الاثار الاقتصادية للتغيرات المناخية وتأثيرها على إنتاجية الثروة السمكية في مصر سارة أحمد فؤاد محمد

قسم الاقتصاد الزراعي، كلية الزراعة، جامعة الزقازيق قسم الاقتصاد والتنمية، كلية الثروة السمكية، جامعة السويس

*Corresponding author: saraahmedfouad1992@gmail.com https://doi.org/10.21608/jaesj.2025.403631.1279

2025, 24(2): 251-282

Online: ISSN 2735-509

الملخص:

تشكل الثروة السمكية في مصر مصدرًا مهمًا لكل من الغذاء وبصفة خاصة البروتين الحيواني والدخل، حيث تعتمد العديد من المجتمعات الساحلية والداخلية على الصيد وتربية الأحياء المائية كمصدر رئيسي للدخل. ومع ذلك، فإن التغيرات المناخية تشكل تهديدًا كبيرًا لهذا القطاع، مما يؤثر على الإنتاجية والتنوع البيولوجي والنظم البيئية المائية، لذا تتمثل مشكلة البحث في دراسة كيفية تأثير التغيرات المناخية على إنتاجية الثروة السمكية في مصر، وما إذا كانت هذه التغيرات تشكل تهديدًا حقيقيًا للأمن الغذائي والاقتصاد الوطني (,World Bank للأمن الغذائي والاقتصاد الوطني (,Time المناخية على إنتاجية الثروة السمكية في مصر؟ وما مدى استجابة قطاع الثروة السمكية للتغيرات المناخية للتغيرات المناخية الشوة السمكية في المدي القصير والطويل؟ وما هي الاستراتيجيات الممكنة للتغيرات المناخية على إنتاجية الثروة السمكية في مصر باستخدام نموذج (ARDL). وتقييم على إنتاجية الثروة السمكية في مصر باستخدام نموذج (ARDL). وتقييم المناخية تصيرة وطويلة الأجل للتغيرات المناخية على هذا القطاع. وتقديم توصيات للحد من التأثيرات السلبية للتغيرات المناخية وتعزيز استدامة الإنتاج السمكي.

ويعتمد البحث على النهج الكمي باستخدام نموذج الانحدار الذاتي للفجوات الزمنية الموزعة (ARDL) لتحليل العلاقة بين التغيرات المناخية وإنتاجية الثروة السمكية. سيتم استخدام بيانات سنوية حول كمية الانتاج السمكي من المصادر المختلفة (كمتغيرات تابعة), التغيرات المناخية ممثلة في متوسط درجة حرارة الهواء السطحي، الرطوبة النسبية، تساقط الامطار، انبعاث غاز الكربون، انبعاث غاز الميثان، انبعاث غاز النيتروز؟؟؟؟؟ (كمتغيرات مستقلة) وذلك خلال الفترة وغير (2000- 2022). اعتمدت الدراسة على البيانات الثانوية المنشورة وغير والإحصاء والهيئة العامة لتنمية الثروة السمكية في مصر فيما يخص كمية الانتاج والإحصاء والهيئة العامة لتنمية الثروة السمكية في مصر فيما يخص كمية الانتاج السمكي من المصادر المختلفة ، كما تم الحصول على بيانات التغيرات المناخية من البنك الدولي (World Bank), وكذلك بيانات انبعاث غاز الكربون بالكيلو طن من البنك الدولي (World Bank), وكذلك بيانات انبعاث غاز الكربون بالكيلو طن النيتروز التي تم توفيرها من منظمة الاغذية والزراعة للأمم المتحدة Food and

Agriculture Organization (FAO), كما استعان البحث بنتائج الأبحاث والدراسات والمراجع والرسائل العلمية ذات الصلة بموضوع الدراسة. وتبين من حليل العلاقة باستخدام نموذج ARDL بين كمية الانتاج السمكي من المصادر المختلفة (كمتغيرات تابعة)، التغيرات المناخية (كمتغيرات مستقلة)، أن هناك علاقة طويلة الأجل بينهما خلال الفترة (2000- 2022).

الكلمات الاسترشادية: الثروة السمكية، التغيرات المناخية، نموذج الانحدار الذاتي للفجوات الزمنية الموزعة (ARDL).

المقدمة:

تشكل الثروة السمكية في مصر مصدرًا مهمًا لكل من الغذاء وبصفة خاصة البروتين الحيواني والدخل، حيث تعتمد العديد من المجتمعات الساحلية والداخلية على الصيد وتربية الأحياء المائية كمصدر رئيسي ل للدخل. ومع ذلك، فإن التغيرات المناخية تشكل تهديدًا كبيرًا لهذا القطاع، مما يؤثر على الإنتاجية والتنوع البيولوجي والنظم البيئية المائية (FAO,).

1. أثر ارتفاع درجات الحرارة:

- تأثيرات على النظم البيئية المائية: يؤدي ارتفاع درجات الحرارة إلى تغيير في توزيع الأسماك، حيث تفضل بعض الأنواع الهجرة إلى مناطق أكثر برودة. هذا قد يؤدي إلى الخفاض في أعداد الأسماك في المناطق التقليدية للصيد في مصر (... Cheung et al.).
- أثر زيادة معدلات التبخر: ارتفاع درجات الحرارة يزيد من معدلات تبخر المياه، مما يؤثر على منسوب المياه في البحيرات والأنهار، مثل بحيرة ناصر ونهر النيل، ويقلل من مساحة الموائل المائية المتاحة للأسماك (Abd El-Kawy et al., 2021).

2. أثر تغير أنماط هطول الأمطار:

- الجفاف والفيضانات: التغيرات في أنماط هطول الأمطار يمكن أن تؤدي إلى فترات جفاف طويلة أو فيضانات مفاجئة، مما يؤثر على توازن النظم البيئية المائية. الجفاف يقلل من مساحة المياه المتاحة للأسماك، بينما الفيضانات يمكن أن تسبب تلوثًا وتدميرًا للموائل (IPCC, 2022).
- التأثير على الأنهار والبحيرات: انخفاض منسوب المياه في نهر النيل والبحيرات بسبب قلة الأمطار يمكن أن يؤثر سلبًا على إنتاجية الثروة السمكية (Hassan & El-Sayed, 2020).

3. أثر ارتفاع مستوى سطح البحر:

- التأثير على المناطق الساحلية: ارتفاع مستوى سطح البحر يهدد المناطق الساحلية في مصر، مثل دلتا النيل، حيث يمكن أن يؤدي إلى تملح المياه العذبة، مما يؤثر على الأحياء المائية التي تعتمد على المياه العذبة (El-Raey, 2019).
- تدمير الموائل الساحلية: ارتفاع مستوى البحر يمكن أن يؤدي إلى تدمير المناطق الرطبة والمستنقعات التي تعتبر موائل مهمة للعديد من الأنواع السمكية (World Bank, 2021).

4. أثر تغيرات في كيمياء المياه:

- تحمض المحيطات: زيادة نسبة ثاني أكسيد الكربون في الغلاف الجوي تؤدي إلى تحمض المحيطات، مما يؤثر على الكائنات البحرية ذات الأصداف الكلسية، مثل المحار والقشريات، والتي تعتبر جزءًا مهمًا من السلسلة الغذائية البحرية (Cheung et al., 2016).
- نقص الأكسجين: ارتفاع درجات الحرارة يمكن أن يؤدي إلى نقص الأكسجين في المياه، مما يؤثر على بقاء الأسماك وغيرها من الكائنات المائية (IPCC, 2022).

5. تأثيرات اقتصادية واجتماعية:

- انخفاض الإنتاجية: التغيرات المناخية يمكن أن تؤدي إلى انخفاض إنتاجية الثروة السمكية، مما يؤثر على الدخل والأمن الغذائي للمجتمعات التي تعتمد على الصيد (GAFRD,). 2023).
- الهجرة القسرية: انخفاض الإنتاجية وفقدان الموائل يمكن أن يؤدي إلى هجرة الصيادين والمجتمعات الساحلية إلى مناطق أخرى بحثًا عن مصادر جديدة للرزق (,World Bank (2021).

6. التكيف مع التغيرات المناخية:

- إدارة مستدامة للمصايد: يجب تعزيز الإدارة المستدامة للمصايد من خلال تنفيذ سياسات تحافظ على المخزونات السمكية وتقلل من الصغوط البيئية (FAO, 2022).
- تحسين تربية الأحياء المائية: يمكن لتربية الأحياء المائية أن تكون بديلاً لتعويض النقص في الصيد الطبيعي، مع ضرورة ضمان أن تكون هذه الممارسات مستدامة بيئيًا (Hassan). E1-Sayed, 2020
- مراقبة ورصد التغيرات: يجب تعزيز أنظمة المراقبة والرصد لتتبع التغيرات في النظم البيئية المائية والاستجابة السريعة للتحديات الناشئة (IPCC, 2022).

مشكلة البحث:

تتمثل مشكلة البحث في دراسة كيفية تأثير التغيرات المناخية على إنتاجية الثروة السمكية في مصر، وما إذا كانت هذه التغيرات تشكل تهديدًا حقيقيًا للأمن الغذائي والاقتصاد الوطنى (World Bank, 2020) ويحاول البحث الإجابة عن الأسئلة التالية:

- كيف تؤثر التغيرات المناخية على إنتاجية الثروة السمكية في مصر؟
- ما مدى استجابة قطاع الثروة السمكية للتغيرات المناخية على المديين القصير والطويل؟
 - ما الاستراتيجيات الممكنة للتكيف مع هذه التغيرات؟

أهداف البحث:

يهدف هذا البحث إلى:

- 1. تحليل تأثير التغيرات المناخية على إنتاجية الثروة السمكية في مصر باستخدام نموذج ARDL (Ahmed & Hassan, 2019).
 - 2. تقييم التأثيرات قصيرة وطويلة الأجل للتغيرات المناخية على هذا القطاع.
- تقديم توصيات للحد من التأثيرات السلبية للتغيرات المناخية وتعزيز استدامة الإنتاج السمكي.

2025, 24(2): 251-282

Online: ISSN 2735-509

الطريقة البحثية:

يعتمد البحث على المنهج الكمي باستخدام نموذج الانحدار الذاتي للفجوات الزمنية الموزعة (ARDL) لتحليل العلاقة بين التغيرات المناخية وإنتاجية الثروة السمكية. سيتم استخدام بيانات سنوية حول كمية الانتاج السمكي من المصادر المختلفة (كمتغيرات تابعة)، التغيرات المناخية ممثلة في متوسط درجة حرارة الهواء السطحي، الرطوبة النسبية، تساقط الامطار، انبعاث غاز الكربون، انبعاث غاز الميثان، انبعاث غاز النيتروز (كمتغيرات مستقلة) وذلك خلال الفترة (2000- 2022).

مصادر البيانات:

يعتمد البحث على البيانات الثانوية المنشورة وغير المنشورة من مصادرها المختلفة مثل بيانات الجهاز المركزي للتعبئة العامة والإحصاء والهيئة العامة لتنمية الثروة السمكية في مصر فيما يخص كمية الانتاج السمكي من المصادر المختلفة ، كما تم الحصول على بيانات التغيرات المناخية ممثلة في متوسط درجة حرارة الهواء السطحي, الرطوبة النسبية, تساقط الامطار من البنك الدولي (World Bank), وكذلك بيانات انبعاث غاز الكربون بالكيلو طن (الناتج من استخدام الطاقة في الزراعة), انبعاث غاز الميثان, انبعاث غاز النيتروز التي تم توفيرها من منظمة الاغذية والزراعة للأمم المتحدة Food and النيتروز التي تم توفيرها من منظمة الاغذية والزراعة للأمم المتحدة والدراسات والمراجع والرسائل العلمية ذات الصلة بموضوع الدراسة.

النتائج البحثية والمناقشة:

نتائج تقدير النموذج القياسي لقياس الاثار الاقتصادية للتغيرات المناخية وتأثيرها على إنتاجية الثروة السمكية في مصر:

تقدير نموذج التكامل المشترك باستخدام نموذج ARDL

يتم تقدير نموذج ARDLلكلاً من كمية الانتاج السمكى من المياه البحرية (كمتغير تابع), التغيرات المناخية ممثلة في متوسط درجة حرارة الهواء السطحى, الرطوبة النسبية، تساقط الامطار، انبعاث غاز الكربون، انبعاث غاز الميثان، انبعاث غاز النيتروز (كمتغيرات مستقلة). ويهدف نموذج الانحدار الذاتي للفجوات الموزعة إلى اختبار وجود علاقة طويلة الأجل بين المتغيرات أي وجود تكامل مشترك بينها.

خطوات تطبيق نموذج ARDL

1- تحديد درجة استقرار السلسلة:

لقد تم إجراء اختبار ديكي فولر (Unit Roots Test) لكلاً من كمية الانتاج السمكي من المياه البحرية (كمتغير تابع), متوسط درجة حرارة الهواء السطحي، الرطوبة النسبية، تساقط الامطار، انبعاث غاز الكربون، انبعاث غاز الميثان، انبعاث غاز النيتروز (كمتغيرات مستقلة), ووجد أن السلاسل الزمنية غير مستقرة في المستوي، ولكنها استقرت بعد أخذ الفروق الأولي لجميع المتغيرات، كما هو موضح بجدول (1).

جدول (1) نتائج اختبار جزر الوحدة لاستقرار السلاسل الزمنية

	٠٤٠ (١) كنا المبار الوحد المساوس المسا						
	lst. differen	ce	Level			Item	
none	trend & intercept	intercept	none	trend & intercept	interce pt		
-2.65	-4.49	-3.78	-2.65	-4.39	-3.71	القيم الحرجة عند 1%	
-1.95	-3.65	-3.01	-1.95	-3.61	-2.98	القيم الحرجة عند 5%	
-5.87	-3.98	-4.81	-0.25	-5.85	-2.12	sea waters	
-10.8	-7.19	-7.18	0.89	-7.05	-4.56	Average surface air temperature	
-9.33	-6.00	-9.18	-0.48	-4.57	-3.85	%Relative humidity	
-4.58	-5.22	-4.63	0.91	-4.12	-3.73	Rain	
-4.90	-5.01	-4.89	0.08	-1.27	-1.68	Carbon gas emission (resulting from energy (use in agriculture	
-4.86	-4.94	-4.77	-0.33	-1.27	-1.59	Methane emission (from (energy use in agriculture	
-4.77	-4.75	-4.68	-0.55	-1.38	-1.61	Emission of nitrous gas (resulting from energy (use in agriculture	

المصدر: حُسبت باستخدام برنامج EViews.

2- تحديد درجة تأخير النموذج:

تُم عمل انحدار داتي VAR وتحديد أفضل فترة ابطاء أو تأخير بين المتغير التابع والمتغيرات المستقل وأتضح أن درجة التأخير المثلي للنموذج هي 2، ويوضح جدول (2) درجة الإبطاء أو التأخير.

جدول (2) نتائج معايير تحديد عدد فترات الأبطاء الزمني

HQ	SC	AIC	FPE	LR	LogL	Lag
29.38021	29.62139	29.28267	12305.44	NA	-373.6747	0
26.44235	28.37179*	25.66204	380.3650	133.0175*	-277.6065	1
25.77433*	29.39202	24.31125*	264.7869*	56.32025	-211.0463	2

^{*} Indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error
AIC: Akaike information criterion
SC: Schwarz information criterion
HQ: Hannan-Quinn information criterion

المصدر: حُسبت باستخدام برنامج EViews.

3- اختبار الحدود ARDL Bounds Test

وتتم تلك الخطوة من خلال تقدير نموذج ARDL, وتشير نتائج الجدول رقم (3) لنتائج اختبار التكامل المشترك باستخدام اختبار الحدود أن قيمة f المحسوبة 2.70 اكبر من الحدود الحرجة العليا وذلك عند مستوى معنوية 5% وبالتالي نرفض الفرضية الصفرية بعدم وجود تكامل مشترك و هذا يعنى أن هناك علاقة طويلة الأجل بين كمية الانتاج السمكى

من المياه البحرية ومتوسط درجة حرارة الهواء السطحي, الرطوبة النسبية, تساقط الامطار, انبعاث غاز الكربون, انبعاث غاز الميثان, انبعاث غاز النيتروز أي أنه يوجد تكامل مشترك عند مستوى معنوية 5%.

جدول (3) نتيجة اختبار التكامل المشترك لمنهجية ARDL Bounds Test واختبار الحدود For Integration

Null Hypoth	nesis: No levels rela	F-Bounds Test		
I(1)	I(0)	Signif.	Value	Test Statistic
	Asymptotic:			
	n=1000			
2.94	1.99	10%	2.701772	F-statistic
3.28	2.27	5%	6	k
3.61	2.55	2.5%		
3.99	2.88	1%		
	Finite Sample:		26	Actual Sample Size
	n=35			
3.388	2.254	10%		
3.96	2.685	5%		
5.326	3.713	1%		
	Finite Sample:			
	n=30			
3.515	2.334	10%		
4.148	2.794	5%		
5.691	3.976	1%		

المصدر: حُسبت باستخدام برنامج EViews.

4- اختبار المعنوية المشتركة لمعاملات الأجل الطويل في نموذج ARDL

 H_0 : ويتم ذلك باختبار Wald Test ويكتب الفرض العدم كالتالي: H_1 : (C(3)=C(4)=C(5)=C(6)=0 C(5)-C(6)=0 أما الفرض البديل فهو: C(5)+C(6)

جدول (4) اختبار Wald Test نتيجة اختبار المعنوية المشتركة لمعاملات الأجل الطويل في نموذج ARDL

			ANDL
Probability	df	Value	Test Statistic
0.4803	(4, 10)	0.938797	F-statistic
0.4401	4	3.755190	Chi-square

5- تقدير العلاقة طويله الاجل للنموذج ARDL Long Run from

يتضح من جدول (5) أن SEA_WATERS(-1) و يتضح من جدول (5) أن SEA_WATERS(-1) و METHANE_EMISSION(-1) هما المتغيران المهمّان في التأثير على مياه البحر في الأجل الطويل، في حين أن المتغيرات الأخرى مثل درجة حرارة سطح المهواء، والرطوبة، وانبعاثات الكربون تظهر تأثيرات ضعيفة أو غير دالة إحصائيًا. ويبدو أن METHANE_EMISSION(-1) له تأثير إيجابي على مياه البحر، مما يوحي بأن انبعاثات الميثان قد تكون مرتبطة بتغيرات أو حالة مياه البحر.

جدول (5) نتائج نماذج تقدير معادلة الأجل الطويل وفقاً لنموذج (1, 2, 1, 2, 1, 1, 1)

	()	, , , , ,	, C -	
Prob.	t-Statistic	Std. Error	Coefficient	Variable
0.4711	0.749063	787.3082	589.7432	C
0.0077	-3.323137	0.210226	-0.698608	SEA WATERS(-1)*
				AVERAGE SURFACE AIR TEMPERA
0.2533	-1.212099	28.50331	-34.54884	TURE(-1)
0.5048	0.691819	8.212809	5.681779	HUMIDITY(-1)
0.3041	1.083201	1.706385	1.848358	RAIN(-1)
0.4301	-0.822231	0.009596	-0.007890	CARBON_GAS_EMISSION(-1)
0.0368	2.408373	234.3739	564.4600	METHANE_EMISSION(-1)
0.1905	-1.404408	38.20178	-53.65088	NITROUS_GAS_EMISSION(-1)
				D(AVERAGE_SURFACE_AIR_TEMPER
0.7719	-0.297806	12.14948	-3.618184	ATURE)
				D(AVERAGE_SURFACE_AIR_TEMPER
0.0372	2.401103	11.23280	26.97113	ATURE(-1))
0.7385	-0.343230	5.875410	-2.016615	D(HUMIDITY)
0.3728	0.933063	1.276169	1.190746	D(RAIN)
0.1748	-1.460711	0.882642	-1.289286	D(RAIN(-1))
0.5246	0.659251	0.018054	0.011902	D(CARBON_GAS_EMISSION)
0.8983	-0.131062	253.3417	-33.20340	D(METHANE_EMISSION)
0.8041	-0.254753	36.87769	-9.394709	D(NITROUS GAS EMISSION)
0.0041	-U.ZJ-1JJ	50.01105	7.37 1/07	

المصدر: حُسبت باستخدام برنامج EViews.

6- تقدير نموذج تصحيح الاخطاء وفقاً لنموذج ARDL

وبعد الانتهاء من الخطوات السابقة والتي هي أساس لإجراء الخطوة التالية فيتم إجراء نموذج تصحيح الأخطاء والذي تقع قيمته بين (الصفر والسالب).

التقييم الاقتصادي لنموذج التكامل المشترك بين كمية الانتاج السمكي من المياه البحرية، التغيرات المناخية:

لقد ثبت أن هناك علاقة طويلة الأجل بين كمية الانتاج السمكي من المياه البحرية، متوسط درجة حرارة الهواء السطحي، الرطوبة النسبية، تساقط الامطار، انبعاث غاز الكربون، انبعاث غاز الميثان، انبعاث غاز النيتروز وذلك من نتيجة نموذج معامل تصحيح الخطأ والذي قيمته (0.698608-) أي أن 69 % من الأخطاء التي حدثت في المدي القصير يتم تصحيحها في المدي الطويل، بمعني أن هناك علاقة تكامل مشترك بين المتغيرات، ويوضح جدول (6) نتيجة نموذج تصحيح الخطأ.

2025, 24(2): 251- 282 Print: ISSN 1687-1464 Online: ISSN 2735-509

التقييم الإحصائى للنموذج المُقدر

لقُد ثَبُتت المعنوية الاحصائية لكلاً من كمية الانتاج السمكي من المياه البحرية ومعامل تصحيح الخطأ، كما أشارت قيمة معامل التحديد إلى أن 74.6% من التغير في كمية الانتاج السمكي في المياه البحرية ترجع إلي المتغيرات المفسرة (متوسط درجة حرارة الهواء السطحي, الرطوبة النسبية, تساقط الامطار, انبعاث غاز الكربون, انبعاث غاز الميثان, انبعاث عاز النيتروز)، وهو ما يتفق مع التقييم الاقتصادي للنموذج ، وبالتالي فإن 25.4% ترجع إلي عوامل أخري غير مقيسه بالنموذج. كما اتضح لنا معنوية النموذج المُقدر من خلال قيمة F- statistic.

جدول (6) نتائج نموذج تصحيح الخطأ للتكامل المشترك

	ECM Regression							
	Case 2: Restricted Constant and No Trend							
Prob.	t-Statistic	Std. Error	Coefficient	Variable				
0.5035	-0.693987	5.213618	-3.618184	D(AVERAGE_SURFACE_AIR_TEMPER ATURE)				
0.0003	5.396316	4.998062	26.97113	D(AVERAGE_SURFACE_AIR_TEMPER ATURE(-1))				
0.5274	-0.654747	3.079990	-2.016615	D(HUMIDITY)				
0.0915	1.866994	0.637788	1.190746	D(RAIN)				
0.0132	-3.004678	0.429093	-1.289286	D(RAIN(-1))				
0.2733	1.159272	0.010267	0.011902	D(CARBON_GAS_EMISSION)				
0.8273	-0.223928	148.2773	-33.20340	D(METHANE_EMISSION)				
0.6828	-0.420827	22.32440	-9.394709	D(NITROUS_GAS_EMISSION)				
0.0001	-6.061691	0.115250	-0.698608	CointEq(-1)*				
-0.139231	Mean dep	pendent var	0.746972	R-squared				
14.52854	S.D. dependent var		0.627900	Adjusted R-squared				
7.468937	Akaike info criterion		8.862403	S.E. of regression				
7.904432	Schwarz criterion		1335.217	Sum squared resid				
7.594344	Hannan-C	Quinn criter.	-88.09619	Log likelihood				
2.701772	F-statistic		2.666453	Durbin-Watson stat				

المصدر: حُسبت باستخدام برنامج EViews.

7- الاختبارات القياسية لسلامة النموذج:

أ- اختبار التوزيع الطبيعي للبواقي (Normality Test)

يشير جدول (7) إلى أن جميع القيم الاحتمالية (Prob.) أكبر من 0.05، مما يعني أنه لا يوجد دليل قوي على وجود عدم تجانس التباين. وبالتالي، يمكن افتراض أن النموذج يتمتع بتجانس التباين (Homoskedasticity)، وهو أحد الافتر اضات الأساسية للنموذج القياسي.

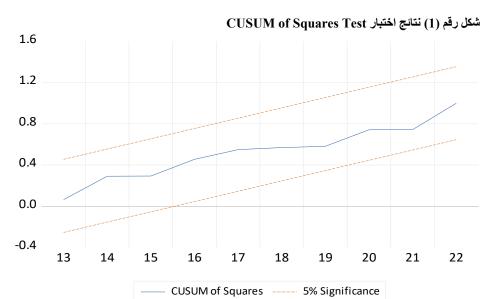
جدول (7) نتائج اختبار Breusch-Pagan-Godfrey لعدم تجانس النباين (Breusch-Pagan-Godfrey (Test

0.2596	Prob. F(15,10)	1.506068	F-statistic
0.2615	Prob. Chi-Square (15)	18.02234	Obs*R-squared
0.9993	Prob. Chi-Square (15)	3.275873	Scaled explained SS

2025, 24(2): 251- 282 Print: ISSN 1687-1464 Online: ISSN 2735-509

ب- اختبار التغاير الذاتي للبواقي (Serial Correlation Test)

نظرًا لأن قيمة الاحتمالية > 0.05، يتم رفض الفرضية الصفرية (H0) عند مستوى معنوية 5%. هذا يشير إلى وجود ارتباط تسلسلي بين البواقي، هذه النتائج تدل على أن النموذج الذي تم تقديره لا يعانى من مشاكل الارتباط التسلسلي بين الأخطاء، كما في جدول


جدول (8) نتائج اختبار Breusch-Godfrey Serial Correlation LM Test لتغاير الارتباط

0.0924	Prob. F(2,8)	3.254770	F-statistic
0.0029	Prob. Chi-Square(2)	11.66460	Obs*R-squared

المصدر: حُسبت باستخدام برنامج EViews.

ت- اختبار استقرار النموذج (Stability Test)

يتضح من شكل رقم (1) أن مندنيات الأختبار تقع داخل الحدود الحرجة Critical) (Boundsلذلك يعتبر النموذج مستقرأ

تقدير نموذج التكامل المشترك باستخدام نموذج ARDL يتم تقدير نموذج ARDLلكلاً من كمية الانتاج السمكي من البحيرات (كمتغير تابع)، التغيرات المناخية ممثلة في متوسط درجة حرارة الهواء السطحي، الرطوبة النسبية، تساقط الامطار، انبعاث غاز الكربون، انبعاث غاز الميثان، انبعاث عاز النيتروز (كمتغيرات مستقلة). ويهدف نموذج الأنحدار الذاتي للفجوات الموزعة إلى اختبار وجود علاقة طويلة الأجل بين المتغيرات أي وجود تكامل مشترك بينها.

خطوات تطبیق نموذج ARDL - تحدید درجة استقرار السلسلة:

لقد تم إجراء اختبار ديكي فولر (Unit Roots Test) لكلاً من كمية الانتاج السمكي من البحيرات (كمتغير تابع)، متوسط درجة حرارة الهواء السطحي، الرطوبة النسبية، تساقط الامطار، انبعاث غاز الكربون، انبعاث غاز الميثان، انبعاث غاز النيتروز (كمتغيرات مستقلة)، ووجد أن السلاسل الزمنية غير مستقرة في المستوي، ولكنها استقرت بعد أخذ الفروق الأولى لجميع المتغيرات، كما هو موضح بجدول (9).

جدول (9) نتائج اختبار جزر الوحدة لاستقرار السلاسل الزمنية

1st. difference			Level			Item
none	trend & intercept	intercept	none	trend & intercept	interce pt	
-2.65	-4.49	-3.78	-2.65	-4.39	-3.71	القيم الحرجة عند 1%
-1.95	-3.65	-3.01	-1.95	-3.61	-2.98	القيم الحرجة عند 5%
-4.79	-5.10	-4.85	0.74	-0.92	-0.42	Lakes
-10.8	-7.19	-7.18	0.89	-7.05	-4.56	Average surface air temperature
-9.33	-6.00	-9.18	-0.48	-4.57	-3.85	%Relative humidity
-4.58	-5.22	-4.63	0.91	-4.12	-3.73	Rain
-4.90	-5.01	-4.89	0.08	-1.27	-1.68	Carbon gas emission (resulting from energy (use in agriculture
-4.86	-4.94	-4.77	-0.33	-1.27	-1.59	Methane emission (from (energy use in agriculture
-4.77	-4.75	-4.68	-0.55	-1.38	-1.61	Emission of nitrous gas (resulting from energy (use in agriculture

المصدر: حُسبت باستخدام برنامج EViews.

2- تحديد درجة تأخير النموذج:

تم عمل انحدار ذاتي VAR وتحديد أفضل فترة ابطاء أو تأخير بين المتغير التابع والمتغيرات المستقل وأتضح أن درجة التأخير المثلي للنموذج هي 2، ويوضح جدول (10) درجة الإبطاء أو التأخير.

3- اختبار الحدود ARDL Bounds Test

وتتم تلك الخطوة من خلال تقدير نموذج ARDL, وتشير نتائج الجدول رقم (11) لنتائج اختبار التكامل المشترك باستخدام اختبار الحدود أن قيمة f المحسوبة 1.18 أصغر من الحدود الحرجة العليا وذلك عند مستوى معنوية 1% وبالتالي نقبل الفرضية الصفرية بعدم وجود تكامل مشترك وهذا يعني ألا يوجد علاقة طويلة الأجل بين كمية الانتاج السمكي من البحيرات ومتوسط درجة حرارة الهواء السطحي، الرطوبة النسبية، تساقط الامطار، انبعاث غاز الكربون، انبعاث غاز النيتروز. أي أنه لا يوجد تكامل مشترك عند مستوى معنوية 1%.

جدول (10) نتائج معايير تحديد عدد فترات الأبطاء الزمني

			٠- ر ي	•	J (10) 5 3 .
HQ	SC	AIC	FPE	LR	LogL	Lag
30.72123	30.96241	30.62370	47043.22	NA	-391.1080	0
26.57344	28.50288	25.79313	433.6427	154.7963	-279.3107	1
24.82899*	28.44669*	23.36591*	102.8823*	68.16096*	-198.7568	2

^{*} Indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error AIC: Akaike information criterion SC: Schwarz information criterion HQ: Hannan-Quinn information criterion

المصدر: حُسبت باستخدام برنامج EViews.

جدول (11) نتيجة اختبار التكامل المشترك لمنهجية ARDL Bounds Test واختبار الحدود For Integration

				Tor integration
Null Hypoth	nesis: No levels rela	F-Bounds Test		
I(1)	I(1) I(0)		Value	Test Statistic
	Asymptotic:			
	n=1000			
2.94	1.99	10%	1.181235	F-statistic
3.28	2.27	5%	6	K
3.61	2.55	2.5%		
3.99	2.88	1%		
	Finite Sample:		26	A atual Cample Size
	n=35		20	Actual Sample Size
3.388	2.254	10%		
3.96	2.685	5%		
5.326	3.713	1%		
	Finite Sample:			
	n=30			
3.515	2.334	10%		
4.148	2.794	5%		
5.691	3.976	1%		
			TIT 7' 1.	1

المصدر: حُسبت باستخدام برنامج EViews.

4- اختبار المعنوية المشتركة لمعاملات الأجل الطويل في نموذج ARDL

 H_0 : ويتم ذلك باختبار Wald Test ويكتب الفرض العدم كالتالي: H_1 : C(3)=C(4)=C(5)=C(6)=0 أما الفرض البديل فهو: C(3)+C(4)+C(5)+C(6)=0 تساوى C(3)+C(4)+C(5)+C(6)+0 تساوى C(3)+C(4)+C(5)+C(6)+0 تن عرية وعند مستوى معنوية أقل من C(3)، وبالتالي يتم قبول الفرض الصفري و رفض الفرض البديل أي أن لا يوجد تأثير مشترك للمتغيرات المستقلة (متوسط درجة حرارة الهواء السطحي, الرطوبة النسبية, تساقط الامطار, انبعاث غاز الكربون,

2025, 24(2): 251- 282 Online: ISSN 2735-509

انبعاث غاز الميثان, انبعاث غاز النيتروز) على المتغير التابع (كمية الانتاج السمكي من البحيرات) في الأجل الطويل.

جدول (12) اختبار Wald Test نتيجة اختبار المعنوية المشتركة لمعاملات الأجل الطويل في نموذج ARDL

Probability	df	Value	Test Statistic
0.1039	(4, 5)	3.439678	F-statistic
0.0081	4	13.75871	Chi-square

المصدر: حُسبت باستخدام برنامج EViews.

ARDL Long Run from حتدير العلاقة طويله الاجل للنموذج

يتضح من جدول (13) أن معظم المتغيرات مثل درجة الحرارة والرطوبة وانبعاثات الكربون لها تأثيرات ضعيفة وغير دالة إحصائيًا على مياه البحيرات على الأجل الطويل. بينما تظهر انبعاثات الميثان تأثيرًا إيجابيًا محتملًا على المدى القصير، مما يشير إلى وجود علاقة قد تكون مهمة وتتطلب دراسة أكثر عمقًا.

جدول (13) نتائج نماذج تقدير معادلة الأجل الطويل وفقاً لنموذج(2, 2, 2, 2, 2, 2, 2)

Prob.	t-Statistic	Std. Error	Coefficient Variable
0.2016 0.8045 0.3205 0.2623 0.9857 0.5217 0.3669 0.4563 0.5898 0.1953 0.6760 0.1698 0.9966 0.3481 0.8943 0.2574 0.3061 0.0868 0.2917 0.3087	-1.469633 0.261009 1.102292 1.263084 0.018821 0.688697 -0.991639 0.579477 -0.807128 0.575625 -1.494369 0.443459 -1.603126 0.004538 1.035044 0.139726 -1.277906 1.139492 2.126349 -1.178240 -1.132741	1990.168 0.445334 58.48793 28.67901 4.931738 0.024360 564.4811 82.20183 0.574410 27.61829 19.61895 14.60037 16.09804 2.728672 3.664893 0.028462 0.029007 419.3893 621.7092 88.74271 89.69288	-2924.817 C 0.116236 LAKES(-1)* 64.47076 AVERAGE SURFACE AIR TEM 36.22401 HUMIDITY(-1) 0.092822 RAIN(-1) 0.016776 CARBON GAS EMISSION(-1) -559.7618 METHANE EMISSION(-1) 47.63408 NITROUS GAS EMISSION(-1) 15.89778 D(AVERAGE SURFACE AIR TE -29.31796 D(AVERAGE SURFACE AIR TE -29.31796 D(AVERAGE SURFACE AIR TE -474673 D(HUMIDITY) -25.80718 D(HUMIDITY) -0.012381 D(RAIN) 3.793328 D(RAIN(-1)) 0.003977 D(CARBON GAS EMISSION) -0.037069 D(CARBON GAS EMISSION) 1321.971 D(METHANE EMISSION) -104.5602 D(NITROUS GAS EMISSION) -101.5988 D(NITROUS GAS EMISSION(-1))

6- تقدير نموذج تصحيح الاخطاء وفقاً لنموذج ARDL

2025, 24(2): 251-282

Online: ISSN 2735-509

وبعد الانتهاء من الخطوات السابقة والتي هي أساس لإجراء الخطوة التالية فيتم إجراء نموذج تصحيح الأخطاء والذي تقع قيمته بين (الصفر والسالب).

التقييم الاقتصادي لنموذج التكامل المشترك بين كمية الانتاج السمكي من البحيرات، التغيرات المناخية:

لقد ثبت أنه لا يوجد علاقة طويلة الأجل بين كمية الانتاج السمكى من البحيرات، متوسط درجة حرارة الهواء السطحي، الرطوبة النسبية، تساقط الامطار، انبعاث غاز الكربون، انبعاث غاز الميثان، انبعاث غاز النيتروز وذلك من نتيجة نموذج معامل تصحيح الخطأ والذي قيمته (0.116236) ويشير ذلك إلى ضعف في سرعة العودة إلى التوازن عند حدوث صدمات في الأجل الطويل. واتضح أن المتغيرات المتأخرة مثل درجة حرارة الهواء، الرطوبة، الأمطار، وانبعاثات الميثان تلعب دورًا هامًا في التأثير على البحيرات، مما يؤكد أهمية أخذ التأثيرات الزمنية بعين الاعتبار. وانبعاثات الغازات النيتروجينية تظهر تأثيرًا سلبيًا واضحًا، مما يدعو إلى التركيز على الحد منها لتقليل التأثيرات السلبية على البيئة. وأن سرعة العودة إلى التوازن ضعيفة، مما يشير إلى أن أي تغييرات أو صدمات تحتاج وقتًا طويلًا ليتم امتصاصها، ويوضح جدول (14) نتيجة نموذج تصحيح الخطأ.

جدول (14) نتائج نموذج تصحيح الخطأ للتكامل المشترك

	جنول (14) تنتي تمودع تصفيع المحظ المصافل المصفرت						
]	ECM Regression	n			
		Case 2: Resta	ricted Constant and No Trend				
Prob.	t-Statistic	Std. Error	Coefficient	Variable			
0.0738	-2.254835	0.205613	-0.463623	D(LAKES(-1))			
0.1461	1.719759	9.244187	15.89778	D(AVERAGE_SURFACE_AIR_TE			
0.1401	1./19/39	9.244187	13.89778	MPERATURE)			
0.0087	-4.169152	7.032114	-29.31796	D(AVERAGE_SURFACE_AIR_TE			
0.0087	-4.109132	7.032114	-29.31/90	MPERATURE(-1))			
0.2121	1.430204	4.527098	6.474673	D(HUMIDITY)			
0.0080	-4.258991	6.059458	-25.80718	D(HUMIDITY(-1))			
0.9892	0.014180	0.873140	0.012381	D(RAIN)			
0.0065	4.488085	0.845200	3.793328	D(RAIN(-1))			
0.7825	0.291359	0.013650	0.003977	D(CARBON_GAS_EMISSION)			
0.0541	-2.505979	0.014792	-0.037069	D(CARBON_GAS_EMISSION(-1))			
0.0810	2.180902	219.1253	477.8909	D(METHANE EMISSION)			
0.0062	4.531776	291.7114	1321.971	D(METHANE EMISSION(-1))			
0.0336	-2.905331	35.98909	-104.5602	D(NITROUS GAS EMISSION)			
0.0312	-2.969374	34.21555	-101.5988	D(NITROUS GAS EMISSION(-1))			
0.0050	4.762322	0.024407	0.116236	CointEq(-1)*			
2.914231	Mean dep	endent var	0.776629	R-squared			
15.78331	S.D. dependent var		0.534645	Adjusted R-squared			
7.894562	Akaike info criterion		10.76689	S.E. of regression			
8.571999	Schwarz criterion		1391.112	Sum squared resid			
8.089640	Hannan-Qui	nn criter.	-88.62931	Log likelihood			
1.181235	F-statistic		2.222057	Durbin-Watson stat			

nhour University) 2025, 24(2): 251- 282 Online: ISSN 2735-509

7- الاختبارات القياسية لسلامة النموذج:

- اختبار التوزيع الطبيعي للبواقي (Normality Test)

يشير جدول (15) إلي أن جميع القيم الاحتمالية (Prob.) أكبر من 0.05، مما يعني أنه لا يوجد دليل قوي على وجود عدم تجانس التباين. وبالتالي، يمكن افتراض أن النموذج يتمتع بتجانس التباين (Homoskedasticity)، وهو أحد الافتراضات الأساسية للنموذج القياسي.

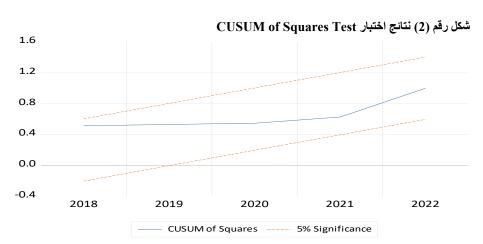
جدول (15) نتائج اختبار Breusch-Pagan-Godfrey لعدم تجانس التباين (Test

0.0952	Prob. F(20,5)	3.291742	F-statistic
0.2353	Prob. Chi-Square(20)	24.16474	Obs*R-squared
1.0000	Prob. Chi-Square(20)	1.452637	Scaled explained SS

المصدر: حُسبت باستخدام برنامج EViews.

ب- اختبار التغاير الذاتي للبواقي (Serial Correlation Test)

نظرًا لأن قيمة الاحتمالية > 0.05، يتم رفض الفرضية الصفرية (H0) عند مستوى معنوية 5. هذا يشير إلى وجود ارتباط تسلسلي بين البواقي، هذه النتائج تدل على أن النموذج الذي تم تقديره لا يعاني من مشاكل الارتباط التسلسلي بين الأخطاء، كما في جدول (16).


جُدولُ (16) نتائج الحتبار Breusch-Godfrey Serial Correlation LM Test لتغاير الارتباط التسلسل

0.3973	Prob. F(2,3)	1.275357	F-statistic
0.0025	Prob. Chi-Square(2)	11.94775	Obs*R-squared

المصدر: حُسبت باستخدام برنامج EViews.

ت- اختبار استقرار النموذج (Stability Test)

يتضح من شكل رقم (2) أن منحنيات الاختبار تقع داخل الحدود الحرجة Critical) Bounds)

2025, 24(2): 251- 282 Print: ISSN 1687-1464 Online: ISSN 2735-509

تقدير نموذج التكامل المشترك بإستخدام نموذج ARDL

يتم تقدير نموذج ARDL لكلاً من كمية الانتاج السمكي من المياة العذبة (كمتغير تابع). التغيرات المناخية ممثلة في متوسط درجة حرارة الهواء السطحي, الرطوبة النسبية, تساقط الامطار, انبعاث غاز الكربون, انبعاث غاز الميثان, انبعاث غاز النيتروز (كمتغيرات مستقلة). ويهدف نموذج الانحدار الذاتي للفجوات الموزعة إلى اختبار وجود علاقة طويلة الأجل بين المتغيرات أي وجود تكامل مشترك بينها.

خطوات تطبيق نموذج ARDL

1- تحديد درجة استقرار السلسلة:

لقد تم إجراء اختبار ديكي فولر (Unit Roots Test) لكلاً من كمية الانتاج السمكي من المياة العذبة (كمتغير تابع), متوسط درجة حرارة الهواء السطحي, الرطوبة النسبية. تساقط الامطار، انبعاث غاز الكربون، انبعاث غاز الميثان، انبعاث غاز النيتروز (كمتغيرات مستقلة), ووجد أن السلاسل الزمنية غير مستقرة في المستوي، ولكنها استقرت بعد أخذ الفروق الأولى لجميع المتغيرات، كما هو موضح بجدول (17).

جدول (17) نتائج اختبار جزر الوحدة لاستقرار السلاسل الزمنية

						3 33: 3: E (17) 63:
	1st. difference	e		level		Item
none	trend & intercept	intercept	none	trend & intercept	interce pt	
-2.65	-4.49	-3.78	-2.65	-4.39	-3.71	القيم الحرجة عند 1%
-1.95	-3.65	-3.01	-1.95	-3.61	-2.98	القيم الحرجة عند 5%
-4.32	-4.37	-4.25	-0.64	-2.22	-1.59	fresh water
-10.8	-7.19	-7.18	0.89	-7.05	-4.56	Average surface air temperature
-9.33	-6.00	-9.18	-0.48	-4.57	-3.85	%Relative humidity
-4.58	-5.22	-4.63	0.91	-4.12	-3.73	rain
-4.90	-5.01	-4.89	0.08	-1.27	-1.68	Carbon gas emission (resulting from energy use in (agriculture
-4.86	-4.94	-4.77	-0.33	-1.27	-1.59	Methane emission (from (energy use in agriculture
-4.77	-4.75	-4.68	-0.55	-1.38	-1.61	Emission of nitrous gas (resulting from energy use in (agriculture

المصدر: حُسبت باستخدام برنامج EViews.

2- تحديد درجة تأخير النموذج:

تم عمل انحدار ذاتي VAR وتحديد أفضل فترة ابطاء أو تأخير بين المتغير التابع والمتغيرات المستقل وأتضح أن درجة التأخير المثلي للنموذج هي 2، ويوضح جدول (18) در جة الإبطاء أو التأخير.

3- اختبار الحدود ARDL Bounds Test

وتتم تلك الخطوة من خلال تقدير نموذج ARDL, وتشير نتائج الجدول رقم (19) لنتائج اختبار التكامل المشترك باستخدام اختبار الحدود أن قيمة f المحسوبة 1.67 أصغر من الحدود الحرجة العليا وذلك عند مستوى معنوية 1% وبالتالى نقبل الفرضية الصفرية بعدم

وجود تكامل مشترك وهذا يعني أن لايوجد علاقة طويلة الأجل بين كمية الانتاج السمكي من المياة العذبة ومتوسط درجة حرارة الهواء السطحي, الرطوبة النسبية, تساقط الامطار, انبعاث غاز الكربون, انبعاث غاز الميثان, انبعاث غاز النيتروز. أي أنه لايوجد تكامل مشترك عند مستوى معنوية 1%.

جدول (18) نتائج معايير تحديد عدد فترات الأبطاء الزمنى

HQ	SC	AIC	FPE	LR	LogL	Lag
29.90320	30.14438	29.80567	20760.17	NA	-380.4736	0
25.71277	27.64221	24.93246	183.3785	155.5638	-268.1220	1
23.71933*	27.33703*	22.25625*	33.91739*	70.89985*	-184.3313	2

^{*} indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error
AIC: Akaike information criterion
SC: Schwarz information criterion
HQ: Hannan-Quinn information criterion

المصدر: حُسبت باستخدام برنامج EViews.

جدول (19) نتيجة اختبار التكامل المشترك لمنهجية ARDL Bounds Test واختبار الحدود For Integration

Null Hypoth	Null Hypothesis: No levels relationship			F-Bounds Test	
I(1)	I(0)	Signif.	Value	Test Statistic	
	Asymptotic:				
	n=1000				
2.94	1.99	10%	1.675023	F-statistic	
3.28	2.27	5%	6	K	
3.61	2.55	2.5%			
3.99	2.88	1%			
	Finite Sample:		26	Actual Sample Size	
	n=35				
3.388	2.254	10%			
3.96	2.685	5%			
5.326	3.713	1%			
	Finite Sample:				
	n=30				
3.515	2.334	10%			
4.148	2.794	5%			
5.691	3.976	1%			

المصدر: حُسبت باستخدام برنامج EViews.

4- اختبار المعنوية المشتركة لمعاملات الأجل الطويل في نموذج ARDL

 r University) 2025, 24(2): 251- 282 Online: ISSN 2735-509

8.70 عند 4 درجات حرية وعند مستوى معنوية أقل من 5%، وبالتالي يتم قبول الفرض الصفري و رفض الفرض البديل أي أن لايوجد تأثير مشترك للمتغيرات المستقلة (متوسط درجة حرارة الهواء السطحي, الرطوبة النسبية, تساقط الامطار, انبعاث غاز الكربون, انبعاث غاز النيتروز) على المتغير التابع (كمية الانتاج السمكي من المياة العذبة) في الأجل الطويل.

جدول (20) نتائج اختبار Wald Test نتيجة اختبار المعنوية المشتركة لمعاملات الأجل الطويل في نموذج ARDL

Probability	df	Value	Test Statistic
0.1737	(4, 7)	2.176950	F-statistic
0.0688	4	8.707799	Chi-square

المصدر: حُسبت باستخدام برنامج EViews.

5- تقدير العلاقه طويله الاجل للنموذج ARDL Long Run from

يتضح من جدول (21) أن RAIN (1-) يظهر تأثيرًا قويًا وسلبيًا على D(FRESH_WATER) مما يعني أن زيادة هطول الأمطار في الفترة السابقة تؤثر بشكل كبير في المياه العذبة. D(HUMIDITY) تظهر تأثيرًا ضعيفًا ولكن يقترب من المستوى المعنوي عند 5%.(PRAIN) (1-) لها تأثير إيجابي كبير ومعنوي. وباقي المتغيرات مثل METHANE_EMISSION (1-) همتويًا كبيرًا.

جدول (21) نتانج نماذج تقدير معادلة الأجل الطويل وفقاً لنموذج (2, 1, 2, 1, 2, 2, 2

Prob.	t-Statistic	Std. Error	Coefficient	Variable
0.1983	-1.420897	967.3184	-1374.460	С
0.1152	-1.798107	0.408235	-0.734050	FRESH WATER(-1)*
0.1757	1.506536	35.66351	53.72836	AVERAGE_SURFACE_AIR_TEMPERATURE (-1)
0.4336	0.830534	10.66576	8.858274	HUMIDITY(-1)
0.0307	-2.698743	2.193857	-5.920656	RAIN(-1)
0.4218	0.853070	0.010184	0.008687	CARBON_GAS_EMISSION(-1)
0.1036	-1.870383	527.7820	-987.1545	METHANE_EMISSION(-1)
0.1734	1.515445	76.41503	115.8028	NITROUS GAS EMISSION(-1)
0.1330	1.699817	0.334588	0.568739	D(FRESH WATER(-1))
0.2378	1.290841	13.51867	17.45045	D(AVERAGE_SURFACE_AIR_TEMPERATURE)
				D(AVERAGE_SURFACE_AIR_TEMPERATURE(-
0.1392	-1.668200	13.42689	-22.39875	1))
0.0587	2.255215	7.097170	16.00564	D(HUMIDITY)
0.1566	-1.586705	1.655916	-2.627451	D(RAIN)
0.0104	3.468209	1.231044	4.269517	D(RAIN(-1))
0.6060	-0.539931	0.020205	-0.010909	D(CARBON_GAS_EMISSION)
0.6838	0.424701	348.6022	148.0518	D(METHANE EMISSION)
0.1718	1.522020	332.7092	506.3900	D(METHANE_EMISSION(-1))
0.5421	-0.640653	43.14159	-27.63880	D(NITROUS_GAS_EMISSION)
0.2632	-1.216517	52.10562	-63.38738	D(NITROUS_GAS_EMISSION(-1))

6- تقدير نموذج تصحيح الاخطاء وفقاً لنموذج ARDL

2025, 24(2): 251- 282

Online: ISSN 2735-509

وبعد الانتهاء من الخطوات السابقة والتي هي أساس لإجراء الخطوة التالية فيتم إجراء نموذج تصحيح الأخطاء والذي تقع قيمته بين (الصفر والسالب).

التقييم الاقتصادي لنموذج التكامل المشترك بين كمية الانتاج السمكي من المياه العنبة، التغيرات المناخية:

لقد ثبت أنه لا يوجد علاقة طويلة الأجل بين كمية الانتاج السمكي من المياه العذبة، متوسط درجة حرارة الهواء السطحي، الرطوبة النسبية، تساقط الامطار، انبعاث غاز الكربون، انبعاث غاز الميثان، انبعاث غاز النيتروز وذلك من نتيجة نموذج معامل تصحيح الخطأ والذي قيمته (0.734050) أي أن 73 % من الأخطاء التي حدثت في المدي القصير يتم تصحيحها في المدي الطويل، بمعني أن هناك علاقة تكامل مشترك بين المتغيرات، ويوضح جدول (22) نتيجة نموذج تصحيح الخطأ.

جدول (22) نتائج نموذج تصحيح الخطأ للتكامل المشترك

	ECM Regression						
	(ant and No Trend			
Prob.	t-Statistic	Std. Error	Coefficient	Variable			
0.0081	3.655060	0.155603	0.568739	D(FRESH_WATER(-1))			
0.0181	3.067602	5.688630	17.45045	D(AVERAGE_SURFACE_AIR_TE MPERATURE)			
0.0045	-4.105758 5.455449		-22.39875	D(AVERAGE_SURFACE_AIR_TE MPERATURE(-1))			
0.0041	4.190783	3.819249	16.00564	D(HUMIDITY)			
0.0153	-3.188281	0.824096	-2.627451	D(RAIN)			
0.0003	6.455566	0.661370	4.269517	D(RAIN(-1))			
0.3051	-1.106512	0.009859	-0.010909	D(CARBON GAS EMISSION)			
0.3685	0.961160	154.0346	148.0518	D(METHANE_EMISSION)			
0.0158	3.164823	160.0058	506.3900	D(METHANE_EMISSION(-1))			
0.2496	-1.255396	22.01600	-27.63880	D(NITROUS GAS EMISSION)			
0.0353	-2.602700	24.35447	-63.38738	D(NITROUS GAS EMISSION(-1))			
0.0013	-5.176907	0.141793	-0.734050	CointEq(-1)*			
1.440000	Mean dep	endent var	0.818320	R-squared			
13.72842			0.675572	Adjusted R-squared			
7.255159			7.819511	S.E. of regression			
7.835819	Schwarz criterion		856.0266	Sum squared resid			
7.422368	Hannan-Q	uinn criter.	-82.31707	Log likelihood			
1.675023	F-statistic		1.892170	Durbin-Watson stat			

2025, 24(2): 251- 282 Online: ISSN 2735-509

7- الاختبارات القياسية لسلامة النموذج:

- اختبار التوزيع الطبيعي للبواقي (Normality Test)

يشير جدول (23) إلي أن جميع القيم الاحتمالية (Prob.) أكبر من 0.05، مما يعني أنه لا يوجد دليل قوي على وجود عدم تجانس التباين. وبالتالي، يمكن افتراض أن النموذج يتمتع بتجانس التباين (Homoskedasticity)، وهو أحد الافتراضات الأساسية للنموذج القياسي

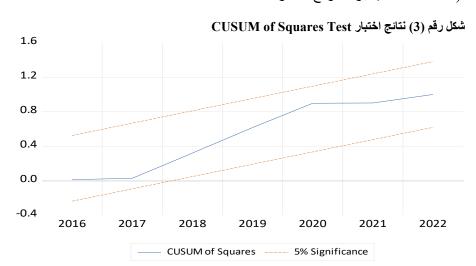
جدول (23) نتائج أختبار Breusch-Pagan-Godfrey لعدم تجانس التباين (Test)

0.4892	Prob. F(18,7)	1.081134	F-statistic
0.3844	Prob. Chi-Square(18)	19.12180	Obs*R-squared
1.0000	Prob. Chi-Square(18)	1.658692	Scaled explained SS

المصدر: حُسبت باستخدام برنامج EViews.

ب- اختبار التغاير الذاتي للبواقي (Serial Correlation Test)

نظرًا لأن قيمة الاحتمالية > 0.05، يتم رفض الفرضية الصفرية (H0) عند مستوى معنوية 5%. هذا يشير إلى وجود ارتباط تسلسلي بين البواقي, هذه النتائج تدل على أن النموذج الذي تم تقديره لا يعاني من مشاكل الارتباط التسلسلي بين الأخطاء, كما في جدول (24).


جدول (24) نتانج اختبار Breusch-Godfrey Serial Correlation LM Test لتغاير الارتباط التسلسلي

0.9317	Prob. F(2,5)	0.071754	F-statistic
0.6958	Prob. Chi-Square(2)	0.725418	Obs*R-squared

المصدر: حُسبت باستخدام برنامج EViews.

ت- اختبار استقرار النموذج (Stability Test)

يتضح من شكل رقم (3) أن منحنيات الاختبار تقع داخل الحدود الحرجة Critical) (Critical لختبار النموذج مستقرأ.

2025, 24(2): 251- 282 Print: ISSN 1687-1464 Online: ISSN 2735-509

تقدير نموذج التكامل المشترك بإستخدام نموذج ARDL

يتم تقدير نموذج ARDL لكلاً من كمية الانتاج السمكي من الاستزراع (كمتغير تابع), التغيرات المناخية ممثلة في متوسط درجة حرارة الهواء السطحي, الرطوبة النسبية, تساقط الامطار, انبعاث غاز الكربون, انبعاث غاز الميثان, انبعاث غاز النيتروز (كمتغيرات مستقلة). ويهدف نموذج الانحدار الذاتي للفجوات الموزعة إلى اختبار وجود علاقة طويلة الأجل بين المتغيرات أي وجود تكامل مشترك بينها.

خطوات تطبيق نموذج ARDL

1- تحديد درجة استقرار السلسلة:

لقد تم إجراء اختبار ديكي فولر (Unit Roots Test) لكلاً من كمية الانتاج السمكي من الاستزراع (كمتغير تابع), متوسط درجة حرارة الهواء السطحي, الرطوبة النسبية, تساقط الامطار, انبعاث غاز الكربون, انبعاث غاز الميثان, انبعاث غاز النيتروز (كمتغيرات مستقلة), ووجد أن السلاسل الزمنية غير مستقرة في المستوي، ولكنها استقرت بعد أخذ الفروق الأولى لجميع المتغيرات, كما هو موضح بجدول (25).

جدول (25) نتائج اختبار جزر الوحدة لاستقرار السلاسل الزمنية

	جنون (25) تنابع اختبار جرز الوعدة واستعرار الشارس الرامنية						
	1 st. difference			level		Item	
none	trend & intercept	intercept	none	trend & intercept	inter cept		
-2.65	-4.49	-3.78	-2.65	-4.39	-3.71	القيم الحرجة عند 1%	
-1.95	-3.65	-3.01	-1.95	-3.61	-2.98	القيم الحرجة عند 5%	
-1.80	-5.29	-5.40	3.28	-2.34	-0.32	aquaculture	
-10.8	-7.19	-7.18	0.89	-7.05	-4.56	Average surface air temperature	
-9.33	-6.00	-9.18	-0.48	-4.57	-3.85	%Relative humidity	
-4.58	-5.22	-4.63	0.91	-4.12	-3.73	rain	
-4.90	-5.01	-4.89	0.08	-1.27	-1.68	Carbon gas emission (resulting from energy (use in agriculture	
-4.86	-4.94	-4.77	-0.33	-1.27	-1.59	Methane emission (from energy use in (agriculture	
-4.77	-4.75	-4.68	-0.55	-1.38	-1.61	Emission of nitrous gas (resulting from energy (use in agriculture	

2025, 24(2): 251- 282 Online: ISSN 2735-509

2- تحديد درجة تأخير النموذج:

تم عمل انحدار ذاتي VAR وتحديد أفضل فترة ابطاء أو تأخير بين المتغير التابع والمتغيرات المستقل وأتضح أن درجة التأخير المثلي للنموذج هي 2، ويوضح جدول (26) درجة الإبطاء أو التأخير.

جدول (26) نتائج معايير تحديد عدد فترات الأبطاء الزمني

HQ	SC	AIC	FPE	LR	LogL	Lag
33.80373	34.04490	33.70619	1026138.	NA	-431.1804	0
28.18945	30.11889*	27.40914	2182.513	181.1929*	-300.3189	1
27.75759*	31.37528	26.29451*	1924.039*	53.72253	-236.8286	2

^{*} Indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error AIC: Akaike information criterion SC: Schwarz information criterion HQ: Hannan-Quinn information criterion

المصدر: حُسبت باستخدام برنامج EViews.

3- اختبار الحدود ARDL Bounds Test

وتتم تلك الخطوة من خلال تقدير نموذج ARDL, وتشير نتائج الجدول رقم (27) لنتائج اختبار التكامل المشترك باستخدام اختبار الحدود أن قيمة f المحسوبة 9.51 أكبر من الحدود الحرجة العليا وذلك عند مستوى معنوية 1% وبالتالي نرفض الفرضية الصغرية بعدم وجود تكامل مشترك وهذا يعني أن هناك علاقة طويلة الأجل بين كمية الانتاج السمكي من الاستزراع ومتوسط درجة حرارة الهواء السطحي، الرطوبة النسبية، تساقط الامطار، انبعاث غاز الكربون، انبعاث غاز الميثان، انبعاث غاز النيتروز أي أنه يوجد تكامل مشترك عند مستوى معنوية 1%.

جدول (27) نتيجة اختبار التكامل المشترك لمنهجية ARDL Bounds Test واختبار الحدود ARDL Bounds Test

				ror integration
Null Hyp	othesis: No levels relation	F-Bounds Test		
I(1)	I(1) I(0)		Value	Test Statistic
	Asymptotic: n=1000			
2.94	1.99	10%	9.519889	F-statistic
3.28	2.27	5%	6	K
3.61	2.55	2.5%		
3.99	2.88	1%		
	Finite Sample: n=35		26	Actual Sample Size
3.388	2.254	10%		
3.96	2.685	5%		
5.326	3.713	1%		
	Finite Sample: n=30			
3.515	2.334	10%		
4.148	2.794	5%		
5.691	3.976	1%		

جدول (28) نتانج اختبار Wald Test نتيجة اختبار المعنوية المشتركة لمعاملات الأجل الطويل في نموذج ARDL

Probability	df	Value	Test Statistic
0.6795	(4, 9)	0.588365	F-statistic
0.6711	4	2.353458	Chi-square

المصدر: حُسبت باستخدام برنامج EViews.

2025, 24(2): 251-282

Online: ISSN 2735-509

4- تقدير العلاقة طويله الاجل للنموذج ARDL Long Run from

يتضح من جدول (29) أن (1-) CARBON_GAS_EMISSION (انبعاثات الغاز الكربوني في الفترة السابقة) لها تأثير إيجابي ومعنوي عند مستوى 5%، مما يشير إلى أن الزيادة في انبعاثات الغاز الكربوني في الفترات السابقة تساهم في زيادة الاستزراع السمكي. وهذا يعكس دور تأثير التغيرات المناخية الناتجة عن انبعاثات الغاز الكربوني على القطاع.

(1-) NITROUS_GAS_EMISSION (انبعاثات أكسيد النيتروز في الفترة السابقة) المعامل السالب يُظهر تأثيرًا سلبيًا قويًا عند مستوى 1%، مما يعني أن زيادة انبعاثات أكسيد النيتروز في الفترات السابقة تؤدي إلى تقليل الزراعة المائية.

بعض المتغيرات تظهر تأثيرًا معنويًا ضعيفًا، مثل (1-)(D(AQUACULTURE) و (1-) D(CARBON_GAS_EMISSION) و (1-) (1-) في بعض الأحيان، تكون هذه التأثيرات ضئيلة نسبيًا من حيث الأثر على المتغير التابع (كمية الانتاج السمكي من الاستزراع).

جدول (29) نتائج نماذج تقدير معادلة الأجل الطويل وفقاً لنموذج (2, 1, 0, 2, 2, 1, 2)

	ARDE (2, 1, 0, 2, 2, 1, 2) 6-9-1-9-09-09-09-09-09-09-09-09-09-09-09-09-0					
		Std.				
Prob.	t-Statistic	Error	Coefficient	Variable		
0.8051	-0.254147	1785.758	-453.8454	C		
0.0090	-3.314799	0.121134	-0.401536	AQUACULTURE(-1)*		
0.3926	0.898003	54.22369	48.69304	AVERAGE_SURFACE_AIR_TEMPERATURE(-1)		
0.4460	-0.797015	22.04697	-17.57176	HUMIDITY**		
0.1221	-1.706518	5.576266	-9.516000	RAIN(-1)		
0.0250	2.684369	0.073574	0.197501	CARBON_GAS_EMISSION(-1)		
0.7144	0.377692	1030.830	389.3363	METHANE_EMISSION(-1)		
0.0017	-4.401278	139.4659	-613.8279	NITROUS_GAS_EMISSION(-1)		
0.0572	-2.179570	0.165719	-0.361197	D(AQUACULTURE(-1))		
0.8625	0.178236	35.66073	6.356042	D(AVERAGE_SURFACE_AIR_TEMPERATURE)		
0.7693	0.302331	3.163320	0.956371	D(RAIN)		
0.1590	1.535714	2.988075	4.588828	D(RAIN(-1))		
0.3458	0.994933	0.065889	0.065555	D(CARBON_GAS_EMISSION)		
0.0410	-2.383445	0.059219	-0.141146	D(CARBON GAS EMISSION(-1))		
0.1875	-1.426484	874.2931	-1247.165	D(METHANE_EMISSION)		
0.8376	0.210976	139.8729	29.50976	D(NITROUS GAS EMISSION)		
0.0253	2.678162	163.2881	437.3120	D(NITROUS GAS EMISSION(-1))		

2025, 24(2): 251- 282 Online: ISSN 2735-509

5- تقدير نموذج تصحيح الاخطاء وفقاً لنموذج ARDL

وبعد الانتهاء من الخطوات السابقة والتي هي أساس لإجراء الخطوة التالية فيتم إجراء نموذج تصحيح الأخطاء والذي تقع قيمته بين (الصفر والسالب).

التقييم الاقتصادي لنموذج التكامل المشترك بين كمية الانتاج السمكي من الاستزراع، التغيرات المناخية:

لقد ثبت أن هناك علاقة طويلة الأجل بين كمية الانتاج السمكى من الاستزراع، متوسط درجة حرارة الهواء السطحي، الرطوبة النسبية، تساقط الامطار، انبعاث غاز الكربون، انبعاث غاز الميثان، انبعاث غاز النيتروز وذلك من نتيجة نموذج معامل تصحيح الخطأ والذي قيمته (0.401536-) أي أن 40 % من الأخطاء التي حدثت في المدي القصير يتم تصحيحها في المدي الطويل، بمعني أن هناك علاقة تكامل مشترك بين المتغيرات، ويوضح جدول (30) نتيجة نموذج تصحيح الخطأ.

التقييم الإحصائي للنموذج المقدر

لقد ثبتت المعنوية الاحصائية لكلاً من كمية الانتاج السمكي من الاستزراع ومعامل تصحيح الخطأ، كما أشارت قيمة معامل التحديد إلي أن 87.4% من التغير في كمية الانتاج السمكي من الاستزراع ترجع إلي المتغيرات المفسرة (متوسط درجة حرارة الهواء السطحي, الرطوبة النسبية، تساقط الامطار، انبعاث غاز الكربون، انبعاث غاز الميثان، انبعاث غاز النيتروز)، وهو ما يتفق مع التقييم الاقتصادي للنموذج، وبالتالي فإن 12.6% ترجع إلي عوامل أخري غير مُقيسة بالنموذج. كما اتضح لنا معنوية النموذج المُقدر من خلال قيمة F- statistic

جدول (30) نتائج نموذج تصحيح الخطأ للتكامل المشترك

				<u> </u>			
ECM Regre	ECM Regression						
Case 2: Res	Case 2: Restricted Constant and No Trend						
Prob.	t-Statistic	Std. Error	Coefficien t	Variable			
0.0058	-3.593270	0.100520	-0.361197	D(AQUACULTURE(-1))			
0.5941	0.552463	11.50491	6.356042	D(AVERAGE_SURFACE_AIR_TEMP ERATURE)			
0.5098	0.686268	1.393583	0.956371	D(RAIN)			
0.0074	3.443425	1.332635	4.588828	D(RAIN(-1))			
0.0891	1.905278	0.034407	0.065555	D(CARBON_GAS_EMISSION)			
0.0031	-3.993620	0.035343	-0.141146	D(CARBON_GAS_EMISSION(-1))			
0.0251	-2.683120	464.8190	-1247.165	D(METHANE_EMISSION)			
0.6995	0.398603	74.03300	29.50976	D(NITROUS_GAS_EMISSION)			
0.0016	4.434435	98.61730	437.3120	D(NITROUS GAS EMISSION(-1))			
0.0000	-11.63589	0.034508	-0.401536	CointEq(-1)*			
59.07808	Mean depen	dent var	0.874432	R-squared			
63.49713	S.D. depend	S.D. dependent var		Adjusted R-squared			
9.794968	Akaike info criterion		28.12571	S.E. of regression			
10.27885	Schwarz cri	terion	12656.89	Sum squared resid			
9.934309	Hannan-Qu	inn criter.	-117.3346	Log likelihood			
9.519889	F-statistic		2.266777	Durbin-Watson stat			

2025, 24(2): 251- 282 Online: ISSN 2735-509

6- الاختبارات القياسية لسلامة النموذج:

اختبار التوزيع الطبيعي للبواقي (Normality Test)

يشير جدول (31) إلي أن جميع القيم الاحتمالية (Prob.) أكبر من 0.05، مما يعني أنه لا يوجد دليل قوي على وجود عدم تجانس التباين. وبالتالي، يمكن افتراض أن النموذج يتمتع بتجانس التباين (Homoskedasticity)، وهو أحد الافتراضات الأساسية للنموذج القياسي.

جدول (31) نتائج اختبار Breusch-Pagan-Godfrey لعدم تجانس النباين (Test

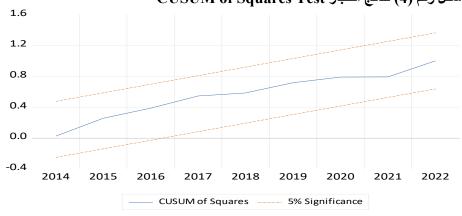
0.14	15	Prob. F(16,9)	2.029042	F-statistic
0.20)46	Prob. Chi-Square (16)	20.35664	Obs*R-squared
1.00	000	Prob. Chi-Square (16)	2.009792	Scaled explained SS

المصدر: حُسبت باستخدام برنامج EViews.

ب- اختبار التغاير الذاتي للبواقي (Serial Correlation Test)

نظرًا لأن قيمة الاحتمالية > 0.05، يتم رفض الفرضية الصفرية (H0) عند مستوى معنوية 5%. هذا يشير إلى وجود ارتباط تسلسلي بين البواقي, هذه النتائج تدل على أن النموذج الذي تم تقديره لا يعاني من مشاكل الارتباط التسلسلي بين الأخطاء, كما في جدول (32).

جُدولُ (32) نتانج اختبار Breusch-Godfrey Serial Correlation LM Test لتغاير الارتباط التسلسلي


			ي
0.7012	Prob. F(2,7)	0.373598	F-statistic
0.2854	Prob. Chi-Square(2)	2.507630	Obs*R-squared

المصدر: حُسبت باستخدام برنامج EViews.

ت- اختبار استقرار النموذج (Stability Test)

يتضح من شكل رقم (4) أن منحنيات الاختبار تقع داخل الحدود الحرجة Critical) (Critical لذلك يعتبر النموذج مستقراً.

شكل رقم (4) نتائج اختبار CUSUM of Squares Test

2025, 24(2): 251-282 Print: ISSN 1687-1464 Online: ISSN 2735-509

تقدير نموذج التكامل المشترك باستخدام نموذج ARDL

يتم تقدير نموذج ARDLلكلاً من اجمالي كمية الانتاج السمكي (كمتغير تابع), التغيرات المناخية ممثلة في متوسط درجة حرارة الهواء السطحي. الرطوبة النسبية، تساقط الامطار، انبعاث غاز الكربون، انبعاث غاز الميثان، انبعاث غاز النيتروز (كمتغيرات مستقلة). ويهدف نموذج الانحدار الذاتي للفجوات الموزعة إلى اختبار وجود علاقة طويلة الأجل بين المتغيرات أي وجود تكامل مشترك بينها.

خطوات تطبيق نموذج ARDL

1- تحديد درجة استقرار السلسلة:

لقد تم إجراء اختبار ديكي فولر (Unit Roots Test) لكلاً من اجمالي كمية الانتاج السمكي (كمتغير تابع), متوسط درجة حرارة الهواء السطحي, الرطوبة النسبية، تساقط الامطار، انبعاث عاز الكربون، انبعاث غاز الميثان، انبعاث غاز النيتروز (كمتغيرات مستقلة) , ووجد أن السلاسل الزمنية غير مستقرة في المستوي، ولكنها استقرت بعد أخذ الفروق الأولى لجميع المتغيرات، كما هو موضح بجدول (33).

جدول (33) نتائج اختبار جزر الوحدة لاستقرار السلاسل الزمنية

1 st. difference			Level			Item
none	trend & intercept	intercept	none	trend & intercept	intercept	
-2.65	-4.49	-3.78	-2.65	-4.39	-3.71	القيم الحرجة عند 1%
-1.95	-3.65	-3.01	-1.95	-3.61	-2.98	القيم الحرجة عند 5%
-5.30	-5.12	-5.21	-1.04	-2.15	-1.42	Total quantity of fish production
-10.8	-7.19	-7.18	0.89	-7.05	-4.56	Average surface air temperature
-9.33	-6.00	-9.18	-0.48	-4.57	-3.85	%Relative humidity
-4.58	-5.22	-4.63	0.91	-4.12	-3.73	Rain
-4.90	-5.01	-4.89	0.08	-1.27	-1.68	Carbon gas emission (resulting from energy (use in agriculture
-4.86	-4.94	-4.77	-0.33	-1.27	-1.59	Methane emission (from energy use in (agriculture
-4.77	-4.75	-4.68	-0.55	-1.38	-1.61	Emission of nitrous gas (resulting from energy use in (agriculture

المصدر: حُسبت باستخدام برنامج EViews.

2- تحديد درجة تأخير النموذج:

تم عمل انحدار ذاتي VAR وتحديد أفضل فترة ابطاء أو تأخير بين المتغير التابع والمتغيرات المستقل وأتضح أن درجة التأخير المثلي للنموذج هي 2، ويوضح جدول (34) در جة الإبطاء أو التأخير.

جدول (34) نتائج معايير تحديد عدد فترات الأبطاء الزمنى

			٠, د ي			, -
HQ	SC	AIC	FPE	LR	LogL	Lag
34.86740	35.10858	34.76986	2972726.	NA	-445.0082	0
31.34974	33.27918	30.56943	51458.08	143.4539	-341.4026	1
29.46085*	33.07855*	27.99777*	10566.55*	69.74979*	-258.9711	2

^{*} Indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error AIC: Akaike information criterion SC: Schwarz information criterion HQ: Hannan-Quinn information criterion

المصدر: حُسبت باستخدام برنامج EViews.

3- اختبار الحدود ARDL Bounds Test

وتتم تلك الخطوة من خلال تقدير نموذج ARDL, وتشير نتائج الجدول رقم (35) لنتائج اختبار التكامل المشترك باستخدام اختبار الحدود أن قيمة f المحسوبة f الكبر من الحدود الحرجة العليا وذلك عند مستوى معنوية f وبالتالي نرفض الفرضية الصفرية بعدم وجود تكامل مشترك وهذا يعني أن هناك علاقة طويلة الأجل بين اجمالي كمية الانتاج السمكي ومتوسط درجة حرارة الهواء السطحي، الرطوبة النسبية، تساقط الامطار، انبعاث غاز الكربون، انبعاث غاز الميثان، انبعاث غاز النيتروز أي أنه يوجد تكامل مشترك عند مستوى معنوية f f.

جدول (35) نتيجة اختبار التكامل المشترك لمنهجية ARDL Bounds Test واختبار الحدود For Integration

				Tor integration	
Null Hypothe	sis: No levels relat	ionship	F-Bounds Test		
I(1)	I(0)	Signif.	Value	Test Statistic	
	Asymptotic: n=1000				
2.94	1.99	10%	4.603975	F-statistic	
3.28	2.27	5%	6	k	
3.61	2.55	2.5%			
3.99	2.88	1%			
	Finite Sample:		26	Actual Sample Size	
	n=35				
3.388	2.254	10%			
3.96	2.685	5%			
5.326	3.713	1%			
	Finite Sample:				
	n=30				
3.515	2.334	10%	·		
4.148	2.794	5%	·		
5.691	3.976	1%			

2025, 24(2): 251-282 Online: ISSN 2735-509

4- اختبار المعنوية المشتركة لمعاملات الأجل الطويل في نموذج ARDL

ويتم ذلك باختبار Wald Test, ويكتب الفرض العدم كالتالي: H_0 : البديل فهو: H_1 : الفر ض أما C(3)=C(4)=C(5)=C(6)=0chi-square بيا درائل المخارد) ويوضح جدول (36) أن قيمة $C(3) \neq C(4) \neq C(5) \neq 0$ 5.95 عند 4 درجات حرية وعند مستوى معنوية أقل من 5%، وبالتالي يتم قبول الفرض الصفري و رفض الفرض البديل أي أن لا يوجد تأثير مشترك للمتغيرات المستقلة (متوسط درجة حرارة الهواء السطحي الرطوبة النسبية. تساقط الامطار انبعاث غاز الكربون. انبعاث غاز الميثان, انبعاث غاز النيتروز) على المتغير التابع (اجمالي كمية الانتاج السمكي) في الأجل الطويل.

جدول (36) نتائج اختبار Wald Test نتيجة اختبار المعنوية المشتركة لمعاملات الأجل الطويل في نموذج ARDL

Probability	df	Value	Test Statistic
0.2843	(4, 9)	1.488050	F-statistic
0.2027	4	5.952200	Chi-square

المصدر: حُسبت باستخدام برنامج EViews.

5- تقدير العلاقة طويله الإجل للنموذج ARDL Long Run from

يتضح من جدول (37) أن التغيرات في الرطوبة وانبعاثات غاز ثاني اكسيد الكربون تظهر تأثيرات معنوية هامة على الإنتاج. وأن إنتاج الأسماك السابق له تأثير سلبي قوي على الإنتاج في الفترات الحالية. وانبعاثات الميثان في الفترات السابقة تؤثر سلبًا على الإنتاج أيضًا. والعوامل المناخية الأخرى مثل درجة الحرارة والأمطار لا تظهر تأثيرًا معنويًا.

6- تقدير نموذج تصحيح الإخطاء وفقاً لنموذج ARDL

وبعد الانتهاء من الخطوات السابقة والتي هي أساس لإجراء الخطوة التالية فيتم إجراء نموذج تصحيح الأخطاء والذي تقع قيمته بين (الصفر والسالب).

التقييم الاقتصادي لنموذج التكامل المشترك بين اجمالي كمية الانتاج السمكي, التغيرات المناخية:

لقد ثبت أن هناك علاقة طويلة الأجل بين اجمالي كمية الانتاج السمكي, متوسط درجة حرارة الهواء السطحي الرطوبة النسبية، تساقط الامطار، انبعاث غاز الكربون، انبعاث غاز الميثان, انبعاث غاز النيتروز وذلك من نتيجة نموذج معامل تصحيح الخطأ والذي قيمته-(0.782638) أي أن 78 % من الأخطاء التي حدثت في المدي القصير يتم تصحيحها في المدي الطويل، بمعني أن هناك علاقة تكامل مشترك بين المتغيرات، ويوضح جدول(38) نتيجة نموذج تصحيح الخطأ.

التقييم الإحصائى للنموذج المُقدر

لقد ثبُّتت المعنوية الاحصائية لكلاً من اجمالي كمية الانتاج السمكي ومعامل تصحيح الخطأ، كما أشارت قيمة معامل التحديد إلى أن 81.1% من التغير في اجمالي كمية الانتاج السمكي ترجع إلى المتغيرات المُفسره (متوسط درجة حرارة الهواء السطحي, الرطوبة النسبية, تساقط الامطار، انبعاث غاز الكربون، انبعاث غاز الميثان، انبعاث غاز النيتروز)، وهو مايتفق مع التقييم الاقتصادي للنموذج، وبالتالي فإن ١٨.٩% ترجع إلي عوامل أخري غير مُقيسة بالنموذج. كما اتضح لنا معنوية النموذج المُقدر من خلال قيمة F- statistic. جدول (37) نتائج نماذج تقدير معادلة الأجل الطويل وفقاً لنموذج (37) ARDL (1,0,2,2,2,2,1)

ARDE (1, 0, 2, 2, 2, 1) 6-9 9 6-9 9-9- 9-9- 9-9- 9-9- 9-						
t-Statistic	Std. Error	Coefficient	Variable			
2.465916	7273.814	17936.61	C			
			TOTAL_QUANTITY_OF_FISH_PRODU			
-3.660151	0.213827	-0.782638	CTION(-1)*			
			AVERAGE_SURFACE_AIR_TEMPERA			
0.451781	119.0695	53.79335	TURE**			
-2.940886	147.1232	-432.6726	HUMIDITY(-1)			
-1.251306	21.34070	-26.70375	RAIN(-1)			
-2.714284	0.103195	-0.280100	CARBON GAS EMISSION(-1)			
-1.038081	3676.173	-3816.165	METHANE_EMISSION(-1)			
1.764338	481.3047	849.1843	NITROUS GAS EMISSION(-1)			
-0.373555	70.17437	-26.21399	D(HUMIDITY)			
3.358053	95.75832	321.5615	D(HUMIDITY(-1))			
-0.687240	14.21410	-9.768494	D(RAIN)			
-1.254094	14.94240	-18.73918	D(RAIN(-1))			
0.015785	0.208352	0.003289	D(CARBON GAS EMISSION)			
2.929511	0.192825	0.564882	D(CARBON GAS EMISSION(-1))			
-1.337357	3002.834	-4015.862	D(METHANE_EMISSION)			
-2.423798	3281.303	-7953.216	D(METHANE EMISSION(-1))			
0.556046	586.8690	326.3263	D(NITROUS_GAS_EMISSION)			
	t-Statistic 2.465916 -3.660151 0.451781 -2.940886 -1.251306 -2.714284 -1.038081 1.764338 -0.373555 3.358053 -0.687240 -1.254094 0.015785 2.929511 -1.337357 -2.423798	t-Statistic Std. Error 2.465916 7273.814 -3.660151 0.213827 0.451781 119.0695 -2.940886 147.1232 -1.251306 21.34070 -2.714284 0.103195 -1.038081 3676.173 1.764338 481.3047 -0.373555 70.17437 3.358053 95.75832 -0.687240 14.21410 -1.254094 14.94240 0.015785 0.208352 2.929511 0.192825 -1.337357 3002.834 -2.423798 3281.303	t-Statistic Std. Error Coefficient 2.465916 7273.814 17936.61 -3.660151 0.213827 -0.782638 0.451781 119.0695 53.79335 -2.940886 147.1232 -432.6726 -1.251306 21.34070 -26.70375 -2.714284 0.103195 -0.280100 -1.038081 3676.173 -3816.165 1.764338 481.3047 849.1843 -0.373555 70.17437 -26.21399 3.358053 95.75832 321.5615 -0.687240 14.21410 -9.768494 -1.254094 14.94240 -18.73918 0.015785 0.208352 0.003289 2.929511 0.192825 0.564882 -1.337357 3002.834 -4015.862 -2.423798 3281.303 -7953.216			

المصدر: حُسبت باستخدام برنامج EViews.

جدول (38) نتائج نموذج تصحيح الخطأ للتكامل المشترك

ب در (38) سے جونے سیان ہے۔						
	ECM Regression					
	Case 2: Restricted Constant and No Trend					
Prob.	t-Statistic	Std. Error	Coefficient	ent Variable		
0.3758	-0.931787	28.13302	-26.21399	D(HUMIDITY)		
0.0001	6.325405	50.83651	321.5615	D(HUMIDITY(-1))		
0.2024	-1.374935	7.104698	-9.768494	D(RAIN)		
0.0192	-2.846564	6.583089	-18.73918	D(RAIN(-1))		
0.9782	0.028047	0.117266	0.003289	D(CARBON_GAS_EMISSION)		
0.0011	4.727465	0.119489	0.564882	D(CARBON_GAS_EMISSION(-1))		
0.0525	-2.231728	1799.440	-4015.862	D(METHANE_EMISSION)		
0.0032	-3.985006	1995.785	-7953.216	D(METHANE_EMISSION(-1))		
0.2600	1.202184	271.4445	326.3263	D(NITROUS_GAS_EMISSION)		
0.0000	-8.091895	0.096719	-0.782638	CointEq(-1)*		
-8.855385	Mean dependent var		0.811460	R-squared		
178.5816	S.D. dependent var		0.705407	Adjusted R-squared		
12.26953	Akaike info criterion		96.92770	S.E. of regression		
12.75341	Schwarz criterion		150319.7	Sum squared resid		
12.40887	Hannan-Quinn criter.		-149.5039	Log likelihood		
4.603975	F-statistic		1.814274	Durbin-Watson stat		

2025, 24(2): 251- 282 Print: ISSN 1687-1464 Online: ISSN 2735-509

7- الاختبارات القياسية لسلامة النموذج:

اختبار التوزيع الطبيعي للبواقي (Normality Test)

يشير جدول (39) إلي أن جميع القيم الاحتمالية (Prob.) أكبر من 0.05، مما يعنى أنه لا يوجد دليل قوي على وجود عدم تجانس التباين. وبالتالي، يمكن افتراض أن النموذج يتمتع بتجانس التباين (Homoskedasticity)، وهو أحد الافتراضات الأساسية للنموذج

جدول (39) نتائج اختبار Breusch-Pagan-Godfrey لعدم تجانس التباين (199) نتائج اختبار (Test

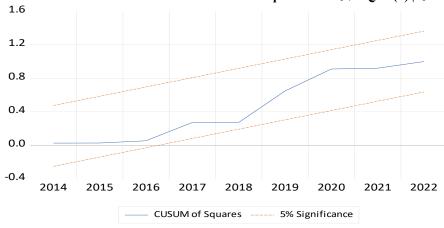
0.5494	Prob. F(16,9)	0.959645	F-statistic
0.4260	Prob. Chi-Square (16)	16.39185	Obs*R-squared
1.0000	Prob. Chi-Square (16)	1.914171	Scaled explained SS

المصدر: حُسبت باستخدام برنامج EViews.

ب- اختبار التغاير الذاتي للبواقي (Serial Correlation Test)

نظرًا لأن قيمة الاحتمالية > 0.05، يتم رفض الفرضية الصفرية (H0) عند مستوى معنوية 5%. هذا يشير إلى وجود ارتباط تسلسلي بين البواقي, هذه النتائج تدل على أن النموذج الذي تم تقديره لأ يعانى من مشاكل الارتباط التسلسلي بين الأخطاء, كما في جدول .(40)

جُدول (40) نتائج اختبار Breusch-Godfrey Serial Correlation LM Test لتغاير الارتباط


			<u>_</u>
0.7373	Prob. F(2,7)	0.318424	F-statistic
0.3382	Prob. Chi-Square (2)	2.168180	Obs*R-squared

المصدر: حُسبت باستخدام برنامج EViews.

ت- اختبار استقرار النموذج (Stability Test)

يتضح من شكل رقم (5) أن مندنيات الأختبار تقع داخل الحدود الحرجة Critical) (Boundsلذلك يعتبر النموذج مستقرأ.

شكل رقم (5) نتائج اختبار CUSUM of Squares Test

قائمة المراجع:

- 1- FAO (Food and Agriculture Organization). (2022). **The State of World Fisheries and Aquaculture 2022**. https://www.fao.org/publications/sofia/2022/en/
- 2- IPCC (Intergovernmental Panel on Climate Change). (2022). Climate Change 2022: Impacts, Adaptation, and Vulnerability. [https://www.ipcc.ch/report /ar6/wg2/](https://www.ipcc.ch/report/ar6/wg2/)
- 3- El-Raey, M. (2019). **Impact of Climate Change on the Nile Delta and Egypt. Springer**. DOI: [10.1007/978-3-030-02200-4](https://doi.org/10.1007/978-3-030-02200-4)
- 4- Hassan, H., & El-Sayed, M. (2020). Climate Change Impacts on Fisheries and Aquaculture in Egypt. Journal of Fisheries and Aquatic Science. DOI: [10.3923/jfas.2020.1.10](https://doi.org/10.3923/jfas.2020.1.10)
- 5- Abd El-Kawy, O. R., et al. (2021). Impact of Climate Change on Fish Production in Lake Nasser, Egypt. Egyptian Journal of Aquatic Research. DOI: [10.1016/j.ejar.2021.03.002](https://doi.org/10.1016/j.ejar.2021.03.002)
- 6- World Bank. (2021). Climate Change and Fisheries in the Middle East and North Africa. https://www.worldbank.org/en/region/mena/publication/climate-change-and-fisheries
- 7- GAFRD (General Authority for Fish Resources Development). (2023). Annual Report on Fish Production in Egypt, 2023. http://www.gafrd.org
- 8- Cheung, W. W. L., et al. (2016). **Projecting Global Marine Biodiversity Impacts Under Climate Change Scenarios**. Fish and Fisheries. DOI: [10.1111/faf.12137](https://doi.org/10.1111/faf.12137)

2025, 24(2): 251- 282 Online: ISSN 2735-509

The economic impacts of climate change on freshwater fish production in Egypt.

Sara Ahmed Fouad Mohamed¹, Ashraf shebl Mohamed youness²

1 Dept. of Agricultural Economics, Faculty of Agriculture, Zagazig University.

2 Dr. Professor in agricultural economy, Head of human development and economics department.

ABSTRACT:

Fisheries in Egypt constitute an important source of food and income, as many coastal and inland communities depend on fishing and aquaculture as their main source of livelihood. However, climate change poses a major threat to this sector, affecting productivity, biodiversity, and aquatic ecosystems. Therefore, it is a problem to study how climate change affects fish productivity in Egypt, and whether these changes pose a real threat to food security and the national economy (World Bank, 2020). Hence, we seek to answer the following questions: How do climate change affect fish productivity in Egypt? To what extent does the fisheries sector respond to climate change in the short and long term? What are the possible strategies to adapt to these changes? The study aimed to analyze the impact of climate change on fish productivity in Egypt using the ARDL model)). Assessing the short- and long-term impacts of climate change on this sector. Providing recommendations to reduce the negative impacts of climate change and enhance the sustainability of fish production, the research relies on a quantitative approach using the distributed time gap autoregression (ARDL) model to analyze the relationship between climate change and fish productivity. Annual data on fish production from different sources (as dependent variables), climate changes represented by average surface air temperature, relative humidity, rainfall, carbon emissions, methane emissions, nitrous gas emissions (as independent variables) will be used over the period (2000-2022). The study relied on published and unpublished secondary data from its various sources, such as data from the Central Agency for Public Mobilization and Statistics and the General Authority for Fisheries Development in Egypt regarding the amount of fish production from various sources. Climate change data represented by average surface air temperature, relative humidity, and rainfall were also obtained from the World Bank (World Bank) As well as data on carbon emissions in

kilotons (resulting from energy use in agriculture), methane emissions, and nitrous gas emissions provided by the Food and Agriculture Organization of the United Nations (FAO). The research also used the results of research, studies, references, and scientific theses related to the subject of the study. Analysis of the relationship using the ARDL model between the amount of fish production from different sources (as dependent variables) and climate change (as independent variables) showed that there is a long-term relationship between them during the period (2000-2022).

Keywords: fisheries, climate change, distributed time gap autoregression model (ARDL).