ACTION OF GA (PLANT GROWTH REGULATOR) AND K2 SO4 (FOLIAR FERTILIZER) ON SQUASH IN RELATION WITH RESISTANCE TO INSECT PESTS

By

Kelada*, N.L. and M. Doss**

* Plant protection Dept. ** Horticulture Dept. Faculty of Agriculture, University of Alexandria, Egypt.

Recived, 20/5/1991. Accepted, 26/6/1991.

ABSTRACT

Summer squash (<u>Cucurbita pepo</u> L.), plants growing in different soils; at Abiss and New Burg El-Arab, were provided with three foliar materials: gibberellic acid (GA_{3}), potassium sulphate ($K_{2}SO_{4}$) and their combination. Trials were conducted on the cultivar (Eskandrani) over two growing seasons.

Treatments influnced both yield and plant vitality as well as insect pest infestation. The control of these insects used to be affected by spraying K_2SO_4 into leaves and it is possible to combine both K_2SO_4 and GA_3 to apply them together.

Significant increments in early, and total yield as well as in average fruit number were detected when the plants received K_2SO_4 alone or in a mixture with GA_3 .

The foliar fertilizer $K_2 \times S0_4$ significantly decreased the number of insects as compared with the control or GA_3 treatments.

INTRODUCTION

There is a general belief that potassium fetilizer reduces the intensity of several infection with several diseases and pests

(Chaboussou, 1975) The action of potassium on plant metabolism is manifold. There is a large group of enzymes (Mulder, 1949) that is activated by K+. Protein synthesis and many syntheses of many other compounds including; sugar, cellulose, cell wall, vitamins, etc. are promoted by the availability of potassium (Hewitt, 1963 and Kiraly, 1976). Still there are serveral investigations reported on the effects of K-fertilizers on insects or mites control.

Fritzsche (1961) was able to show with beans, that K- deficiency caused an increase of soulible carbohydrates in the leaves and in the multiplication consequence of <u>Tetranychus urticae</u>. Chaboussou (1976) reported that an important correct K- fertilizers use is for improving pest resistance. Moreover, potassium has a greater influence on fruit quality than that of any other element (Asif et al., 1972 and Michael etal., 1974).

The use of gibberellin on vegetable crops has received a considerable amount of attetion in recent years, because of its stimulatin effects. Sawhney and Greyson (1972) showed that the application of GAs to non-flowering plants significantly increased yield. GAs, also, caused a marked increase on the number and area ci leaves (Foda etal., 1972).

This report provides some information on the general effects of potassium foliar fertilizer and gibberellic acid on early and total yield and quality of squash fruits as well as on insect pests control

MATERIALS AND METHODS

Seeds of cv. Eskandrani squash were obtained from Noba-seed, (Nubaria seed production company). Alexandria, Egypt. The present investigation included two experiments, that were conducted at the Experimental Farm,

Faculty of Agriculture, Alexandria Univ , and a third experiment at the new land of Burg El-Arab

The 1st experiment, of fall season 1987. was carried out to conduct a preliminary investigation on the tested chemicals, appling different GAs, and K_2SO_4 concentrations. The experiments of 1988 and 1989- consisted of three spray treatments and the control. The treatments were K_2SO_4 (400 mg/L), GA_3 (150 ppm) and their combination (GAs+ K_2SO_4) at the same doses in the mixture. The foliar treatments were applied (Foliar) towic, at 25 and 35 days old. A randomized complete blocks design, with 3 replicates, was used Seeds were sown in hills, 40 cm apart, on one side of the ridges (100 cm width and 5 m length). Plot area was 25 m². Sowing dates were the 15th of Agust 1988, and 19 th and 20 th of Agust 1989; in the two locations Abiss and New-Burg El Arab, respectively.

Leaves for chemical analysis were obtained, from the plants about 7 days prior to harvest. The 4th leaf from the growing terminal was obtained (25 leaves/plot) for analyses. The leaves were dry ashed as outlined by Chapman and Pratt, (1961). Total nitrogen was analyzed by the micro-kjeldahl method (AOAC, 1980). Phosphorus was determined by molybdate-blue method. Potassium was measured flame-photometrically against a standard. Calcium and magnesium were determined using a Perkin-Elmer Atomic Absorption Spectrophotometer Model 305 B

Chlorophyll content was measured according to Osborn and Mc-Calla, (1961). The method used in this test were already detailed out in an earlier paper of Doss and Moussa, (1985).

Fruits harvested during the first 12 days in the harvesting period were considered as the early yield. Total yield and its components (fruit number and fruit weight) were

determined.

Numbers of individual insect pests: (Bemisia tabaci Gannandius, Thrips tabaci Lind. and Aphis gossypii Glover) on the leaves under various treatments were counted 7 days after the 2nd spraying Insecticides were never used insect pests.

All obtained data were statistically analysed and then multiple comparisons were carried out, according to Duncan's multiple range test (AL-Rawi and Khalf-Allah 1980).

RESULTS AND DISCUSSION

Mineral content: The data of the present study show that, in both experimental locations, the leaves treated with GA_{2} had a higher concentrations of nitrogen and calcium. However, in new Burg-Arab, Calcium level in leaves was not affected by GA_{3} application or other treatments (Table 1). Concentrations of other elements ;phosphours, potassium and calcium in leaves were significantly affected by $K_{2}SO_{4}$ treatment. It was, also, noticed that magnesium level did not significantly differ with respect to second seasons. Similar results were obtained by Midan et al., (1981).

Chrophyll content: GA_3 , alone or in a combination with K_2SO_4 , significantly increased the total chlorophyll as well as chlorophyll a and b, in both experiments than the control. This result suggested that either chlorophyll was synthesized at a higher rate in the leaves which were externally treated with GA_3 and K_2SO_4 and/or that some chlorophyll was degraded as a result of increased rate of insect pests multiplication on control leaves (Fig 1 and Table 3). These results are in general agreement with those of Fritzsche (1961).

Leaf area: Leaf area estimates are listed in Table (2). The foliar application with GA_3

Table 1: Effect of gibberellic acid, potassium sulpnate and their combination of both on mineral contents of squash leaves, fall seasons 1988 and 1989.

		74		-	Abiss	7				Ne	New-Burg El-Arabl	EI-Arab	7		
Treatments	:	<u> </u>	1988 K	r S	E	Z.	: : : : 0.	1989 K		į Š	***	a .	1989 K	ů	
1. Control 1.82b 0	1.826		1.51c	0.96b	0.30b		0.20b	1.64c	0.92b	1	1.80b	0.15c	0.684	1.07	0.33
2. 6A3	2.364	0.27b	1.896	1.19a	0.37ab	2.19a	0.20p	2.03b	1.08a	0.40	1.96a	0.22b	1.02c	1.10	0.35
3. K2504	1.61	0.348	2.123	1.22a	0.45a		0.29a	2.31a	1.13a		1.82b	0.35a	2.05a	0.99	0.34
4. 6As+K2504	1.906	0.309	2.20a	1.30a	0.39a		0.26ab	2.27a	0.99ab	0.43	2,00a	0.24b	1.78b	1.01	0.39

Table 2: Effect of gibberellic acid, potassium suplhate and their combination on leaf area (C#2/plant) 45-growth days of squash, fall seasons 1988 and 1989.

Treatments	Season location character	1988 Abiss Leaf area	1989 Abiss Leaf area	1989 New Burg El-Arab Leaf area
1. Control		3110.12c	4580.20d	580.20d 2910.20c
. 6A ₃		5260.18a	6088.25a	3564.13a
. K2504		4985.92b	5051.64c	3617.40a
1. 6A2+K2504		5189.73a	5735.636	3444.64b

Means in each table in a columns, within each location not having the same letter did not differ significantly at the 0.05 level. Columns without indicate no differences.

or $K_{2}SO_{4}$ promoted the leaf area, relative to the control. GA_{3} commonly resulted in increased leaf area in several crops (Foda et al, 1972). Calwert and Smith (1972) found that $K_{2}SO_{4}$, as a foliar, may be used to increase leaf area.

Pest control: From Table (3), the results showed that B. tabaci congregated on the plants having different treatments with different rates. GA3 treatment showed a very large population of \underline{B} . \underline{tabaci} that differed significantly from that of the control and reached many times those of other treatments. The treatment with K_2SO_4 reduced the population of this insect to a great extent and its population gave the ratios 1:9 and 1:4, relative to that of the control, in the experiments of the two locations. The populations of \underline{A} . $\underline{gossypii}$ and \underline{T} . \underline{tabaci} reflected similar trends to that just mentioned for of \underline{B} . \underline{tabaci} . Similar significant reductions, compared with control, was also detected as a result of the combined treatments. On the contrary, the treatment with GAs increased significantly the populations of the studied insect pests. The population counted on the leaves of treated plants with GAs appeared significantly higher even than those of the control. These results seem to agree with those reported by Tsngawa et al., (1964) and Chaboussou, (1976) who stated that potassium - fertilizer - sprays generally reduced the numbers of insect pests.

Yield and its components: Early and total yield, and its components of squash in both experiments are listed in table (4). The comparisons among the different means showed that K_2SO_4 treatments gave significantly higher values for early and total yield than those of the control. The results reported for average fruit weight reflected some significant differences, as shown in Abiss in 1988 and in new Burg El-Arab in 1989. However, in Abiss, the different treatments did not have any significant differences in 1989. The average

Average No. of individuals on 10 leaves

				1010101			
		Ab i 55	uļi.		New Burg-Arab	g-Arab	
			1				
-	reatments	B. tabacı	tabacı I. tabacı	A. gossypii	B. tabaci	B. tabaci I. tabaci A. qussypii	A. 9055yp1
	1. Control	2030 b	986	400b	4325b	102a	217a
2	. KAs	2441a	218a	618a	5119a	110a	230a
M	. K250.	343d	24d	198c	12900	32c	156b
4	. 6As+K2504		53c	180c	1370c	586	149b

Table 4: Effect of gibberellic acid, potassium sulphate and their combination of both on early, total yield, and its components of squash, fall

				Abiss	10. 1				2	New Burg El-Arab	qe	
Treatments	Early yield g/plant	1988 Total yield g/plant	Fruit size "g*	No. of fruit/ plant	Early yield g/plant	1989 Total yield g/plant	Fruit size "g"	No. of fruit/ plant	Early yield g/plant	1989 Total yield g/plant	Fruit size "g"	No. of fruit/ plant
1. Control 209.00 c 2. 64s 455.88 b 3. N250a 478.40 b 4. 64s + K250a 545.18 a	209.00 c 455.88 b 478.40 b 545.18 a	585.56 d 1346.22 c 2007.78 a 1799.20 b	94 b 106 a 104 a 109 a	6.24 c 12.70 b 18.42 a 17.30 a	216.24 d 430.52 c 596.20 a 504.12 b	727.26 d 1470.01 c 2201.10 a 1684.80 b	102 100 104 110	7.13 d 14.70 c 20.01 a 16.90 b	131.32 d 315.18 c 494.40 a 380.70 b	580.00 d 100 b 926.17 c 101 b 1656.00 a 120 a 1257.42 b 114 a	100 b 101 b 120 a 114 a	5.80 c 9.17 b 13.80 a 11.03 b

- Means in each Table and in a column, in each location, not having the same letter did not significantly differ at the 0.05 level. Columns without letters indicate no significants differences.

effects of K_2SO_4 and GA_3 treatments on the average number of fruits per plant appeared to reflect some significant differences. The general trend, noticed from these comparisons, showed that fruit number was increased to agreat a extent with K_2SO_4 treatment. Furthermore, GA_3 alone or with K_2SO_4 produced significantly higher values of fruit no. than that of the control. These results generally agreed with numerous reports such as that of Michael et al., 1974 and Gezerel and Donmez., (1986).

REFERENCES

- AOAC. 1980. Official Methods of Analysis. Association Official Analytical chemists. 13th ed., Washington, D.C. USA.
- Al-Rawi, K.M. and A.M. Khalf-Allah. 1980.
 Design and analysis of agricultural experiments. El-Mousel Univ. Press Ninawa Iraq. pp. 487.
- Asif, M.I. and J.K. Gerig. 1972. Effects of seasons, interaction of nitrogen, phosphorous and potassium fertilizers on yield and nutrient content of snap beans (Phaseolus vulgaris L.). J. Amer. Soc. Hort. Sci. 97: 44-47.
- Chaboussou, F. 1976. Cultural factors and the resistance of citrus plants to scale insects and mites. IPI., 12 <u>th</u> Colloquium. pp. 137-158.
- Calwert, D.V. and R.C. Smith. 1972. Correction of potassium deficienty of citrus with KNO₃ sprays. J. Agric. Food. Chem. 20: 659-661.
- Chapman, H.D. and P.E. Pratt. 1961. Methods of analysis for soils, plants and waters. Univ. of Calif. Div. of Agric. Sci.
- Doss, M. and A.G. Moussa. 1985. Physiological studies on the chlorophyll content of tomato. J. Agric. Res. Tanta. Uni. 11: 41-423.
- Foda, H.A., A.S. El-Ghobashy and A.T. Abu Tabikh. 1972. Effect of Kinetin, gibberellic acid and a combination of both on growth, flowering and fruiting of Phaseolus vulgaris. Egypt. J. Bot. 16: 191-203.

- Fritzsche, R. · 1961. Einfluss der Kulturmassnahem auf die entwicklung von spinnmilbengradationen. Med. Land. Gent. pp. 1037-1038.
- Gezerel, O., and F. Donmez. 1986. The effect of foliar fertilizer applications on the yield and fruit quality of watermelon. Proceedings of 1st Int. Symposium of foliar fertilization. pp. 300-309.
- Hewitt, E.J. 1963. The essential nutrient elements: Requirements and interactions in plants. In -Plant Physiology- A Treatise. Vol. III. Inorganic Nutrition of plants. F.C. Steward ed. Academic Press, New York and London. pp. 137-360.
- Hutchinson, F.E., Murphy H.J. and H.W. Gausman. 1962. Relationship of phosphorus, potassium and calcium to yield of shelled peas in Central Maine. Proc. Amer. Sac. Hort. Sci. 76: 470-474.
- Kiraly, Z. 1976. Plant disease resistance as influenced by biochemical effects of nutrients in fertilizers. IPI., 12 th Colloquium pp. 33-46.
- Michael, G., M.A. Mounla and H. Goldbach. 1974.

 Plant analysis and fertilizer problems.

 Proceedings of 7th Int. Colloquium,
 Hannover. pp. 307-316.
- Midan, A.A., M.M. El-Said, A.M. El-Bakry and N.M. Malash. 1982. Effect of some micronutrients application with either GAs and CCC on the chemical constituents of snap bean plants. Zagazig Univ., Fac. of Agric., Res. Bull. 628: 1-17.

- Mulder, E.G. 1949. Mineral nutrition in relation to the biochemistry and physiology of potatoes. I- Effect of nitrogen, phosphate, potassium, magnesium and copper nutrition on the tyrosine content and tyrosinase activity with particular reference to blakening of the tubers. Plant and Soil. 2: 59-121.
- Oshorne, D.J. and D.R. Mc-Calla. 1961. Rapid bioassay for Kinetin and Kinins using senescing leaf tissue. Plant Physiology. 36: 219-221.
- Ozbum, J.L., R.U. Valk and W.A. Jackson. 1965. Effect of potassium deficiency on photsynthesis, respiration and the utilization of photosynthetic reductant by immature bean leaves. Crap Sci. 5: 69-75.
- Sawhney, V.K. and R.I. Greyson. 1972. Fruit size increase in tomato following application of gibberellic acid. J. Amer. Soc. Hort. Sci. 97: 589590.
- Tsugawa, E., M. Yamada, S. Shirasaki and N. Oyama. 1964. Studies on insecticide resistance on apple orchards pests. I- On the influence of acaricide application on Panonychus ulmi KOCH and on some other insects. Jap. J. Appl. Ent. Zool. 7: 191-202.

الملشف العبربي

تاشير حمض الجبريلك وسماد سلفات البوتاسيوم البورقى على القدرة الانتاجية لمحصول الكوسة وعلاقته بمقاومة النشرات الضارة

اجريت تجربتان حقليتان بمزرعة بحوث الكلية وشالشة في برج العرب الدديدة في الموسم الفريقي (النيليي العامي ١٩٨٨، ١٩٨٩ على محصول الكوسة الاستندراني بغرض در اسة تأثير استفدام الرش الورقي لسماد سلفللللل (١٥٥ البوتاسيوم (٤٠٠ مليجرام/لتر) وحمض المبريلك (١٥٠ جزء في المليون) وخليطهما على بعض الصفات الخضريلة والتمرية بالاضافة الى دراسة اشر هذه المعاملات على اعداد العشرات من حيث تواجدهاعلى الأوراق والتي نلخص نتائجها فيما يلي :-

أولا :-أدى استقدام حمق الببريلك منفرها أو مقلوطا مع سمادسلفات البوتاسيوم رشا على الأور∣ق التي زيادة مؤكدة اعصائيا للمساحة الورقية عن الكبترول.

شانيا: - اظهرت النشائج ايضا زيادة محتوى الاوراق من عنصرى البوتاسيوم والفوسفور في معاملات الرفي سمئاد سلفات البوتاسيوم، فيما اظهرت الاوراق المعاملة بعمض المجبريلك زيادة مؤكدة لعنصر النيتروجين.

شالنا: قيم الكلورفيللات المستفرجة من الاوراق أوضَدت زيادة مؤكدة لمعاملات التجربة من حمض الجبريـــلك والبوتاسيوم ومخلوطهما عن الكنترول.

رابعا:-ادى استخدام سماد البوتاسيوم رها الى زيادة مؤكدةللمحصول المبكر والكلى عن معاملة بحمق الجبريلك والكنترول، في حين لم يكن هناك تأثير معنوى علىيى حجم الشمار.

خامسا: - أوضحت النتائج ايضًا أن ميكانيكية التأثير الخاص لكل من سلفات البوتاسيوم وحمض الجبريلك مختلفة على احداث ظاهرة المقاومة السلبية (تنفير أو ترغيب) ضد متوسط اعداد الحشرات النامية على أوراق معاملاتها بالمقارنة بالكنترول.