.; Cao, Y.; Xue, C.; Ma, J. and Bi, Y. (2010): Molecular detection of Muscovy duck parvovirus by loopmediated isothermal amplification assay. Poultry Science, 89, 477-483. https://doi.org/10.3382/ps.2009-00527
- Jin, M.; Feng, C.; Wang, X. and Zhang, D. (2019): Molecular evidence of goose-parvovirus-related abnormal molting in Pekin ducks. Archives of Virology, 164, 2837-2841. https://doi.org/10.1007/s00705-019
 - https://doi.org/10.1007/s00705-019 04393-9
- Ju, H.; Wei, N.; Wang, Q.; Wang, C.Y.; Jing, Z.Q.; Guo, L.; Liu, D.; Gao, M.; Ma, B. and Wang, J. (2011): Goose parvovirus structural proteins expressed recombinant baculoviruses selfassemble into virus-like particles with strong immunogenicity in goose. Biochemical and Biophysical Research Communications, 409, 131-136. https://doi.org/10.1016/j.bbrc.2011.04. 129
- Kailasan, S.; Agbandje-McKenna, M. and Parrish, C.R. (2015): Parvovirus family conundrum:
- What makes a killer? *Annual Review of Virology*, 2, 425-450. https://doi.org/10.1146/annurev-virology-100114-055150
- Kapgate, S.; Kumanan, K.; Vijayarani, K. and Barbuddhe, B. (2018): Avian parvovirus: Classification, phylogeny, pathogenesis and diagnosis. Avian Pathology, 47, 536-545. https://doi.org/10.1080/03079457.2018. 1517938
- Kardoğan, Ö.; Müştak H.K. and Müştak, İ.B. (2021): The first detection and characterization of goose parvovirus (GPV) in Turkey. Tropical Animal Health and Production, 53, 36. https://dx.doi.org/10.1007/s11250-020-02463-8
- Kardi, V. and Szegletes, E. (1996): Use of ELISA procedures for the detection of Derzsy's disease virus of geese and of antibodies produced against it. Avian

- *Pathology*, 25, 25-34. https://doi.org/10.1080/030794596084 19117
- Kisary, J. (1977): Immunological aspects of Derzsy's disease in goslings. Avian Pathology, 6,
- 327-334. https://doi.org/10.1080/030794577084 18242
- Kisary, J.; Derzsy, D. and Meszaros, J. (1978): Attenuation of the goose parvovirus strain B. Laboratory and field trials of the attenuated mutant for vaccination against Derzsy's disease. Avian Pathology, 7, 397-406. https://doi.org/10.1080/030794578084 18293
- Kisary, J.; Avalosse, B.; Miller-Faures, A. and Rommelaere, J. (1985): The genome structure of a new chicken virus identifies it as a parvovirus. Journal of General Virology, 66, 2259-2263. https://doi.org/10.1099/0022-1317-66-10-2259
- Le Gall-Recule, G. and Jestin, V. (1994):
 Biochemical and genomic characterization of Muscovy duck parvovirus. Archives of Virology, 139, 121-131.
 - https://doi.org/10.1007/bf01309459
- Le Gall-Reule, G.; Jestin, V.; Chagnaud, P., Blanchard, P. and Jestin, A. (1999): Expression of Muscovy duck parvovirus capsid proteins (VP2 and VP3) in baculovirus expression system and demonstration of immunity induced by the recombinant proteins. Journal of General Virology, 77, 2159-2163. https://doi.org/10.1099/0022-1317-77-9-2159
- Lee, J.W.; Lin, Y.M.; Yen, T.Y.; Yang, W.J. and Chu, C.Y. (2010): CpG oligodeoxynucleotides
- containing GACGTT motifs enhance the immune responses elicited by a goose parvovirus vaccine in ducks. *Vaccine*, 28, 7956-7962. https://doi.org/10.1016/j.vaccine.2010. 09.072.
- Lee, J.W.; Lin, Y.M.; Liu, C.H.; Ke, G.M. and Chu, C.Y. (2016): Passive and protective immunity in ducklings elicited by a parvovirus subunit vaccine

- with CpG adjuvant. *Taiwan Veterinary Journal*, 42, 1-6.
- Li, M. and Yu, T. (2013): Immunologic cross-reactivity between Muscovy duck parvovirus and goose parvovirus on the basis of epitope prediction. Brazilian Journal of Microbiology, 44, 519-521. https://doi.org/10.1590/s1517-83822013000200031
- Li, C.; Li, Q.; Chen, Z. and Liu, G. (2016): Novel duck parvovirus identified in Cherry Valley
- ducks (Anas platyrhynchos domesticus), China. Infection, Genetics and Evolution, 44, 278-280. https://doi.org/10.1016/j.meegid.2016. 07.020
- Limn, C.K.; Yamada, T. and Nakamura, M. (1996): Detection of goose parvovirus genome by
- polymerase chain reaction: distribution of goose parvovirus in Muscovy ducklings. *Virus Research*, 42, 167-172. https://doi.org/10.1016/0168-1702(95)01310-5
- Lin, S.; Yu, X.; Chen, B. and Chen, B. (1991):
 Diagnosis of a novel viral disease of
 Muscovy ducks. Chinese Journal of
 Preventive Veterinary Medicine, 2, 2526.
- Liu, P.; Zhang, J.; Chen, S.; Wang, M. and Cheng, A. (2017): Genome sequence of a goose parvovirus strain isolated from an ill goose in China. Genome Announcement, 5, e00227-17. https://dx.doi.org/10.1128/genomeA.0 0227-17
- Liu, Y.Y.; Yang, W.T.; Shi, S.H.; Li, Y.J.; Zhao, L.; Shi, C.W.; Zhou, F.Y.; Jiang, Y.L.; Hu, J.T.; Gu, W.; Yang, G.L. and Wang, C.F. (2017): Immunogenicity of recombinant Lactobacillus plantarum NC8 expressing goose parvovirus VP2 gene in BALB/c mice. Journal of Veterinary Science, 18, 159-167. https://doi.org/10.4142/jvs.2017.18.2.159
- Lu, Y.S.; Lin, D.F.; Lee, Y.L.; Liao, Y.K. and Tsai, H.J. (1993): Infectious bill atrophy syndrome
- caused by parvovirus in a co-outbreak with duck viral hepatitis in ducklings in

- Taiwan. *Avian Diseases*, 37, 591-596. https://doi.org/10.2307/1591694
- Maurin-Bernaud, L.; Merdy, O.; Le-gros, F.X. and Goutebroze, S. (2013): Efficacité d'un nouveau parvovirus atténué contre la parvovirose du canard de barbarie et la maladie de Derzsy. Actes des 10èmes Journées de la recherche avicole et palmipèdes à foie gras du 26–28 mars 2013. La Rochelle, France. pp 284–288.
- Maurin-Bernaud, L.; Goutebroze, S.; Merdy, O.; Chanay, A.; Cozette, V. and Le Gros, F.X. (2014): Efficacy of a new attenuated duck parvovirosis vaccine in Muscovy ducks. Veterinary Record, 175, 281. https://doi.org/10.1136/vr.102584
- Murgia, M.V.; Rauf, A.; Tang, Y.; Gingerich, E.; Lee, C.W. and Saif, Y.M. (2012):

 Prevalence of parvoviruses in commercial turkey flocks. Avian Diseases, 56, 744-749. https://doi.org/10.1637/10076-020812-resnote.1
- Naeger, L.; Cater, J. and Pintel, D. (1990): The small nonstructural protein (NS2) of the parvovirus minute virus of mice required for efficient DNA replication and infectious virus production in a cell-type-specific manner. Journal of Virology, 64, 6166https://doi.org/10.1128/jvi.64. 6175. 12.6166-6175.1990
- Ning, K.; Wang, M.; Qu, S.; Lv, J.; Yang, L. and Zhang, D. (2017): Pathogenicity of Pekin duck- and goose-origin parvoviruses in Pekin ducklings. Veterinary Microbiology, 210, 17-23. https://doi.org/10.1016/j.vetmic.2017.08.020
- Ning, K.; Liang, T.; Wang, M.; Dong, Y.; Qu, S. and Zhang D. (2018): Pathogenicity of a variant
- goose parvovirus, from short beak and dwarfism syndrome of Pekin ducks, in goose embryos and goslings. *Avian Pathology*, 47, 391-399. https://dx.doi.org/10.1080/03079457.2 018.1459040
- Palade, E.A.; Kisary, J.; Benyeda, Z.; Mandoki, M.; Balka, G.; Jakab, C.; Vegh, B.; Demeter, Z. and Rusvai, M.

- (2011): Naturally occurring parvoviral infection in Hungarian broiler
- flocks. *Avian Pathology*, 40, 191-197. https://doi.org/10.1080/03079457.2011 .553213
- Palya, V.J. (2011). Major Viral Diseases of Waterfowl and Their Control. Director of Scientific Support and Investigation Laboratory of CevaPhylaxia Veterinary Biologicals Co.in Budapest, the British Veterinary Poultry Association (BVPA).
- Palya, V.J. (2013): Parvovirus infections of water fowl. In Diseases of Poultry, 13th ed., John Wiley & Sons: Hoboken NJ, Ames, I.A., USA, pp. 444–451.
- Palya, V.; Zolnai, A.; Benyeda, Z.; Kovács, E.; Kardi, V. and Mató, T. (2009):
 Short beak and dwarfism syndrome of mule duck is caused by a distinct lineage of goose parvovirus. Avian Pathology, 38, 175-180. https://doi.org/10.1080/030794509027 37839
- Palya, V.; Zolnai, A. and Felföldi, B. (2022):
 Immunogenic cross-reactivity between goose and muscovy duck parvoviruses:
 Evaluation of cross-protection provided by mono- or bivalent vaccine.

 Vaccines, 10,1255.
 https://doi.org/10.3390/
 vaccines10081255
- Poonia, B.; Dunn, P.A.; Lu, H.; Jarosinski, K.W. and Schat, K.A. (2006): Isolation and molecular characterization of a new Muscovy duck parvovirus from Muscovy ducks in the USA. Avian Pathology, 35, 435-441. https://doi.org/10.1080/030794506010 09563
- Ramadan, A.; Elsafty, M.; Abd-elkhalek, M. and Suliman, R.A. (2019): Comparative immune evaluation of inactivated Derzsy virus disease vaccine in SPF chicken and Muscovy duck. Benha Veterinary Medical Journal, 36, 12-22. https://doi.org/10.21608/bvmj.2019.98 464
- Saleh, A.A. and Khodier, M.H. (2020):

 Preliminary studies on the virus causing outbreak of duckling short beak and dwarfism syndrome (SBDS) in Egypt.

 Journal of Applied Veterinary

- Sciences, 5, 55-60. https://dx.doi.org/10.21608/javs.2020. 118004
- Samorek-Salamonowicz, E.; Budzyk, J. and Tomczyk, G. (1995): Syndrom "karlowatosci I skro'conego dzioba" u kaczek mulard. Zycie Weterynaryjne, 2, 56-57.
- Schettler, C.H. (1971): Virus hepatitis of geese. II. Host range of goose hepatitis virus. Avian Diseases, 15, 809-823. https://doi.org/10.2307/1588871
- Shao, H., Lv, Y.; Qin, A.J.; Qian, K. and Ye, J.Q. (2015): Genetic diversity of VP3 of goose parvovirus isolated from Southeastern China during 2012-2013. Molecular Genetics, Microbiology and Virology, 30(4): 233-236. https://dx.doi.org/10.3103/
- Sharafeldin, T.A.; Singh, A.; Abdel-Glil, M.Y.; Mor, S.K.; Porter, R.E. and Goyal, S.M. (2017):

 Prevalence of parvovirus in Minnesota turkeys. *Poultry Science*, 96, 320-324. https://doi.org/10.3382/ps/pew283
- Shehata, A.A.; Gerry, D.M.; Heenemann, K.; Halami, M.Y.; Tokarzewski, S.; Wencel, P. and Vahlenkamp, T.W. (2016): Goose Parvovirus and Circovirus Coinfections in Ornamental Ducks. Avian Diseases, 60, 516-522. https://doi.org/10. 1637/11335-112615-Case.
- Shien, J.H.; Wang, Y.S.; Chen, C.H.; Shieh, H.K.; Hu, C.C. and Chang, P.C. (2008): Identification of sequence changes in live attenuated goose parvovirus vaccine strains developed in Asia and Europe. Avian Pathology, 37, 499-505.

 https://doi.org/10.1080/030794508023
 - https://doi.org/10.1080/030794508023 56979
- Sirivan, P.; Obayashi, M.; Nakamura, U.; Tantaswasdi, U. and Takehara, K. (1998): Detection of goose and Muscovy duck parvoviruses using polymerase chain reaction-restriction enzyme fragment length polymorphism analysis. Avian Diseases, 42, 133-139. https://doi.org/10.2307/1592585
- Soliman, M.A.; Erfan, A.M.; Samy, M.; Mahana, O. and Nasef, S.A. (2020): Detection of novel goose parvovirus

- disease associated with short beak and dwarfism syndrome in commercial ducks. *Animals (Basel)*, 10, 1833. https://doi.org/10.3390/ani10101833.
- Takehara, K.; Hyakutake, K.; Imamura, T.; Mutoh, K. and Yoshimura, M. (1994): Isolation, identification, and plaque titration of parvovirus from Muscovy ducks in Japan. Avian Diseases, 38, 810-815. https://doi.org/10.2307/1592 118
- Takehara, K.; Ohshiro, T.; Matsuda, E.; Nishio, T.; Yamada, T. and Yoshimura, M. (1995): Effectiveness of an inactivated goose parvovirus vaccine in Muscovy ducks. Journal of Veterinary Medical Science, 57, 1093-1095. https://doi.org/10.1292/jyms.57.1093
- Takehara, K.; Saitoh, M.; Kiyono, M. and Nakamura, M. (1998): Distribution of attenuated goose parvoviruses in Muscovy ducklings. Journal of Veterinary Medical Science, 60, 341-344. https://doi.org/10.1292/jvms.60.341
- Takehara, K.; Nakata, T.; Takizawa, K.; Limn, C.K.; Mutoh, K. and Nakamura, M. (1999): Expression of goose parvovirus VP1 capsid protein by a baculovirus expression system and establishment of fluorescent antibody test to diagnose goose parvovirus infection. Archives of Virology, 144, 1639-1645.
 - https://doi.org/10.1007/s00705005061
- Tarasiuk, K.; Holec-Gąsior, L.; Ferra, B. and Rapak, A. (2019): The development of an indirect ELISA for the detection of goose parvovirus antibodies using specific VP3 subunits as the coating antigen. BMC Veterinary Research, 15, 274.
 - https://dx.doi.org/10.1186/s12917-019-2027-
- Tatár-Kis, T.; Mató, T.; Markos, B. and Palya, V. (2004): Phylogenetic analysis of Hungarian goose parvovirus isolates and vaccine strains. Avian Pathology, 33, 438-444. https://doi.org/10.1080/03079450410001724067
- Tilki, M. and Saatci, M. (2016): Geese breeding in the world and Turkey.

- Türkiye Klinikleri Dölerme ve Suni Tohumlama, 2, 27-34.
- Ting, C.H.; Lin, C.Y.; Huang, Y.C.; Liu, S.S.; Peng, S.Y.; Wang, C.W. and Wu, H.Y. (2021): Correlation between goose circovirus and goose parvovirus with gosling feather loss disease and goose broke feather disease in southern Taiwan. Journal of Veterinary Sciences, 22, e1. https://doi.org/10.4142/jvs.2021.22.e1
- Trampel, D.W.; Kinden, D.A.; Solorzano, R.F. and Stogsdill, P.L. (1983): Parvovirus-like enteropathy in Missouri turkeys. Avian Diseases, 27, 49-54.

https://doi.org/10.2307/1590371

- Tullis, G.; Burger, L. and Pintel, D. (1993):
 The minor capsid protein VP1 of the autonomous
- parvovirus minute virus of mice is dispensable for encapsidation of progeny single-stranded DNA but is required for infectivity. *Journal of Virology*, 67, 131-141. https://doi.org/10.1128/jvi.67.1.131-141.1993
- Villatte, D. (1989): Maladie de Derzsy ou hepatonephrite-ascite de l'oison et du caneton de Barbarie (h.n.a.) ou parvovirose. In Manuel pratique des maladies des palmipedes, 1st dn
- (pp. 114-117). Paris: Nouvelles Editions de Publications Agricoles.
- Walker, P.J.; Siddell, S.G.; Lefkowitz, E.J.; Mushegian, A.R.; Dempsey, D.M.; Dutilh, B.; Harrach, B.; Harrison, R.L.; Hendrickson, R.C.; Junglen, S.; Nowles. *N.J.*; Kropinski, Krupovic, M.; Kuhn, J.H.; Nibert, M.; Rubino. L.: Sabanadzovic. Simmonds, P.; Varsani, A.; Zerbini, F.M.and Davison, A.J. (2019): Changes to virus taxonomy and the international of code virus classification and nomenclature ratified by the international committee on taxonomy of viruses. Archives of Virology, 164, 2417-2429. https://doi.org/10.1007/s 00705-019-04306-w
- Wan, C.; Huang, Y.; Cheng, L.; Fu, G.; Shi, S.; Chen, H.; Peng, C.; Lin, F. and Lin,

- J. (2011): The development of a rapid SYBR Green I-based quantitative PCR for detection of duck circovirus. Virology Journal, 8, 465. https://doi.org/10.1186/1743-422x-8-465
- Wan, C.H.; Huang, Y.; Shi, S.H.; Fu, G.H.; Cheng, L.F.; Chen, H.M.; Fu, Q.L.; Chen, C.T. and Hu, K.H. (2016a): Complete genome sequence of goose parvovirus isolated from Anser cygnoides in China. Kafkas Universitesi Veteriner Fakultesi Dergisi, 22. 155-158. https://dx.doi.org/10.9775/kvfd.2015.1 4242
- Wan, C.; Fu, Q.; Chen, C.; Fu, G.; Chen, H.; Cheng, L.; Shi, S. and Huang, Y. (2016b): Molecular characterization of the genome for recombinant Muscovy duck parvovirus strain FJM3. Chinese Journal Veterinary Science, 36, 1836-1841.
- Wan, C.; Chen, C.; Cheng, L.; Chen, H.; Fu, Q.; Shi, S.; Fu, G.; Liu, R. and Huang, Y. (2018): Specific detection of Muscovy duck parvovirus infection by TaqMan-based real-time PCR assay. BMC Veterinary Research, 14, 1-8. https://doi.org/10.1186/s12917-018-1600-3
- Wan, C.; Liu, R.; Chen, C.; Cheng, L.; Shi, S.; Fu, G.; Chen, H.; Fu, Q. and Huang, Y. (2019a):

 Novel goose parvovirus in domestic Linwu sheldrakes with short beak and dwarfism syndrome. China. Transboundary and Emerging Diseases, 66, 1834-1839. https://doi.org/10.1111/tbed.13280
- Wan, C.; Chen, C.; Cheng, L.; Liu, R.; Shi, S.; Fu, G.; Chen, H.; Fu, Q. and Huang, Y. (2019b): Specific detection and differentiation classic of goose parvovirus and novel goose parvovirus by TaqMan real-time PCR assay, coupled with host specificity. BMC Veterinary Research, 15, 389-396. https://doi.org/10.1186/s12917-019-2090-7
- Wang, C.Y.; Shieh, H.K.; Shieh, J.H.; Ko, C.Y. and Chang, P.C. (2005): Expression of capsid proteins and non-

- structural proteins of waterfowl parvoviruses in *Escherichia coli* and their use in serological assays. *Avian Pathology*, 34, 376-382. https://doi.org/10.1080/030794505002 68591
- Wang, S.; Cheng, X.; Chen, S.; Zhu, X.; Chen, S.; Lin, F. and Li, Z. (2013): Genetic characterization of a potentially novel goose parvovirus circulating in Muscovy duck flocks in Fujian Province, China. Journal of Veterinary Medical Science, 75, 1127-1130. https://doi.org/10.1292/jvms.12-0527
- Wang, J.; Duanm, J.; Meng, X.; Gong, J.; Jiang, Z. and Zhu, G. (2014a): Cloning of the genome of a goose parvovirus vaccine strain SYG61v and rescue of infectious virions from recombinant plasmid in embryonated goose eggs. Journal of Virological Methods, 200, 41-46.
- Wang, Q.; Ju, H. and Li, Y. (2014b):

 Development and evaluation of a competitive ELISA using a monoclonal antibody for antibody detection after goose parvovirus virus-like particles (VLPs) and vaccine immunization in goose sera. Journal of Virological Methods, 209, 69-75. https://doi.org/10.1016/j.jviromet.2014.08.021
- Wang, J.; Duan, J.; Zhu, L.; Jiang, Z. and Zhu, G. (2015): Sequencing and generation of an infectious clone of the pathogenic goose parvovirus strain LH. Archives of Virology, 160, 711-718. https://doi.org/10.1007/s 00705-014-2319-5
- Wang, S.; Cheng, X.X.; Chen, S.Y.; Lin, F.Q.; Chen, S.L.; Zhu, X.L.; Wang, J.X.; Huang, M.Q. and Zheng, M. (2016): Phylogenetic analysis of VP1 gene sequences of waterfowl parvoviruses from the Mainland of China revealed genetic diversity and recombination. Gene, 578, 124-131. https://doi.org/10.1016/j.gene.2015.12.018.
- Wang, J.; Ling, J.; Wang, Z.; Huang, Y.; Zhu, Z. and Zhu, G. (2017): Molecular characterization of a novel Muscovy duck parvovirus isolate: evidence of

- recombination between classical MDPV and goose parvovirus strains. *BMC Veterinary Research*, 13, 327. https://doi.org/10.1186/s12917-017-1238-6
- Wang, J.; Wang, Z.; Jia, J.; Ling, J.; Mi, Q. and Zhu, G. (2019): Retrospective investigation and molecular characteristics of the recombinant Muscovy duck parvovirus circulating in Muscovy duck flocks in China. Avian Pathology, 48, 343-351. https://doi.org/10.1080/03079457.2019.1605145.
- Woolcock, P.R.; Jestin, V.; Shivaprasad, H.L.; Zwingelstein, F.; Arnauld, C.; McFarland, M.D.; Pedersen, J.C. and Senne, D.A. (2000): Evidence of Muscovy duck parvovirus in Muscovy ducklings in California. Veterinary Record, 146, 68-72. https://doi.org/10.1136/vr.146.3.68
- Wozniakowski, G.; Kozdrun, W. and Samorek-Salamonowicz, E. (2009a): Genetic variance of Derzsy's disease strains isolated in Poland. Journal of Molecular and Genetic Medicine, 3, 210-216. https://doi.org/10.4172%251747-0862.1000037
- Wozniakowski, G.; Kozdruń, W.; Samorek-Salamonowicz, E. and Król, K. (2009b): Touchdown PCR for the detection of waterfowl parvovirus. Bulletin of the Veterinary Institute in Pulawy, 53, 3-7.
- Wozniakowski, G., Samorek-Salamonowicz, E. and Kozdrun, W. (2012): Quantitative analysis of waterfowl parvoviruses in geese and Muscovy ducks by real-time polymerase chain reaction: Correlation between age, clinical symptoms and DNA copy number of waterfowl parvoviruses. BMC Veterinary Research, 8, 1-10. https://doi.org/10.1186/1746-6148-8-29
- Wu, H.C.; Lee, J.W.; Lin, J.J.; Wang, H.Y. and Chu, C.Y. (2019): A DNA priming and protein boosting immunization scheme to augment immune responses against parvovirus in ducks. Journal of Applied Microbiology, 126, 49-57. https://doi.org/10.1111/jam.14120.

- Xiao, S.; Chen, S.; Cheng, X.; Lin, F.; Wang, S.; Zhu, X.; Yu, B.; Huang, M.; Wang, J.; Wu, N.; Zheng, M.; Chen, S. and Yu, F. (2017): The newly emerging duck origin goose parvovirus in China exhibits a wide range of pathogenicity to main domesticated waterfowl. Veterinary Microbiology, 203, 252-256. https://doi.org/10.1016/j.vetmic.2017.0
 - https://doi.org/10.1016/j.vetmic.2017.0 3.012
- Yang, J.L.; Cheng, A.C.; Wang, M.S.; Pan, K.C.; Li, M.; Guo, Y.F.; Li, C.F.; Zhu, D.K.and Chen, X.Y.(2009): Development fluorescent of a quantitative real-time polymerase chain reaction assay for the detection of goose parvovirus in vivo. Virology Journal, 6. https://dx.doi.org/10.1186/1743-422X-6-142
- Yang, J.; Yang, R.; Cheng, A.; Wang, M.; Fu, L.; Yang, S.; Zhang, S.; Yang, L. and Xu, Z. (2010): A simple and rapid method for detection of goose parvovirus in the field by loopmediated isothermal amplification. Virology Journal 21, 14. https://doi.org/10.1186/1743-422x-7-14
- Yang. Y.; Sui, N.; Zhang, R.; Lan, J.; Li, P.; Lian, C.; Li, H.; Xie, Z.; and Jiang, S. (2020): Coinfection of novel goose parvovirus-associated virus and duck circovirus in feather sacs of Cherry Valley ducks with feather shedding syndrome. Poultry Science 99, 4227-4234. https://doi.org/10.1016/j.psj.2020.05.013
- Yu, T.F., Ma, B.; Gao, M.C. and Wang, J.W. (2012): Localization of linear B-cell epitopes on goose parvovirus structural protein. Veterinary Immunology and Immunopathology, 145, 522-526. https://doi.org/10.1016/j.vetimm.2011. 11.022
- Yu, K.; Ma, X.; Sheng, Z.; Qi, L.; Liu, C.; Wang, D.; Huang, B.; Li, F. and Song, M. (2016): Identification of goose-origin parvovirus as a cause of newly emerging beak atrophy and dwarfism syndrome in ducklings. Journal of

- *Clinical Microbiology*, 54, 1999-2007. https://doi.org/10.1128/JCM.03244-15
- Zadori, Z.; Erdei, J.; Nagy, J. and Kisary, J. (1994): Characteristics of the genome of goose parvovirus. Avian Pathology, 23, 359-364. https://doi.org/10.1080/030794594084 19004
- Zadori, Z.; Stefancsik, R.; Rauch, T. and Kisary, J. (1995): Analysis of the complete nucleotide sequences of goose and Muscovy duck parvoviruses indicates common ancestral origin with adeno-associated virus 2. Virology, 212, 562-573. https://doi.org/10.1006/viro.1995.1514
- Zhang, Y.; Geng, H.W.; Guo, D.C.; Hu, Q.L.; Xiang, W.H.; Liu, M.; Yang, T. and Lin, W. (2008): Sequence analysis of the full length genome of waterfowl parvovirus. Chinese Journal of Preventive Veterinary Medicine, 30, 415-419.
- Zhang, Y.; Li, Y.; Liu, M.; Zhang, D.; Guo, D.; Liu, C.; Zhi, H.; Wang, X.; Li, G.; Li, N.; Liu, S.; Xiang, W. and Tong, G. (2010): Development and evaluation of a VP3-ELISA for the detection of goose and Muscovy duck parvovirus antibodies. Journal of Virological Methods, 163, 405-409. https://doi.org/10.1016/j.jviromet.2009.11.002.
- Zhang, J.; Liu, P.; Wu, Y.; Wang, M.; Jia, R.; Zhu, D.; Liu, M.; Yang, Q.; Wu, Y.; Zhao, X.; Zhang, S.; Liu, Y.; Zhang, L.; Yu, Y.; You, Y.; Chen, S. and Cheng, A. (2019): Growth characteristics of the novel goose parvovirus SD15 strain in vitro. BMC Veterinary Research, 15, 63. https://doi: 10.1186/s12917-019-1807-y.
- Zhu, X.; Chen, S.; Lin, F.; Cheng, X.; Chen, S.; Wang, S. and Li, Z. (2012): Development of the latex agglutination diagnostic method of Muscovy duck gosling plague. Chinese Journal of Preventive Veterinary Medicine, 34, 715-718.
- Zhu, Y.; Zhou, Z.; Huang, Y.; Yu, R.; Dong, S.; Li, Z. and Zhang, Y. (2014): Identification of a recombinant Muscovy duck parvovirus (MDPV) in

Shanghai, China. *Veterinary Microbiology*, 174, 560-564. https://doi.org/10.1016/j.vetmic.2014.1 0.032

Zhu, J.; Yang, Y.; Zhang, X.; Chen, B.; Liu, G. and Bao, E. (2022): Characterizing two novel goose parvoviruses with different origins. Transboundary and

Emerging Diseases, 69, 2952-2962. https://doi.org/10.1111/tbed.14453

Zsak, L.; Strother, K.O. and Day, J.M. (2009): Development of a polymerase chain reaction procedure for detection of chicken and turkey parvoviruses. Avian Diseases, 53, 83-88. https://doi.org/10.1637/8464-090308-reg.1

عدوى فيروس بارفو: تهديد لصناعة الطيور المائية المنزلية

وفاء عبد الغنى

تصيب عدوى فيروس البارفو الأوز والبط، مسببة مرضا حادا ومعديا وقاتلا يعرف باسم طاعون الأوز أو داء ديرزسي، وعدوى فيروس البارفو في البط المسكوفي. علاوة على ذلك، وصف فيروس بارفو جديد يصيب الأوز لأول مرة في بط البغل وبط وادي الكرز، ويسبب مرضا يعرف باسم متلازمة قصر المنقار والقزامة. اكتسبت عدوى فيروس البارفو في الطيور المائية اهتماما عالميا نظرا الخسائر الاقتصادية الفادحة في الإنتاج التجاري. ينتمي هذا الفيروس إلى جنس ديبيندوبار فوفيروس من فصيلة بار فوفيريدي. يصيب هذا الفيروس صغار الإوز والبط بشكل رئيسي خلال الأسابيع الثلاثة الأولى من العمر، مسببا معدلات إصابة ونفوق عالية، بالإضافة إلى اضطرابات حركية، وتأخر في النمو، وإسهال. ينتقل فيروس البارفو في قطعان الأوز والبط إما عن طريق التهجين الأفقي أو الرأسي. من أكثر أعراض فيروس البارفو شيوعا لدى الطيور المصابة: تنكس عضلة القلب، ونخر الأمعاء، والتهاب عضلة القلب، والتهاب الكبد، والاستسقاء، وأحيانا إصابة الجهاز العصبي. يعتمد تشخيص فيروس البارفو بشكل أساسي على عزل الفيروس وتحديده بالطرق التقليدية، وكشفه باستخدام التقنيات الجزيئية الحديثة، والانقلاب المصلي. تعتبر حماية صغار البط أو الإوز في مراحل حياتها المبكرة عبر المناعة الأمية السلبية الطريقة الأنسب للوقاية من عدوى فيروس البارفو. ويعد تطعيم قطعان التربية وصغارها ضروريا للحد من تأثير المرض. وقد استخدمت لقاحات حية، ومعطلة، ومعاد تركيبها ضد هذه العدوى. وفي الختام، ناقشت هذه المقالة عدوى فيروس البارفو في الطيور المائية من حيث خصائص الفيروس، وقابليته للتأثر، وانتقاله، وصورته السريرية، وتشخيصه المختبري، والوقاية منه ومكافحته.