CHEMICAL WEED CONTROL IN THE FIELDS OF DIRECT SEEDED RICE IN ALEXANDRIA REGION

Fouad S. Soliman

Plant Protection Department

Faculty of Agriculture, Alexandria University

Alexandria, Egypt.

Abstract

Six herbicides were, evaluated in direct-sown rice in Alexandria region, during 1987 and 1988 seasons. Herbicidal efficacy of the tested herbicides, as well as their effects on the growth and productivity were estimated, the dominant weed (s) in the experimental field were Echinochloa crus-galli and Cyperus difformis during 1987, and Echinochloa colonum during 1988. The most effective herbicides in the first season were Fenoxypropethyl at 1.2 L / ha, Bensulfuron-methyl at 71.4 gm/ra and Thiobencarb at 4.8 L/ha, while Oxadiazon Kz at 1.8 L/ha, Thiobencarb at 3.5 L/ha, and Pretilachlor at 1.7 L/ha exhibited good control of the weeds in the second season.

Most of the herbicidal treatments caused significant increase not only in the grain and straw yields but also in the harvest index. plant neight, number of panicles, panicle length, number of filled grians, panicle weight, 1000-grains weight and grain protein content.

Introduction

Because of the high hand-labour costs, and the good performance of the several herbicides, the chemical weed control in most of rice field becomes a common practice. Thiobencarb, one of the most common herbicides in this respect, gave good control of the rice weeds, and improved the grain yield and plant reight (Senthong, 1985). The herbicide, at its proper rate was selective and produced the highest straw and grain yield (Ali et al., 1987; mishra et al., 1987 and 1988), and the protein and the amino acids contents of the grain rice were increased (Petibskaya,1987) However, Subhakara and Nair (1986), found that, Thiobencarb at 1 Kg/ha increased the grain yield of rice than of weedy control, even though it did not affect the weedy control.

Bensulfuron-methy showed considerable promise as a selective herbicide singly or in combinations in the restricting water movement management practices (Reeves et al., 1986; and Hill et al., 1987). Bernasor and Datta, (1988); and Clampet, (1988) reported that Bensulfuron-methyl, when applied at 30-50 gm/ha, controlled Cyperus difformis. Echinochica glabrescens, E. Crust galli, Sagoitaria montevidensus and Monohoria vaginalis; and increased grain yie. I for well. Pacheco and Pope (1986) observed that, Bensulfuron-meth, at 35-140 gm/ha, when applied in sequential treatments with molinate gave excellent control of broad leaved weeds and sedges, 9, 10 and 22 days after rice sowing. No phytotoxicity to the rice crop or harmful effects on the yields were resulted from the mentioned herbicide application.

Fenoxaprop-ethyl was considered as an effective alternate to bensulfuron-methy for grassy-weed control in rice, as it showed good control of E. crus-galli and produced good yield and high grain quality (Snipes and Street, 1987; and Khodayari et a., 1989). It was also reported that, oxadiazon was an effective herbicide in the control of many weeds in rice (e.g. Pryllanthus spp., Ageratum conyzoides, Digitaria adscendens, E. crus-galli, Portulaca pleracea and Commelina communis) and it showed the greatest increase in the grain yield when compared with butachlor and pancimethalin (Bhole and Singh, 1987; Dayanand, 1987; Tiwari, et a)., 1987; Kehinde, 1988 and Zhao and man 1988). However, Abud (1986) reported that, molinate and oxadiazon controlled properly difformis and E. crus-galli, but the highest grain yield as obtained from the molinate treatment.

The present study was conducted to demonstrate the effective ness of the herbicipal treatments, for the weeds of direct-seeded rice field, at Alexandria region, as well as their effects on the grain yield.

Materials and Methods

Two field experiments were conducted in the Agricultural Experimental Station of Alexandria University located at Abbis, during the 1987 and 1988 seasons. The main objectives of the experiments were studing the chemical weed control of six herbiciess in the direct-seeded rice (\underline{Oryza} \underline{sativa}) and their effects on the grain yield.

A randomaized complete block experimental design, with four replicates, was used in both experiments. The plot size was 21 m (3 \times 7 m). Thirty-six hour water-soaked seeds were directly broadcasted by hand manually pudded, at a rate of 150 kg/ha. Seeding dates were June 13, 1987 and June 29, 1988 for the two experiments.

Herbicides and Rates:

- 1. Thiobencarb (Benthiocarb) [S-(4-chlorobenzyl)-N-N-dietnylthiol carbamate]; Saturn 50% EC; was applied 7 days after sowing at two rates, 3.5 and 4.6 $\rm l/ha$.
- 2. Pretilachlor + Safner[2-chloro-2,6-diethyl-N-(2-propoxyethyl) acetanilide] + [4,6-dichloro-2-phenyl-pyrimidine]: Sofit 30% EC, was applied 7 days after sowing at a rate of 1.3 L/ha.
- 3. Oxadiazon Kz[2+ tert-butyl- 4 + (2,4- dichloro- 5 + isopropyloxy phenyl)-1,3,4-oxadiazoline-5-one], Ronstar Kz 25% EC, was presowing applied at a rate of 1.8 L/ha.
- 4. Bensulfuron-methyl[methyl -2- [[[[[(4,6-dimethoxypyrimidine-2-yl) amino] carbonyl] amino] sulfonyll methyl] benzoatel; Londax 60% W.P., was applied, 12 days after sowing at a rate 71.4 gm/ha.
- 5. Molinate [S-ethyl-N-N-hexamethylene thiocarbamate] or [s-Ethyl hexahydro -1H- azepine -1- carbothioate]; Sakkimol 70% EC, was applied 12 days after sowing at a rate of 6 L/ha.
- 6. Fenoxaprop-ethyl [ethyl-2-[4-0-(6-chloro-2-benzoxazolyl)oxyl] phenoxy propanoatel; Furore 12% EC, was applied, 12 days after sowing at a rate of 1.2 L/ha.

The herbicidal treatments were made in 360 L. of the water-/ha except Bensulfuron-methyl which was mixed with an amount of soil (at the rate of 150 kg/ha.) and manually broadcasted on respective plots. Knapsack sprayer, model CP3 with red fan type nozzle, was used to apply the herbicides. In the hand-weeded treatments, the weeds were manually pulled, 30 days after sowing.

The assessment of the results was conducted by weighing the individual species of weeds, 45 days after sowing, and by measuring some of the agronomic characters, at harvest, such as grain and straw yields, harvest index, plant height, panicle length and weight, grain number (total and filled), number of grain per panicle and of panicles per unit area, and 1000-grain weight.

Chemical analysis of protein content was carried out according the method discribed in the Anonymous (1960).

Data were subjected to statistical analysis according to Spececor (1955).

Results and Discussion

Two field trials were carried out in two succeeding seasons 1987 and 1988 in order to investigate the effeciencies of certain herbicides to control weeds in direct-seeded rice, as well as, their effects on the grain yield, yield components and grain quality characters.

1- Weed control:-

Results of the weed control are recorded in Table (1) and (2) for 1987 and 1988 seasons respectively.

In the first season (1987), Echinochica crus-galli and Cyperus difformis were the dominant weeds, their percentages of infestation were 43.5 and 30.5%, respectively with a sum. of 74% infestation, while the E. colonum and Eclipta alba percentages of infestation were 20 and 6%, respectively. Hence, it was suspected that the herbicides acting well on the first two weeds would perform good effect on the overall control of the weeds in the experiment. Bensulfuron-methyl at 71.4g, Fenoxaprop-entyl at 1.20 and Thiobencarb at 4.8 L/ha exhibited the greatest effect on $\overline{\mathbb{E}_{+}}$ crus-calli; they reduced the fresh weight of the weed by 96.6, 95.4 and 89.1%, respectively. Similar results were previously reported by several investigators for examples. It was reported that, best control of E. crus-galli was obtained with Fenoxapropethyl at a rate of 0.15 or 0.2 lb/acre applied at the 5 to 6-leaf stage of the weed before or after flooding (Snipes and Street, 1987). Fenoxaprop-ethyl, at 0.17 Kg/ha controlled E. crus-galli and <u>Leptochoa</u> <u>fasicularis</u>, and performed as well as or better than standard treatment of Propanil with Thiobencarb (Khodayari et al., 1989). Bensulfuron-methyl at 35-140 gm/ha gave excellent control of broad-leave: weeds and sedges (Pacheco and Pope, 1986), which included in crus-galli, E. glabrescens, Monochoria vaginalis and Cyperus difformis. Oxadiazon, Molinate, Pretilacnlor and Thiobencarb at 3.5 L/ha were found to be moderately effective on E. crus-galli, the corresponding % reduction in the weed fresh weight were 76.6, 69, 61.6, and 43.6%, whereas handweeding showed 65.3% control of it. For Cyperus difformis, Pretilachlor, Fenoxaprop-ethyl, Bensulfuron-methyl and Thiobencarb (4.8 L/ha) caused more than 85% reduction in its fresh weight. Such result agrees with what has been previously found. Howevere, it was reported that, Thiobencarb at 3.75 Kg a.1/ha was particulary well controlled E. crus-galli (Zhao and Han, 1988); and for effective control of E. crus-galli and C. difformis, the application of Thiobencarb has to be eight days after sowing plus Propanil (at 1 Kg/ha) 16 days after sowing (Ali at al., 1987). Oxadiazon at 0.75-1.0 Kg/ha, pre-emergence, gave better control of the weed in paddy rice than Thiobencarb, at 1.5-2.0 Kg/ha, applied 8 days after sowing (Tiwari et al., 1987). Rapparini, (1989) who reported that, Bensulfuron-methyl applied at 0.1 Kg/ha to rice at the 2- to 4-leaf stage in 3-10 cm water controlled C. difformis. The same results were also obtained by Clampet (1988) and Bernasor and Datta, 1988.

For E. colonum, the herbicidal treatments, in addition to hand-weeding, showed more than 80% reduction in the weed fresh weight. Oxadiazon, Thiobencarb (4.8 L/ha), Molinate and Pretilachlor, caused the hignest reduction in this respect, which equal to 100, 97.5, 94.3 and 94%, respectively. The treatments were effective in controlling Eclipta alba with percentages of control ranged from 85 to 100%, whereas Molinate and 3.5 L/ha rate of Thiobencarb gave 76.7 and 65.4% control of the weed resp.

In general, Fenoxaprop-ethyl, Bensulfuron-methyl and 8.6 L/ha rate of Thiobencarb showed the strongest effect against the total weeds fresh weight, and the corresponding % were : 93.3, 92.1 and 91.0. The highly effective herbicides in this respect were those strongly effective on the predominant ($\underline{\mathbf{E}}_1$ crus-calidand $\underline{\mathbf{C}}_2$ difformis). Snipes and Street (1987); Bernasor and Datca, (1988) and Mishra et al., (1988) supported the previous results.

In the second season (1988), the weed spectrum was different from that of the first one. The predominant weed for that season was <u>E. colonum</u>, that caused nearly 88% infestation, whereas. <u>C.</u> crustgalli (5.52%), 2 rotungus (5.96) and C. difformis 10 66% caused negligible percentages of infestation. Hence, E. colorum was considered the single factor that could affect of the sotal weeks population in the 1988 season. Therefore, the performance of the herbicidal treatments against the weeds could be sufferent from the first to the second season. This could be best illustrated from the comparison between Table (1) and (2). Oxadiazon, Thiobencarb (4.8 L/ha), Molinate, Pretilachior, and Bensulfuron-methyl proved to be highly effective, not only in controlling \underline{E} . $\underline{colonum}$ but also in reducing the fresh weight of the total weeds as well (Table 2), since the percent reduction in the E_{\star} colonum fresh weight for these treatments were 100, 96.7, 92.0, 91.7 and 87.2% respectively, whereas the respective values 92.0, for the total weeds fresh weight were 98.9, 94.3, 88.5, 91.6 and 88.7%. The contribution of \underline{E} . \underline{crus} -galli, \underline{C} . $\underline{difformis}$ and \underline{C} . $\underline{rotundus}$ weeds in this respect was minor, because of the low percentages of infestation with these weeds in the experimental field.

Table (1): Effect of Cartain Herbicides on Frosh Weight (gm) of Weeds/Square Heter, 45 Rays After Sowing of Direct-Seeded Rice in 1967 Beases.

Treatments	late	Schinechies colonum		Echinochios crus-galli		Cyperus difformis		Eclipta alba		Total of over Weeds	
	ba.	Mr.	11	V t.	11	R.	* 1	n.	\$ P	Mt.	\$ R
hiobencarb 50%	4.6 L.	30.0	97.5	283.3	89.1	250.0	86.3	6.7	\$6.2	540.0	91.0
Thiobencarb 50%	3.5 1.	215.5	82.0	1466.7	43.6	290.0	84.1	16.7	65.4	1988.9	66 B
Pretijachler+Safner 30%	1.7 L	72.0	94.0	1000.0	61.6	0.0	100.0	9.6	100.0	1072.0	82.1
hadianon M2 25%	1.8 L	0.0	100.0	610.0	76.6	490.0	51.1	50. B	8 6.0	1550.8	74.1
Sensulfuror-methy) 50%	71.4 g	170.0	85.8	83.3	96.8	233.3	87.8	0.0	100 0	476.6	92 1
blisate 78%	6.0 L	68.7	94.3	806.7	£5 0	300.0	83.6	83.3	76.7	1258.7	79.0
emoxaprop-ethyl 12%	1.2 L	213.3	82.2	119.7	95.4	79 9	96.2	0.0	100.0	403.0	93 3
iend Veeded		280.0	83.3	983.3	65.3	1596.7	17 3	0 0	100 0	2610.0	56.4
is-Veede (1200.0	0.0	2680.0	0 0	1870.0	6 .0	356.7	0 9	5976.7	0 0
of Weed Talestation		27.0		43.5		30.5		6.5		100.0	

^{\$} R - Percentage of reduction (or \$ control) is Fresh Weight of each weed.

Table (2). Effect of Certain Herbinides on Presh Weight (gm) of Weeds/Square Mater. 45 Days After Sowing of Direct-Seeded Rice in 1986 Season.

Treatments	Rate	Echinochloa colonum		Echinochica crus-galli		Cyperus difformis		Cyperus rotundus		Total of over Weeds	
	/ he	¥t	ŧ k	V:	1 B	it.	1 8	St.	\$ 2	¥t.	1 R
Phiobencarb 50%	4.6 2	65 . 0	96.7	9.0	100.0	1.0	100.0	85 0	51.9	130.C	94 3
Thiobencarb 50%	3.5 1	442.5	77.E	200 0	0.0	8.8	100.0	5.0	94.3	647.5	71.5
Pretilachlor+Safter 304	1.7 L.	165.0	91.7	8.0	108.0	0 0	100.0	25. 8	81.5	190.0	91.6
Oxadiazon KZ 25%	1.8 L	0.0	100.0	8.0	100.0	0.0	105.0	25.0	61.5	25.0	98.9
Sensulfaron-methyl 60%	71.4 c	255 9	87.2	0.0	100.0	\$.B	100.0	9.0	100.0	255.0	B8.7
Molimate 70%	6.0 L	160.0	92.0	0.0	190 0	190.8	0.0	8.8	190.0	260.0	B8.5
Femoxaprop-ethyl 12%	1.2 L	517.5	74.6	0.0	160.0	0.0	106.0	75.0	44.4	592.5	73.8
land Weeded		652.5	67.2	140.0	0.0	9.6	100.0	5.1	94.3	797.5	64.8
Jr-Weeded		1990.0	0.0	125.0	9.0	15.0	8.8	135.0	0.0	2265.0	0.0
s of Need Infestation		87.85		5.52		0.66		5.96		100.0	

^{\$} E = Percentage of reduction (or \$ control) in Fresh Weight of each weed.

Table (3): Effect of Certain Herbicides on Growth and Productivity of Direct-Seeded Rice in 1987 Season.

Treatments	Rate / ha.	Grain yield t/ba	Straw yield t/ha	Harvest index (\$)	Plant height (cm)		No. of panicle: /m2		filled graim/	No. of unfilled grain/ panicle	Panicle weight (gm)	grain weight	Grain protein content (%)
Thiobencarh 50%	4.8 L.	5.38	10.90	33.00	103.80	116.20	284.30	16.63	113.96	5.94	2.87	22.93	9.68
Thiobencarb 50%	3.5 1.	4.31	9.50	31.20	99.30	119.50	256.60	16.73	110.90	8.82	2.43	20.44	9.69
PretilechloriSatuer 30%	1.7 L.	4.90	10.14	32.60	102.50	118.40	268.40	17.66	112.60	7.25	2.69	21 64	9.82
Oxediazon KE 25%	1.8 1.	5.55	11.17	33.20	104.40	115.80	287.10	18.94	115.60	5.62	2.92	23.24	9.58
Bensulfuron-methyl 60%	71.4 @	5.19	19.43	33.20	103.20	117.90	275.60	18.25	113.50	6.36	2 64	22 54	9.77
Molinate 70%	6.0 L.	5.90	11.60	33.70	105.60	114.30	292.20	19.32	116.10	5.24	2.98	23 72	9.49
exapropeathyl 12%	1.2 L	5.14	10.29	33.30	102.90	118.10	272.60	17.65	113.20	6.93	2.75	22.25	9.95
mand Weeded		4.62	9.64	32.40	101.20	118.70	261 70	17.38	117.30	8.64	2.61	21 23	9 56
Un-Veeded		3.71	8.76	29.80	96.70	120.60	247.40	16.23	109.20	10.75	2.35	19.84	9-12
L.S.D 0.05		0.179	0.176	0.800	0.670	0.350	8.300	0.280	3.100	0.640	0.090	0 418	0.085

^{* -} Time in days of the 50% heading, starting from the sowing date.

Table (4): Effect of Certain Herbicides on Srowth and Productivity of Direct-Seeded Rice in 1988 Season.

Treatments	Rate / ha.	Grain yield t/ha	Straw yield t/ha	Harvest index (%)	Plant height (cm)	50%° Heading	No. of panicles /m2	Panicle length (cm)	filled grain/	No.of unfilled grain/ e panicle	(gas)	1000- grain weight (gm)	
Thiobencarb 50%	4.8 L.	5.69	11.19	33.70	109.60	117.50	297.30	19.76	122.60	5.15	3.11	23 74	9.62
Thiobencarb 50%	3.5 L.	4.64	9.69	32.40	105.80	120.70	268.50	17.52	118.20	8.34	2.55	20.55	9.58
Pretilachlor+Safner 30%	1.7 L.	5.14	10.29	33.30	107.20	119.10	287.50	18.65	120.80	6.46	2.87	22.32	9.93
Oxadiazon XZ 25%	1.8 L.	5.02	11.62	34.10	110.30	116.90	302.40	19.95	123.10	4.54	3.18	24.45	9.47
Bensulfuron-methyl 60%	71.4 g	5.38	18.76	33.30	108.80	118.30	295.50	19.34	122.30	5.63	2.99	23.22	9.69
Molinate 70%	6.0 L.	6.29	12.19	34.00	110.70	116.20	306.60	20.24	123.80	4.25	3.20	24.84	9.42
Fenoxeprop-ethyl 128	1.2 L	5.29	10.57	33.30	107.90	118.80	290.40	19.15	121.70	8.84	2.93	22.65	9.71
Hand Weeded	_	4.90	9.98	33.00	107.50	119.60	279.60	18.21	121.10	7.22	2.74	21.92	9.48
Un-Veeded	-	3.98	9.10	30.40	103.40	121.40	253.30	16.84	115.70	10.44	2.46	20.17	9.05
L.S.D 0.05		0.167	0.164	0.900	0.620	0.350	6.400	0.370	3.500	9.330	0.080	0.356	0.079

^{* -} Time in days of the 50% heading, starting from the sowing date.

Generaly, it could be shown that, the dominant weed(s) in the field of the experiment, plays an important rule in the overall control of the weeds by the selective herbicides.

2- Rice Growth and Reproductivity:

The results of the rice growth and reproductivity measures, for the two seasons, are presented in Table (3) and (4).

Grain yield of the seven herbicidal treatments as well as those of the hand-weeded ones, were significantly higher than those of the un-weeded treatments in the two seasons. Molinate followed by Oxadiazon, Thiobencarb (with the higher rate), Bensulfuron-methyl, Fenoxaprop-ethyl, and Pretilachlor, produced higher grain yields than those of the hand-weeded treatment, in the two seasons. However, Thiobencarb, at the low rate, produced amounts of grain yield less than those of the hand-weeded treatment for the two seasons (Table 3 and 4). Such resultes are quite logic, by referring to the data of Table (1) and (2), it seems that, the least percentages reduction in the fresh weight of the individual (or even the total) weed species, were those of the Thiobencarb (at low rate) followed by the hand-weeded treatment hence, these treatments produced the least yield of grains. Molinate exhibted the greatest improvement in the grain reproduct tivity followed by Oxadiazon and Thiobencarb in desending sequence. A similar trend to that of the grain yield, was also observed in the straw yield property. The treatment produced higher grain yield, produced higher straw yield as well. with shorter heading time, and vice versa.

However, Molinate followed by Oxadiazon, Thiobencarb (4.8 L/ha) and Bensulfuron-methyl showed the highest values of the plant height, number of panicles, panicle length and weight, number of filled grain/panicle and 1000-grain weight, as well as of that of grain a straw yields, for the two seasons. The treatments showed also the shortest 50% heading time as well (Table 3 and 4). The mentioned four herbicides were highly effective in controlling the predominant weed of the second season E. colonum (Table 2), and they were moderatly effective in controlling the predominant two weeds of the first season (E. Crus-galli and C. difformis) (Table 1). Such resultes were in agreement with that have been reported by Abud (1986) and Senthong (1986), they found that no signs of phytotxicity or differnces between numbers of grains or sterile spikelets perpanicle were observed with Molinate produced the highest grain yield. Thiobencarb at 1.0 Kg/ha was also found by Kumar and Gautam (1986) to give higher grain yield and increased the number of panicles per square meter and filled grains per panicle compared with the control. On the other hand, Fenoxaprop-ethyl, Bensulfuron-methyl and Pretilachlor were improved the protein content of grains in both seasons.

References

- Abud, J.K. (1986). Effects of herbicides on control of red rice (<a href="https://dream.ncbi.nlm.ncbi.
- Ali,A.M.; S.Bankaran; R.S.Rao; and V.B.Bhanumurthy (1987). Time of application of herbicides on <u>Echinochloa crus-palli</u> and <u>Cyperus difformis</u> in low land direct soan rice. <u>Indian Journal of Weed Science</u>, <u>17</u>(3):1-8
- Anonymous, (1960). Official methods of analysis of the Association of Official Agricultural Chemists; 13th Edition, Washington.
- Bernasor, P.C.; and S.k. Datta(1988). Long term effects of tillage. cultivar and herbicide on weed shift and cotrol in broadcastn seeded flooded rice. Soil and Tillage Research, 12(3):197-212.
- enals, B. B. and K.N.Singh (1987). Effects of methods of section and herbicide application in upland direct-sected rice. II. Growth yield attributes and yield. <u>Indian Joural of Agronomy</u> 32(2):140-143.
- Clampet, W.S. (1988). Londax-a new herbicide for aerial sown rice. Farmers Newsletter, large Area No.132, 21. (C.F. Weed Sbst 38 (6),1629, 1989).
- Dayanand (1987). Studies on weed control in drill sown upland packy rice. Mysore Journal of Agricultural Science 21 (1): 86-87. (C.F. Weed Abst. 38 (5), 1165, 1989).
- Hill, J.E.; H.W. Brandon; D.E. Bayer; J.L. Pacheco and M.J. Holter, 1987). New herbicide combinations will they save desiformsa. In Proceeding of the Western Sprinty of Responsione, 40, 141-142. (C.F. Weed Abst. 37 (5), 1505, 1985).
- ReminderJ. (1988.) Fremengence control of Meeds in US-1875 Fice. International Rice commission Newsletter, 37: 31-32. Confided Apst. 37(10), 3233, 1988).
- Khodayari,K.; f.Nastasi and R.J.Smith (1989). Fenckaprof for grass dontrol in dry seeded rice (<u>Oryza sativa</u>). <u>Weed Technology</u>, 3(1):131-135.
- Kumar, J. and R.D. Bautam (1985). Effect of various herbicides on yield and yield attributes of direct-seeded rice on puddled soil. <u>Indian Journal of Weed Science</u>, 18(1):54-56.
- Mishra, R.K.; M.R.Deshmukn; V.K.Paradkar, K.L.Tiwari, and R.P. Rajput(1987). Weed control studies on direct-seeded puddled rice. <u>Current Research 16</u>(11):150-152.

J P C & E S Vol:3 No:1 (1991)

- Mishra,R.K.; M.R.Deshmukh; V.K.Paradkar; and K.L.Tiwari (1988). Efficiency of herbicides in direct seeded rice. Pesticides $\underline{22}(4):10-12$.
- Pacheco, J.L. and C.L.Pope (1986). DPX-F5384: a new, highly flexible, broad-spectrum derbicide for califonia rice.

 <u>Proceedings of the Western Society of Weed Science, 39</u>: 147-157.
- Petibskaya, V.S. (1987). Effect of propanil and saturn on the protein and amino acid content of the grain in different rice varieties. Referativnyl Zhurnal, 255-259 (C.F. Weed Abst. 37(8), 2512, 1988).
- Rapparini, G. (1989). New possibility for chemical weed control in rice fields. <u>Informatore Agrario 45</u>(7):67-83 (<u>C.F. Weed Abst. 39</u>(6), 1785, 1990).
- Reeves, J.D.; J.T.Thompson; J.W.Daniel; J.L.Godley and M.Schroeder. (1986). BAS514H: a new herbicide for weed control in rice. In proceedings, Southern Weed Science Society, 39th annual meeting 525 (C. F. Weed Abst. 38(7), 2006, 1989).
- Senthong, C. (1986). The effects of weed control on yield and growth of direct seeded low land rice. <u>Biotrop Special Publication</u> No.24, 203-208. (<u>C.F. weed Abst.</u> 37(3):,879, 1988).
- Snedecor, G.W. (1955). Statistical Methods, $5\underline{th}$ Edition. Iowa stat press, Ames, Iowa.
- Snipes, C.E. and J.E.Street (1987). Barnyardgrass control in rice
 with Fenoxaprop. Research Report, Mississppi Agricultural
 and Forestry Experiment Station 12(3) 4pp.)C.F.Weed Abst.
 36(12), 3488, 1987).
- Subhakara,K. and R.P.Nair(1986). Weed control in rice under semiarid system. <u>Agricultural Research Journal of Kerala 24</u>(2): 211-215. (<u>C. F. Weed Abst. 38</u>(2),268, 1989).
- Tiwari, J.P.; C.R.Bisen; and K.K.Trivedi(1987). Herbicides to control weeds in paddy nursery. <u>Pesticides</u> 21(11):21-22.

العلخبص البعربي

العكافية الكيماوية للنشائق في حقول الأرز البدار بالأسكندرية

شواد شعبان سليمان

تم تقييم ستة مبيدات حشائق من ناجية كفاءتها في مكافحة العشائل وايطلبا من ناحية شائيرها على نمو وانشاجية محصول الأرز البدار في منطقة الأسكندرية خلال موسعي ١٩٨٧ - ١٩٨٨

واهمرت البنتائج ان حسيسة الدنيبة والعجيرة كانتا الساقد ثين في موسيم ١٩٨٧ و اهمرت البنتائج ان حسيسة الدنيبة والعجيرة كانتا الساقد ثين في موسيم ١٩٨٧ و و الكثير المنابدات الداعيبة في موسم ١٩٨٨ و و الكثير المناب الداعية في موسم ١٩٨٧ و و الكثير المناب الله المناب ا

ادته منظم مبيدات الحشائل العبائذدة التي ريادة منظوية لين هلاط في محضول ادعه منظم مبيدات الحشائل العبائذدة التي ريادة منظوية لين هلاط في محضول التجبوب والفل التجبوب التعلقة وارتفاع النبياشات و عدد التبديوب العملية بالسنيلة ووزن السنيليسية ور ...؛ حية وايضا محتوى الحيوب من البروتين.