BIOCHEMICAL CHARACTERISTICS OF DIFFERENT HUMAN BLOOD GROUPS IN ALEXANDRIA POPULATION

A.H. El-Sebae, Kawther S. El-Gendy, A. El-Bakary, and Nabila S. Ahmed

Pesticides Division, Faculty of Agriculture, Alexandria
University

ABSTRACT

Blood samples from twenty humans representing the general population in Alexandria were collected, 40% of which were from blood group A, 30% from blood group B, 10% from blood group AB, and 20% from blood group O. The following biochemical parameters were monitored in the blood samples: the specific activity of enzymes including acetyl cholinesterase (AChE), lactate dehydrogenase (LDH), glutamic exaleacetic transaminase (GOT), glutamic exaleacetic transaminase (GOT), glutamic exalepyruvic transaminase (GPT), δ-amino levulinic acid dehydratase (δ-ALAD) and alkaline phosphatase (APase). In addition, levels of urea, hematocrit, hemoglobin, red blood cells (RBC's), white blood cells (WBC's) count and differential of wBC's contents were recorded.

INTRODUCTION

Steinberg and Bearn (1965) proved that blood group antigens are inherited. They used the term allotypes to define the individual variations within a Simmons (1968) described the significant species. importance of the blood group variants and their subgroups sequence from the clinical point of view. Mourant, et al. (1978), concluded that there now exist more data on disease relationships with blood groups, specially of the ABO system, than with any of the other systems. According to Harris and Hirschborn (1980), the human ABO blood groups system, as a genetic marker, gained increased importance by the observations on the antigenic secretions of A and B substances not only in blood, but also in saliva and other body fluids such as pancreas, kidney, liver, lungs, testes, semen and amniotic fluid. These proved to be dimorphic characters depending on a pair of allelic genes situated at different loci from the ABO genes.

Khattab and Ismail (1960) reported that group A humans are more susceptible to both stomach cancer and rheumatic heart diseases than other blood groups, while individuals of group O are more susceptible to peptic ulcer. El-Hefnawy et al. (1963), found a pronounced association between blood group O and skin xeroderma pigmentosum due to photosensitivity. Similar results

al., (1966)). Khattab, et al. (1968), found a higher incidence of group A than group O in bilharzial cases. Thompson (1975) reported that there is an association between the ABO groups and certain diseases.

MATERIALS AND METHODS

Subjects

theory, episoned human subjects were male workers (theory, episonium, the general population of Alexandria, either occupationally exposed, or unexposed to postulides.

Sample Preparation

The blood sample (f ml) was witodrawn from each subject's arm vain and divided into two parts. The first part (3 ml) was collected in a clean non-coaled tube to separate serum. Serum was used for AChe, GOT, GPT, alkaline phosphatase (APsse), LDH and urea. The second part (2 ml) was collected into an evacuated heparinized tube and used as fresh as possible for hemoglobin, haratocrit, blood cell count (RBC's and WBC's) and 6-NLAD.

AChE activity was assayed by Ellman, \underline{et} \underline{al} . (1961). Transaminases (GOT and GPT) were determined

was assayed according to the method of Belfied and Goldberg (1971) LDH activity was measured by Cabaud, et al. 1955). Grea was determined by the method of Patton And Grouch (1977). Hemoglobin was determined by the betrack of Cicletra (1960). The hematocrit value was measured by the method of Cicletra (1960). The hematocrit value was measured by the method of Cicletra (1960). The hematocrit value was measured by the method of patton method of the micro-hematocrit method using an anisotrational micro-capillary describing at 1500 RPM for solver minutes. The white and red blood count were done using hemogytometer uncording to Britton (1963) over solver (1974). Solverd (1974). Solverd of Selverd alan activity was measured using the procedure described by Burch and Siegel (1971).

RESULTS AND DISCUSSION

PLUOD GROUP GISTRIBUTED

A selected group of twenty intividuals of the general population was investigated regarding the blood groups type, and other biconstituted parameters. Table includes the percentage distribution of the blood groups in the present selected group and the general itend of distribution quoted from the Alexandria Blood Bank, as reported by Amer, et al. (1960) and El-Sebae (1984).

Table 1

Percentage Distribution of Blood Groups in Sampled

Population of Alexandria.

Group	A	B	AB	0
Present data	40	30	10	20
Alex. Blood Bank	36	23	10	31

group A in the selected sample and in the general population, while AB was the least abundant group. Groups B and O are the second or the third in both data sources.

Comparative Enzymes Activity in Different Blood Groups

Table 2 presents the measured specific enzyme activities of AChE, LDH, SGOT, SGPT, \(\delta\text{-ALAD}\), and alkaline phosphatase in the selected twenty human blood samples of the four types of blood groups. The present results show that the highest ChE specific activity was recorded for blood group A, followed by Group O, then group B, and the least activity was observed for group AB. Such variation reflects the difference in neurological susceptibility between individuals from different blood groups. Elsebae (1985) , reported a parallel trend. Similarly, the maximum average specific activity was observed for group

El-Sebae <u>et al</u>

Table 2 $AChE,\ APase,\ GOT,\ GPT,\ LDH\ and\ \delta-ALAD\ Activities\ in$ Different Blood Groups of General Population in Alexandria.

	Blood Group		APase umole/ mg prot/ min.	GOT	GPT u/ml	LDH u/ml	*5-ALAD
77 M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A A A A A A	6.492 5.184 5.742 4.807 13.507 6.902 8.496 7.631	6.6 16.26 8.04 12.15 5.8 9.2	30 38.33 25 38.33 35 35 35 35.66	16 32.90 27.2 48 24 25.8 20.8	450 410 210 210 250 210 320 360	82.8 215.10 192.00 213.00 213.69 150.47 274.05
	33 (10) (14) (25) (25) (25)	5,629 3,455 5,365 2,763 5,460 5,460	14.02 35.89 10.83 16.78 16.78	28.33 36.33 25 23 6 75 36 03	32.6 32 32 23.6 52.8 27.2	210 285 210 286 286 210	176.13 216.15 110.68 036.00
	AB AB	1	. \$. \$ <u>.</u> 8 . \$	-3-3 26.65	15.2	210 300	and the second s
	0000	7.871 26.630 16.831 6.707	\$, \$; 5 , 8 \$. 5	23 3 36.56 30 40 .	24 14.4 19.20 49.6	280 500 450 210	213.59 173.78 149.39 215.53
iorma. Tolup	1		and the second district the second	< 40	<45	200- 500	

hematocri;

Table 3 Haematological Study in Human Blood Samples

		Urea g/L	Hemo. g/dL	Haem.	RBC's Cells/	WBC's Cells/	Dif	fere 2	ntial 3	of WB	C's 5
Sam	p. Bl c	ood			•	nom ³					
No.	Gro				X10 ⁶	X10 ³					
2	A	0.300	12.75	40	4.99	4.65	0	5	56	26	;
3	Α	0.323	16.83	43	4.48	10.65	0	5	56	36	3
5	A	0.229	14.62	41	3.95	5.60	0	6	68	22	4
8	Α	0.386	18.00	34	4.67	7.10	0	2	67	27	4
13	A	0.325	13.26	44	3.95	2.35	1	2	48	27	12
15	Α	0.373	13.99	42	4.01	3.60	1	4	53	22	20
17	Α	0.263	5.44	27	2.50	3.75	0	3	60	29	1
18	A	0.280	13.43	38	4.28	3.80	1	4	5 5	35	5
4	В	0.298	18.00	44	4.51	10.95	0	5	64	27	4
7	В	0.162	10.03	32	3.24	12.30	0	4	60	33	:
9	В	0.269	14.11	44	4.68	3.60	0	3	66	29	5
10	В	0.394	17.00	44	4.02	2.60	0	4	60	30	6
11	B	0.224	10.20	37	3.30	4.35	1	5	52	37	
16	В	0.349	11.56	32	8.76	4.20	1	3	51	36	9
1	AB	0.270	14.30	45	4.91	8.55	0	4	59	33	4
12	AB	0.277	13.26	44	4.25	3.85	0	5	54	28	13
5	0	0.241	17.00	44	4.39	5.15	0	3	60	31	ϵ
14	0	0.300	12.24	41	4.36	4.40	0	4	54	29	15
19	0	0.356	11.22	40	4.04	4.05	0	3	54	33	10
20	0	0.248	14.28	42	4.35	4.40	1	3	50	37	9
	mal	0.15-	16-18		4.5-	5-10					
/alı	ue	0.45			6.5						

^{4 -} lymphocytes5 - monocytes

A in LDH, SGOT, SGPT and 6-ALAD, followed by group 0, then group B and the least was for group AB. However, the reverse was recorded for the alkaline phosphatase activity, where groups AB and B show relatively higher values of activity, while the least value is in groups A and then O. This might imply and explain that the blood group carriers of AB and B would be less affected by the toxic OP esters including pesticides. Such a trend in variation supports the variation in toxic responses.

Comparison of Biochemical Parameters in Blood Groups

Table 3 presents the data of comparative levels of urea, hematocrit, hemoglobin, RBC's, WBC's and differential WBC's contents in the four blood group samples. The levels of hemoglobin and hematocrit in the blood groups AB and O types were relatively higher than the blood group A. Thus it is not possible to generalize that one blood group is more sensitive.

The urea content tends to be higher in groups A and O, while AB showed lower values of urea. This might indicate higher nitrogen catabolism in the two types of groups A and O. The counts of the red blood cells and white blood cells indicate wide variation between the sampled individuals even between those belonging to the same blood group. This trend supports the specific variation between different individuals. Malik and Owens (1981) described the genetic regulation of bilirubin-UDP

glucouronyl transferase induction by polycyclic aromatic compounds and phenobarbital in mice. They reported that in humans, two patterns of inheritance of defective bilirubin glucouronidate activity have been described as type I and type II variants based on a lack of reduction and reduction in bilirubin concentrations in the blood after phenobarbital treatment, respectively.

Mourant, et al. (1978), assumed that variations in blood groups of the ABO system which is genetically dependent, reflects actually broad variation in the base line specific activity of plasma enzymes and biochemical constituents. These blood constituents act as a limiting factor for the behavior of the foreign molecules. Such basic interaction and information might help in quantifying the spectrum of susceptibility of human subjects with different blood groups towards the toxic chemicals mainly pesticides.

Now plasma or erythrocytes ChE is not the limiting factor, brain ChE is the most important limiting factor because it is the site of action for OP's and carbamates.

REFERENCES

Amer, Naila H., A.Z. Zaghloul and M.D. El-Borgy. (1980).

A study of the availability of blood in Alexandria Blood Banks. Bull. High Institute of Publ. Health, Alexandria, 5: 235-251.

Bellfield, A and D.M. Goldberg. (1971). 12: 561.

El-Sebae et al

- Britton, G.J. (1963). Disorders of the blood (Textbook). G. Theed and J.A. Churchiu, Ed. LTD: London. W.T.
- Burch, H.B. and Siegel, A.L. (1971). Improved method for measurement of 5-aminolevulinic acid dehydratase activity of human erythrocytes.

 Clin. Chem., 71: 1038-1041.
- Cabaud, et al. (1955). Amer. J. Clin. Path., 30: 234.
- El-Hefnawy, H.; O. Mohieldin, and A. Rasheed. (1963).

 ABO system of blood groups and its incidence in selected dermatosis in U.A.R. J. Egypt. Med.

 Assoc., 46: 1097-1106.
- El-Sebae, A.H. (1985). Management of pesticide residues in Egyptian environment. In: Appropriate waste management for developing countries. Ed. Kriton Curi. Pelnum Publ. Corp. pp 563-577.
- El-Sebae, Aly A.H. (1984). Biochemical and toxicological response to insecticides in different blood groups Public Health Doctorate Thesis. High Institute of Publ. Health, Alexandria University.
- Ellman, G.L.; K.D. Courtney; V. Andress, Jr. and R.M.

 Featherstone. (1961). A new and rapid

 colorimetric determination of acetyl

- cholinesterase activity. Biochem. Pharmacol., 7: 88-95.
- Harris, H. and K. Hirschborn. (1980). Advances in human genetics. Vol. 10. Plenum Press: New York and London, pp 950.
- Khattab, I.M. and A.A. Ismail (1960). ABO blood groups
 in relation to rheumatic heart disease. J.
 Egypt. Med. Assoc., 43: 441-445.
- Khattab, I.M.; M.T. El-Genghey and M. Sharaf. (1968).

 ABO blood groups in bilharzial hepatic
 fibrosis. J. Egypt. Med. Assoc., 51: 245-250.
- LOWTY, O.M.; W.J. Rosebrough; A.L. Farr and R.J.

 Randall. (1951). Protein measurement with

 folin phenol reagent. J. Biol. Chem., 193:
 265-275.
- Malik, N. and I.S. Owens. (1981). Genetic regulation of bilirubin- UDP- glucuronosyl- transferase induction by polycyclic aromatic compounds and phenobarbital in mice. J. Biol. Chem., 25: 9599-9504.

¢

Mourant, K.A.C and K.D. Sobczak. (1978). Blood groups and diseases. Oxford Univ. Press: New York and Toronto, pp. 298.

- Patton, C.J. and S.R. Crouch. (1977). Anal. Chem., 49
 464-69.
- Reitman, S. and S. Frankel. (1957). A colorimetric method for the determination of serum glutamic oxaloacetic and glutamic pyrovic transaminases.

 Am. J. Clin. Path., 28: 56-63.
- Sadek, A.M.; N. Guemen and M.A.S. Fahim. (1966). The relationship between secretor status of blood group substances and gastro-duodenal disease and cancer. Alex. Med. J., 11: 274-290.
- Seiverd, E.C. (1974). Haematology for medical technologists. 3rd Edition. Lea and Febiger: Philadelphia.
- Simmons, A. (1968). Technical haematology. 2nd Edition. J.B. Lipincott Co., pp 476.
- Steinberg, A.G. and A.G. Bearn. (1965). Progress in medical genetics. Vo. IV. William Heinemann Medical Books Ltd.: London, pp 575.
- Thompson, R.B. (1975). A short textbook of haematology.

 4th Edition. Pitman Medical, pp 387.
- Ziglestra, N.C. (1960). Clin. Chem. Acta, 5: 719.

الطخى

تم دراسة العلاقة بين مجامع الدم المختلفة ويعنى التوابت البيو كيائية في دم يعنى الافراد من محافظة الاسكدرية وقد أظهرت النتائج أن نسبه توزيع مجامع الدم في العينات المختبرة (٢٠ عينه) كالتسالسسي : ٨٠٠ كانت هذه النتائج الدم ١٠٠ كانت عند الافراد كانت فصيلة الدم ١٠٠ كانت هذه النتائج تباثل النتائج المتحمل عليها من بنوك الدم ١٠٠ كانتم ليضا تقدير بعنى الافراد في عينات الدم وقد اوضحت النتائج ان اكثر الافراد نشاطا للكولين استريز لها فصيلة الدم ١٠٠ عليها فصيلة الدم ١٠٠ هم الافراد نباط للكتيك ديهدروجينيز والحلوناميك اوكسالو اسيتيك تراس أمينيز والحلوناميك المكسلو وقد وجد ايضا ان انزيات اللاكتيك ديهدروجينيز والحلوناميك اوكسالو اسيتيك تراس أمينيز والحلوناميك المكسلو وقل تراس أمينيز والحلونا أمينو ليفولينيك اسيد ديهدراتيز اكثر نشاط في الافراد التي أبها فصيلة الدم عند الافراد خات فصيله الدم عند المناط في الافراد المختبرة مثل اليوبيا والهيناتوكريت والهينوجلوبين وعدد كرات الدم الحراء والميضاء وقد وجد ان مثاك اختلاف في هذه الثوابت بين الافراد حتى تلك التي تدشي للجبوجلوبين وعدد كرات الدم الحراء والميضاء وقد وجد ان مثاك اختلاف في هذه الثوابت بين الافراد حتى تلك التي تدشي للجبوجة الواحدة والميضاء وقد وجد ان مثاك اختلاف في هذه الثوابت بين الافراد حتى تلك التي تدشي للجبوجة الواحدة والميضاء وقد وجد ان مثاك التي تدشي للحواجة الواحدة والميضاء والميضاء وقد وجد